Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (2) : 10    https://doi.org/10.1007/s11783-018-1006-2
RESEARCH ARTICLE
Phosphate-induced differences in stabilization efficiency for soils contaminated with lead, zinc, and cadmium
Jie Ren1,2, Zhuo Zhang1,2, Mei Wang1,2, Guanlin Guo2, Ping Du2(), Fasheng Li1,2
1. College of Water Sciences, Beijing Normal University, Beijing 100875, China
2. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
 Download: PDF(480 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Abilities of phosphates to stabilize heavy metal contaminated soils were studied.

• Phosphate-induced changes in soil pH affected the stabilization.

• Stabilization efficiencies were different in both single and ternary metal system.

• Competitive Pb stabilization was shown in soils with ternary metals.

Phosphates can cost-effectively decrease the mobility of Pb in contaminated soils. However, Pb always coexists with other metals in soil, their competitive reactions with phosphates have not been tested. In this study, the abilities of KH2PO4, K2HPO4, and K3PO4 to stabilize Pb, Zn, and Cd in soils contaminated with a single metal or a ternary metal for different phosphorus/metal molar ratios were investigated. Results indicated that the stabilization efficiency of KH2PO4, K2HPO4, and K3PO4 for Pb, Zn, and Cd in single metal contaminated soil (P/M ratio 0.6) was 96.00%–98.74%, 33.76%–47.81%, and 9.50%–55.79%, respectively. Competitive stabilization occurred in the ternary system, Pb exhibited a strong competition, the stabilization efficiency of Zn and Cd reduced by 23.50%–31.64%, and 7.10%–39.26%, respectively. Pyromorphite and amorphous lead phosphate formed with excess KH2PO4 or K2HPO4 addition, while K3PO4 resulted in the formation of a hydroxypyromorphite precipitate. Amorphous Zn and Cd phosphates and hydroxides were the primary products. The immobilization rate of Zn and Cd depends on pH, and increased significantly in response to the excess phosphate application. This approach provides insight into phosphate-induced differences in stabilization efficiency in soils contaminated with multiple metals, which is of theoretical and engineering significance.

Keywords Heavy metals      Metal-contaminated soil      Phosphate      Competitive stabilization     
Corresponding Author(s): Ping Du,Fasheng Li   
Issue Date: 31 October 2017
 Cite this article:   
Jie Ren,Zhuo Zhang,Mei Wang, et al. Phosphate-induced differences in stabilization efficiency for soils contaminated with lead, zinc, and cadmium[J]. Front. Environ. Sci. Eng., 2018, 12(2): 10.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1006-2
https://academic.hep.com.cn/fese/EN/Y2018/V12/I2/10
Experimental setupMolar ratioTotal content a)
Equivalent conditionExcessive condition
Single-PbP/Pb0.6121003±437
Cl/Pb0.4
Single-ZnP/Zn0.616519±295
Cl/Zn0.4
Single-CdP/Cd0.6111763±281
Cl/Cd0.4
Ternary metal
(Pb, Zn, and Cd)
P/Pb0.6120776±207
Cl/Pb0.4
P/Zn0.616613±310
Cl/Zn0.4
P/Cd0.6112773±278
Cl/Cd0.4
Tab.1  Experimental setup for different treatment and final concentration of metals
Phosphate treatmentSoil contaminated with a single metal (mg/L)Soil contaminated with ternary metal mixture (mg/L)
PbZnCdPbZnCd
CK599.28±12.06286.03±5.89383.68±7.27631.86±10.32302.13±2.03463.46±3.44
KH2PO4 (P/M= 0 0.6)23.96±5.04189.48±2.51347.22±16.4842.01±1.39276.24±9.67452.34±16.52
KH2PO4 (P/M= 1)1.81±0.09178.14±2.82327.60±0.298.26±0.32271.20±6.52429.75±7.24
K2HPO4 (P/M= 0.6)9.26±2.12183.11±1.88316.81±14.7332.52±7.93264.41±6.73437.42±11.37
K2HPO4 (P/M= 1)0.88±0.06137.22±6.37209.94±2.306.20±0.90247.41±7.50384.89±15.57
