Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (2) : 13
PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan
Mengqian Lu1, Bin-Le Lin2(), Kazuya Inoue2, Zhongfang Lei1, Zhenya Zhang1, Kiyotaka Tsunemi2
1. Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
2. National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
 Download: PDF(513 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Health impacts of utilizing ammonia as chemical carrier were investigated.

Influenced by ammonia emissions, PM2.5 increased 11.7% in winter and 3.5% in summer.

PM2.5-related premature deaths turned to be 351 per year.

Ammonia has emerged as a promising hydrogen carrier with applications as an energy source in recent years. However, in addition to being toxic, gaseous ammonia is a precursor of secondary inorganic aerosols. The concentration of ambient fine particulate matter (PM2.5) is intrinsically connected to public health. In this study, PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan, were investigated. It was assumed that 20% of the electricity consumption in Kanto Region, the most populated area in Japan, was supplied by ammonia-hydrogen energy. The PM2.5 resulted from incomplete ammonia decomposition was simulated by a chemical transport model: ADMER-PRO (modified version). Based on the incremental PM2.5 concentration, health impacts on the elderly (individuals over 65 years old) were quantitatively evaluated. The ammonia emission in this scenario increased PM2.5 by 11.7% (0.16 μg·m–3·y–1) in winter and 3.5% (0.08 μg·m–3·y–1) in summer, resulting in 351 premature deaths per year. This study suggests that cost-effective emissions control or treatment and appropriate land planning should be considered to reduce the associated health impacts of this type of energy generation. In addition, further in-depth research, including cost-benefit analysis and security standards, is needed.