K3PO4 (P/M= 0.6)7.57±0.15149.28±1.86169.63±5.2418.95±1.92253.28±7.9386.84±13.34
K3PO4 (P/M= 1)0.01±0.00117.27±0.43153.03±4.953.58±1.57237.85±6.82365.00±9.50
Tab.2  Concentration of leached Pb, Zn, and Cd from soils contaminated with a single metal or a ternary metal mixture
Fig.1  Stabilization efficiency for Pb, Zn, and Cd in soil contaminated with a single metal. Error bars represent the standard deviation (n = 3)
Fig.2  Stabilization efficiency for Pb, Zn, and Cd in soil contaminated with a ternary metal mixture. Error bars represent the standard deviation (n = 3)
Fig.3  Phosphate-induced pH variations in soils contaminated with a single metal or a ternary metal mixture. Phosphorus/metal equivalence ratio: 3:5 (O); 1:1(). CK= untreated soil; M= ternary contamination (Pb, Zn, and Cd). Error bars represent the standard deviation (n = 3)
Fig.4  XRD patterns for the products of reactions between phosphates and heavy metals in soil contaminated with (a) single-Pb, and (b) a ternary metal mixture (Pb, Zn, and Cd). ▾quartz SiO2; ○ pyromorphite Pb5(PO4)3Cl; ●hydroxypyromorphite Pb5(PO4)3OH; ■lead nitrate Pb(NO3)2
Fig.5  Chemical fractions of Pb, Zn, and Cd in soil contaminated with a single metal after phosphate stabilization
Fig.6  Chemical fractions of Pb, Zn, and Cd in soil contaminated with a ternary metal mixture after phosphate stabilization
1 Ahn J, Kang S, Hwang K, Kim H, Kim J, Song H, Hwang I. Evaluation of phosphate fertilizers and red mud in reducing plant availability of Cd, Pb, and Zn in mine tailings. Environmental Earth Sciences, 2015, 74(3): 2659–2668
https://doi.org/10.1007/s12665-015-4286-x
2 Zhang Z, Guo G, Teng Y, Wang J, Rhee J S, Wang S, Li F. Screening and assessment of solidification/stabilization amendments suitable for soils of lead-acid battery contaminated site. Journal of Hazardous Materials, 2015, 288: 140–146
https://doi.org/10.1016/j.jhazmat.2015.02.015 pmid: 25699676
3 Fang Y, Cao X, Zhao L. Effects of phosphorus amendments and plant growth on the mobility of Pb, Cu, and Zn in a multi-metal-contaminated soil. Environmental Science and Pollution Research International, 2012, 19(5): 1659–1667
https://doi.org/10.1007/s11356-011-0674-2 pmid: 22161145
4 Sdiri A, Higashi T, Chaabouni R, Jamoussi F. Competitive removal of heavy metals from aqueous solutions by montmorillonitic and calcareous clays. Water, Air, and Soil Pollution, 2012, 223(3): 1191–1204
https://doi.org/10.1007/s11270-011-0937-z
5 Cao X, Ma L Q, Rhue D R, Appel C S. Mechanisms of lead, copper, and zinc retention by phosphate rock. Environmental Pollution, 2004, 131(3): 435–444
https://doi.org/10.1016/j.envpol.2004.03.003 pmid: 15261407
6 Chen S, Xu M, Ma Y, Yang J. Evaluation of different phosphate amendments on availability of metals in contaminated soil. Ecotoxicology and Environmental Safety, 2007, 67(2): 278–285
https://doi.org/10.1016/j.ecoenv.2006.06.008 pmid: 16887186
7 Impellitteri C A. Effects of pH and phosphate on metal distribution with emphasis on As speciation and mobilization in soils from a lead smelting site. Science of the Total Environment, 2005, 345(1–3): 175–190
https://doi.org/10.1016/j.scitotenv.2004.10.024 pmid: 15919538
8 Corami A, Mignardi S, Ferrini V. Copper and zinc decontamination from single- and binary-metal solutions using hydroxyapatite. Journal of Hazardous Materials, 2007, 146(1–2): 164–170
https://doi.org/10.1016/j.jhazmat.2006.12.003 pmid: 17204364
9 Corami A, Mignardi S, Ferrini V. Cadmium removal from single- and multi-metal (Cd+ Pb+ Zn+ Cu) solutions by sorption on hydroxyapatite. Journal of Colloid and Interface Science, 2008, 317(2): 402–408
https://doi.org/10.1016/j.jcis.2007.09.075 pmid: 17949731
10 Ma L Q, Rao G N. Aqueous Pb reduction in Pb-contaminated soils by florida phosphate rocks. Water, Air, and Soil Pollution, 1999, 110(1–2): 1–16
https://doi.org/10.1023/A:1005025708044
11 Hashimoto Y, Sato T. Removal of aqueous lead by poorly-crystalline hydroxyapatites. Chemosphere, 2007, 69(11): 1775–1782
https://doi.org/10.1016/j.chemosphere.2007.05.055 pmid: 17606289
12 Jalali M, Moradi F. Competitive sorption of Cd, Cu, Mn, Ni, Pb and Zn in polluted and unpolluted calcareous soils. Environmental Monitoring and Assessment, 2013, 185(11): 8831–8846
https://doi.org/10.1007/s10661-013-3216-1 pmid: 23677680
13 Miretzky P, Fernandez-Cirelli A. Phosphates for Pb immobilization in soils: a review. Environmental Chemistry Letters, 2008, 6(3): 121–133
https://doi.org/10.1007/s10311-007-0133-y
14 Austruy A, Shahid M, Xiong T T, Castrec M, Payre V, Niazi N K, Sabir M, Dumat C. Mechanisms of metal-phosphates formation in the rhizosphere soils of pea and tomato: environmental and sanitary consequences. Journal of Soils and Sediments, 2014, 14(4): 666–678
https://doi.org/10.1007/s11368-014-0862-z
15 Cao X, Liang Y, Zhao L, Le H. Mobility of Pb, Cu, and Zn in the phosphorus-amended contaminated soils under simulated landfill and rainfall conditions. Environmental Science and Pollution Research International, 2013, 20(9): 5913–5921
https://doi.org/10.1007/s11356-012-1349-3 pmid: 23263754
16 Zhang Z, Ren J, Wang M, Song X, Zhang C, Chen J, Li F, Guo G. Competitive immobilization of Pb in an aqueous ternary-metals system by soluble phosphates with varying pH. Chemosphere, 2016, 159: 58–65
https://doi.org/10.1016/j.chemosphere.2016.05.082 pmid: 27276163
17 Barrett J E, Taylor K G, Hudson-Edwards K A, Charnock J M. Solid-phase speciation of Pb in urban road dust sediment: a XANES and EXAFS study. Environmental Science & Technology, 2010, 44(8): 2940–2946
https://doi.org/10.1021/es903737k pmid: 20337471
18 USEPA. USEPA 1311 SW-846. Test Methods for Evaluating Solid Wastes. Physical/Chemical Methods. Washington DC: US Environmental Protection Agency, 1991
19 Vandenhove H, Vanhoudt N, Duquène L, Antunes K, Wannijn J. Comparison of two sequential extraction procedures for uranium fractionation in contaminated soils. Journal of Environmental Radioactivity, 2014, 137: 1–9
https://doi.org/10.1016/j.jenvrad.2014.05.024 pmid: 24980511
20 Wang L, Putnis C V, Ruiz-Agudo E, King H E, Putnis A. Coupled dissolution and precipitation at the cerussite-phosphate solution interface: implications for immobilization of lead in soils. Environmental Science & Technology, 2013, 47(23): 13502–13510
https://doi.org/10.1021/es4041946 pmid: 24228938
21 Chen X B, Wright J V, Conca J L, Peurrung L M. Effects of pH on heavy metal sorption on mineral apatite. Environmental Science & Technology, 1997, 31(3): 624–631
https://doi.org/10.1021/es950882f
22 Ma Q Y, Traina S J, Logan T J, Ryan J A. Effects of Aqueous Al, Cd, Cu, Fe(II), Ni, and Zn on Pb Immobilization by Hydroxyapatite. Environmental Science & Technology, 1994, 28(7): 1219–1228
https://doi.org/10.1021/es00056a007 pmid: 22176311
23 Hodson M E, Valsami-Jones  É,Cotter-Howells  J D. Bonemeal additions as a remediation treatment for metal contaminated soil. Environmental Science & Technology, 2000, 34(16): 3501–3507
https://doi.org/10.1021/es990972a
24 Matusik J, Bajda T, Manecki M. Immobilization of aqueous cadmium by addition of phosphates.  Journal of Hazardous Materials, 2008, 152(3): 1332–1339