Keywords Ammonia emissions      Energy carrier      Hydrogen energy      Fine particulate matters      Atmospheric modeling      Premature death     
Corresponding Authors: Bin-Le Lin   
Issue Date: 15 November 2017
 Cite this article:   
Mengqian Lu,Bin-Le Lin,Kazuya Inoue, et al. PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan[J]. Front. Environ. Sci. Eng., 2018, 12(2): 13.
Fig.1  Seven prefectures (Ibaraki, Tochigi, Gunma, Saitama, Chiba, Tokyo, and Kanagawa) and the geographical locations of the 21 LNG thermal power plants in Kanto Region
LNG power plantGenerating capacity
Emission amount
Anusaki Thermal Power Plant3613373Chiba
Ichihara Power Plant11103Chiba
Ougishima Power Station81757Kanagawa
Kashimaminami Cooperative Power Plant21196Ibaraki
Kanasaki Power Plant2001869Kanagawa
JR Eastern Japan Kanasaki Power Plant14131Kanagawa
Kawasaki LNG Power Plant85794Kanagawa
Goi Thermal Power Plant1891766Chiba
Samitto Mihama Power Chiba Power Plant547Chiba
JFE Chiba Power Plant87813Chiba
Shinagawa Thermal Power Plant1141065Tokyo
Sodegaura Thermal Power Plant3603363Chiba
Chiba Thermal Power Plant4384092Chiba
Japan Tech Sodegaura Greenpower11103Chiba
Ougishima Thermal Power Plant2001869Kanagawa
Futtsu Thermal Power Plant5405045Chiba
Bay Side Energy Ichihara Power Plant11103Chiba
South Yokohama Thermal Power Plant1151074Kanagawa
Mihama Seaside Power Shinkou Power Plant11103Chiba
Yokoshika Power Station24224Kanagawa
Yokohama Thermal Power Plant3333111Kanagawa
Tab.1  The 21 LNG thermal power plants in Kanto Region and their estimated ammonia emissions
Fig.2  Estimated annual changes in emissions of ammonia (a) and NOx and SO2 (b) under the conditions of the ammonia-hydrogen energy system
Fig.3  Incremental PM2.5 caused by ammonia emissions from the LNG thermal power plants utilizing ammonia-hydrogen power generation systems. Simulated data in winter (December to January) (a) and summer (July to August) (b)
Fig.4  GR in the base case. Simulated data in winter (December to January) (a) and summer (July to August) (b)
Fig.5  Premature deaths caused by incremental PM2.5resulted from utilizing ammonia-hydrogen energy in Kanto Region. Annual chronic death (a) and daily acute death in winter and summer, respectively (b)
PrefecturesPower plantsAnnual premature deaths
Tab.2  The number of LNG thermal power plants and the annual premature deaths for each prefecture in Kanto Region
1 Agency for Natural Resources and Energy, Government of Japan. Present situation of thermal power generation. 2013. Available online at committee/013/pdf/13-7.pdf. (accessed  30 January, 2017) 
2 Agency for Natural Resources and Energy, Government of Japan. Strategic plan of energy and environment. 2013. Available online at (accessed  30 January, 2017) 
3 Agency for Natural Resources and Energy, Government of Japan. Options associated with energy and environment. 2012. Available online at (accessed  30 January, 2017) 
4 Center for Research and Development Strategy, Japan Science and Technology Agency. Technology infrastructure of energy carrier for the transportation, storage, utilization of renewable energy. 2012. Available online at (accessed  30, January 2017) 
5 Mitsubishi Heavy Industries. Probability of wind power utilization in Patagonia. 2008. Available online at (accessed  30 January, 2017) 
6 Agency for Natural Resources and Energy, Government of Japan. The importance of hydrogen fueled electricity generation. 2014. Available online at (accessed  30 January, 2017) 
7 Kojima Y, Ichikawa T. Green hydrogen carrier using ammonia. Hydrogen Energy Systems, 2011, 36(4): 34–41
8 Galloway J N, Townsend A R, Erisman J W, Bekunda M, Cai Z, Freney J R, Martinelli L A, Seitzinger S P, Sutton M A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 2008, 320(5878): 889–892
9 Rockström J, Steffen W, Noone K, Persson Å, Chapin F S, Lambin E F, Lenton T M, Scheffer M, Folke C, Schellnhuber H J, Nykvist B, Wit C A, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder P K, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell R W, Fabry V J, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley J A. A safe operating space for humanity. Nature, 2009, 461(7263): 472–475
10 Paulot F, Jacob D J. Hidden cost of U.S. agricultural exports: Particulate matter from ammonia emissions. Environmental Science & Technology, 2014, 48(2): 903–908
11 Makar P A, Moran M D, Zheng Q, Cousineau S, Sassi M, Duhamel A, Besner M, Davignon D, Crevier L P, Bouchet V S. Modelling the impacts of ammonia emissions reductions on North American air quality. Atmospheric Chemistry and Physics, 2009, 9(18): 7183–7212
12 Lelieveld J, Evans J S, Fnais M, Giannadaki D, Pozzer A. The Contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 2015, 525(7569): 367–371
13 Rouleau M, Egyed M, Taylor B, Chen J, Samaali M, Davignon D, Morneau G. Human health impacts of biodiesel use in on-road heavy duty diesel vehicles in Canada. Environmental Science & Technology, 2013, 47(22): 13113–13121
14 Ministry of Environment, Government of Japan. Prefectural population, land area, gross product and electricity consumption. 2012. Available online at (accessed  30 January, 2017) 
15 Eguchi K. Development of ammonia fuel cell based on energy carrier project. 2013. Available online at (accessed  30 January, 2017) 
16 Electrical Japan website. Power plants in Kanto Region. 2013. Available online at . (accessed  30 January, 2017) 
17 Government of Japan. Offensive odor control law. 2011. Available online at . (accessed  09 May, 2016) 
18 Tower Map. Stack heights of thermal power plants. 2016. Available online at . (accessed  30 January, 2017) 
19 Fukui T, Kokuryo K, Baba T, Kannari A. Updating EAGrid2000-Japan emissions inventory based on the recent emission trends. Journal of Japan Society for Atmospheric Environment, 2014, 4928: 117–125
20 Pinder R W, Adams P J, Pandis S N. Ammonia emission controls as a cost-effective strategy for reducing atmospheric particulate matter in the Eastern United States. Environmental Science & Technology, 2007, 41(2): 380–386
21 Inoue K, Higashino H. Development and verification of the atmospheric model ADMER-PRO applicable for secondary formation. Journal of Japan Society for Atmospheric Environment, 2015, 50(6): 278–291
22 NOAA Earth System Research Laboratory. NCEP Reanalysis data. 2013. Available online at (accessed  17 July, 2017) 
23 Fountoukis C, Nenes A, Isorropia I I. A computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4+–Na+–SO42-–NO3-–Cl -–H2O aerosols. Atmospheric Chemistry and Physics, 2007, 7: 4639–4659
24 CALPUFF Modeling System website. Data of CALPUFF Modeling System. 1998. Available online at (accessed  30 January, 2017) 
25 Yoshikado H, Tsubaki T, Sasaki K. Feasibility of a method simulating long-term average concentration of pollutants based on a mesoscale meteorological model (II) application to assessment of high-level local ozone. Journal of Japan Society for Atmosphere Environment, 2006, 41: 1–14
26 Fann N, Lamson A D, Anenberg S C, Wesson K, Risley D, Hubbell B J. Estimating the national public health burden associated with exposure to ambient PM2.5 and Ozone. Risk Analysis, 2011, 32(1): 81–95
27 Shi L, Zanobetti A, Kloog I, Coull B A, Koutrakis P, Melly S J, Schwartz J D. Low-concentration PM2.5 and mortality: estimating acute and chronic effects in a population-based study. Environmental Health Perspectives, 2016, 124(1): 46–52
28 Ministry of Health, Labor and Welfare, Government of Japan. Mortality statistics by cause of death. 2012. Available online at (accessed  30 January, 2017) 
29 Statistics Bureau, Ministry of Internal Affairs and Communications, Government of Japan. Grid square statistics in 2000. 2000. Available online at . (accessed  30 January, 2017) 
30 Iki N, Kurata O, Matsunuma T, Inoue T, Suzuki M, Tsujimura T. Micro gas turbine firing ammonia. In: Proceedings of the NH3 Fuel Conference 2015, Chicago, U.S. NH3 Fuel Association, 2015, 1–39
31 Agency for Natural Resources and Energy, Government of Japan. Issues associated with thermal power generation. 2015. Available online at . (accessed  30 January, 2017) 
32 Manabe T. General feature of the JHFC Kawasaki hydrogen station. Hydrogen Energy Systems, 2004, 29(2): 50–53
33 Kato H, Nakanishi J. Estimation of PM2.5 concentrations in Kanto Region and its mortality risk. In: In: Proceedings of the Council of Japan Society for Risk Analysis 2002, Kyoto, Japan. Japan Society for Risk Analysis, 2002, 1–6
34 Stokstad E. Ammonia pollution from farming may exact hefty health costs. Science, 2014, 343(6168): 238–238
35 Ministry of Economy, Trade and Industry, Government of Japan. An outlook of the domestic energy consumption in 2030. 2010. Available online at (accessed  09 May, 2016) 
36 Ministry of Internal Affairs and Communications, Government of Japan. White paper on local public finance ministry of internal affairs and communications. 2012. Available online at . (accessed  30 January, 2017) 
[1] FSE-17095-OF-LMQ_suppl_1 Download
[1] Guoxia MA, Jinnan WANG, Fang YU, Xiaomin GUO, Yanshen ZHANG, Chao LI. Assessing the premature death due to ambient particulate matter in China’s urban areas from 2004 to 2013[J]. Front. Environ. Sci. Eng., 2016, 10(5): 7-.
Full text