25 Shevade A V, Erickson L, Pierzynski G, Jiang S. Formation and stability of substituted pyromorphite: A molecular modeling study. Journal of Hazardous Substance Research, 2002(3): 1–11
26 Bosso S T, Enzweiler J, Angélica R S. Lead bioaccessibility in soil and mine wastes after immobilization with phosphate. Water, Air, and Soil Pollution, 2008, 195(1–4):257–273
https://doi.org/10.1007/s11270-008-9744-6
27 Cao X, Wahbi A, Ma L, Li B, Yang Y. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. Journal of Hazardous Materials, 2009, 164(2–3): 555–564
https://doi.org/10.1016/j.jhazmat.2008.08.034 pmid: 18848390
28 Gupta D K, Chatterjee S, Datta S, Veer V, Walther C. Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals. Chemosphere, 2014, 108: 134–144
https://doi.org/10.1016/j.chemosphere.2014.01.030 pmid: 24560283
29 Ma Q Y, Logan T J, Traina S J. Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. Environmental Science & Technology, 1995, 29(4): 1118–1126
https://doi.org/10.1021/es00004a034 pmid: 22176421
[1] Sanjena Narayanasamydamodaran, Jian’e Zuo, Haiteng Ren, Nawnit Kumar. Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture[J]. Front. Environ. Sci. Eng., 2021, 15(4): 66-.
[2] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[3] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[4] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[5] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
[6] Nima Kamali, Abdollah Rashidi Mehrabadi, Maryam Mirabi, Mohammad Ali Zahed. Synthesis of vinasse-dolomite nanocomposite biochar via a novel developed functionalization method to recover phosphate as a potential fertilizer substitute[J]. Front. Environ. Sci. Eng., 2020, 14(4): 70-.
[7] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[8] Nan Wu, Weiyu Zhang, Shiyu Xie, Ming Zeng, Haixue Liu, Jinghui Yang, Xinyuan Liu, Fan Yang. Increasing prevalence of antibiotic resistance genes in manured agricultural soils in northern China[J]. Front. Environ. Sci. Eng., 2020, 14(1): 1-.
[9] Zhan Qu, Ting Su, Yu Chen, Xue Lin, Yang Yu, Suiyi Zhu, Xinfeng Xie, Mingxin Huo. Effective enrichment of Zn from smelting wastewater via an integrated Fe coagulation and hematite precipitation method[J]. Front. Environ. Sci. Eng., 2019, 13(6): 94-.
[10] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
[11] Fatih Ilhan, Kubra Ulucan-Altuntas, Yasar Avsar, Ugur Kurt, Arslan Saral. Electrocoagulation process for the treatment of metal-plating wastewater: Kinetic modeling and energy consumption[J]. Front. Environ. Sci. Eng., 2019, 13(5): 73-.
[12] Zhan Wang, Chongyang Shen, Yichun Du, Yulong Zhang, Baoguo Li. Influence of phosphate on deposition and detachment of TiO2 nanoparticles in soil[J]. Front. Environ. Sci. Eng., 2019, 13(5): 79-.
[13] Qinghao Jin, Chenyang Cui, Huiying Chen, Jing Wu, Jing Hu, Xuan Xing, Junfeng Geng, Yanhong Wu. Effective removal of Cd2+ and Pb2+ pollutants from wastewater by dielectrophoresis-assisted adsorption[J]. Front. Environ. Sci. Eng., 2019, 13(2): 16-.
[14] Zhen Li, Zhaofu Qiu, Ji Yang, Benteng Ma, Shuguang Lu, Chuanhui Qin. Investigation of phosphate adsorption from an aqueous solution using spent fluid catalytic cracking catalyst containing lanthanum[J]. Front. Environ. Sci. Eng., 2018, 12(6): 15-.
[15] Weiqi Luo, Yanping Ji, Lu Qu, Zhi Dang, Yingying Xie, Chengfang Yang, Xueqin Tao, Jianmin Zhou, Guining Lu. Effects of eggshell addition on calcium-deficient acid soils contaminated with heavy metals[J]. Front. Environ. Sci. Eng., 2018, 12(3): 4-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed