Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (2) : 12    https://doi.org/10.1007/s11783-018-1008-0
RESEARCH ARTICLE
Effects of heavy rainfall on the composition of airborne bacterial communities
Gwang Il Jang1,2, Chung Yeon Hwang2, Byung Cheol Cho1()
1. Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
2. Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
 Download: PDF(388 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Airborne bacterial community composition changed between before and after rainfall.

Actinobacteria and Firmicutes, respectively, increased and decreased after rain.

Rainfalls might have adverse effects on human and plant health.

Wet deposition scavenges particles and particle-associated bacteria from the air column, but the impact of raindrops on various surfaces on Earth causes emission of surface-associated bacteria into the air column. Thus, after rainfall, these two mechanisms are expected to cause changes in airborne bacterial community composition (BCC). In this study, aerosol samples were collected at a suburban site in Seoul, Korea before and after three heavy rainfall events in April, May, and July 2011. BCC was investigated by pyrosequencing the 16S rRNA gene in aerosol samples. Interestingly, the relative abundance of non-spore forming Actinobacteria operational taxonomic units (OTUs) was always higher in post-rain aerosol samples. In particular, the absolute and relative abundances of airborne Propionibacteriaceae always increased after rainfall, whereas those of airborne Firmicutes, including Carnobacteriaceae and Clostridiales, consistently decreased. Marine bacterial sequences, which were temporally important in aerosol samples, also decreased after rainfall events. Further, increases in pathogen-like sequences were often observed in post-rain air samples. Rainfall events seemed to affect airborne BCCs by the combined action of the two mechanisms, with potentially adverse effects on human and plant health.

Keywords Aerosol      Bacteria      Community composition      Pyrosequencing      Rain     
Corresponding Author(s): Byung Cheol Cho   
Issue Date: 05 December 2017
 Cite this article:   
Gwang Il Jang,Chung Yeon Hwang,Byung Cheol Cho. Effects of heavy rainfall on the composition of airborne bacterial communities[J]. Front. Environ. Sci. Eng., 2018, 12(2): 12.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1008-0
https://academic.hep.com.cn/fese/EN/Y2018/V12/I2/12
DateSample IDAir temp (°C)Relative
humidity (%)
Solar radiation
(MJ/m2)
UV radiation
(J/m2)
BA
(cells/m3 for aerosol /
cells/mL for rain)
Apr 29A120.736.710.72224.553.0 × 105
Apr 30R111.5*82.0*1.0475.21.6 × 103
May 1A220.156.018.02693.01.3 × 105
May 8A330.530.424.83004.10.1 × 105
May 10R217.1*89.3*2.4836.60.1 × 103
May 12A417.362.910.63878.10.1 × 105
July 2A531.481.55.24242.00.04 × 105
July 3R323.2*92.1*1.9559.90.1 × 103
July 4A631.481.520.15049.90.01 × 105
Tab.1  Air temperature, relative humidity, bacterial abundance (BA) measured at an inland site (16 m above the ground and ~102 m above sea level; 37° 27′ 35″ N, 126° 56′ 59″ E) in 2011. Solar radiation data were from the Korea Metrological Administration (Songwol-dong, Jongno-gu in Seoul). Ultraviolet (UV) radiation data were from the Korea Global Atmosphere Watch Center (Anmyeon-Eup, ChungNam) located ca. 116 km from Seoul. Samples A and R represents aerosol and rain, respectively
CategoryA1A2A3A4A5A6R1**R2**R3**
Unclassified Bacteria7.936.508.7113.038.157.6512.6116.834.30
Actinobacteria40.3671.145.2612.235.7689.911.541.41
Actinomycetales40.3671.145.1410.885.7689.301.541.41
Intrasporangiaceae1.790.310.060.23
Micrococcaceae0.490.080.030.71
Microbacteriaceae40.3664.345.113.650.910.07
Geodermatophilaceae1.390.04
Nocardioidaceae0.540.06
Propionibacteriaceae3.500.030.842.9883.490.120.07
Bacteroidetes0.482.3111.5440.830.444.65
Sphingobacteriales0.302.150.579.790.192.76
Cytophagaceae0.101.130.040.08
Flavobacteriales0.180.1710.2628.610.141.00
Flavobacteriaceae0.130.099.8428.610.140.93
Firmicutes24.932.7448.0931.9061.350.6123.9215.410.87
Clostridiales20.670.2610.508.173.110.310.372.930.07
Lactobacillales1.9934.0221.091.530.167.300.19
Carnobacteriaceae1.9931.6019.271.476.35
Bacillales1.762.240.760.6155.090.3119.584.110.53
Staphylococcaceae0.461.180.360.0453.313.760.07
Proteobacteria26.7719.6237.3738.6513.201.5322.4664.8387.62
Alphaproteobacteria0.411.0818.0619.904.030.610.7836.5757.46
Rhizobiales0.240.051.540.250.311.1111.74
Methylobacteriaceae0.430.200.319.91
Caulobacterales (Caulobacteraceae)0.09 (0.09)0.11 (0.11)0.07 (0.07)0.88 (0.88)0.12 (0.12)
Sphingomonadales0.7117.3416.262.4632.0018.91
Rhodobacterales (Rhodobacteraceae)0.41 (0.41)0.04 (0.04)0.78 (0.78)0.44 (0.44)0.18 (0.18)0.04 (0.04)0.10 (0.10)
Betaproteobacteria2.321.674.623.765.301.308.7411.72
Burkholderiales2.241.554.553.485.010.938.5010.25
Comamonadaceae2.141.550.801.194.110.936.600.31
Oxalobacteraceae0.400.390.535.79
Methylophilales (Methylophilaceae)0.13 (0.13)0.13 (0.13)
Gammaproteobacteria7.248.2913.0412.932.6917.7615.931.62
Pseudomonadales0.831.033.393.480.601.2310.470.11
Pseudomonadaceae0.830.483.283.330.872.690.07
Enterobacteriales (Enterobacteriaceae)3.76 (3.76)6.57 (6.57)8.58 (8.58)8.09 (8.09)0.85 (0.85)14.76 (14.76)2.41 (2.41)0.27 (0.27)
Xanthomonadales (Xanthomonadaceae)2.28 (2.28)0.68 (0.68)0.29 (0.29)0.68 (0.68)0.09 (–)
Epsilonproteobacteria15.467.700.770.630.200.05
Campylobacterales (Arcobacter*)15.46 (15.46)7.70 (7.70)0.77 (0.77)0.63 (0.63)0.20 (0.20)0.05 (0.05)
Deltaproteobacteria0.150.920.044.71
Gemmatimonadetes0.65
Acidobacteria0.080.67
Chloroflexi0.130.04
Cyanobacteria0.150.310.170.901.02
Planctomycetes0.280.05
Tab.2  Relative abundance of bacterial taxa in aerosol and rainwater samples collected at an inland site in 2011. Data were normalized by randomly subsampling to 327 reads in each sample 100 times and average values were used to calculate relative abundances. The relative abundance of each bacterial taxon which was identified using the RDP classifier (80% confidence) was calculated by dividing the numbers of reads assigned to each group by 327 per sample. Phylum, class, and order level classifications are highlighted in bold and their remaining taxa are classified to the level of family or genus. –: not detected. The description of sample IDs is the same as in Table 1
Fig.1  Distribution of the dominant (>1% of all reads) bacterial OTUs and the rare (<1% of all reads) bacterial OTUs detected by pyrosequencing of aerosol samples. Solid and hatched bars, respectively, represent proportions of dominant and rare OTUs affiliated with the same family or order. Bars in bold outlines represent the order Actinomycetales in the phylum Actinobacteria. In the parentheses, the numbers of OTUs belonging to each group are shown
Fig.2  Multidimensional scaling diagram of the bacterial community composition for the aerosol samples (April 29, A1; May 1, A2; May 8, A3; May 12, A4; July 2, A5; July 4, A6) and rainwater samples (April 30, R1; May 10, R2; July 3, R3 [10])
1 P N Polymenakou. Atmosphere: A source of pathogenic or beneficial microbes? Atmosphere, 2012, 3(4): 87–102
https://doi.org/10.3390/atmos3010087
2 P N Polymenakou, M Mandalakis, E G Stephanou, A Tselepides. Particle size distribution of airborne microorganisms and pathogens during an Intense African dust event in the eastern Mediterranean. Environmental Health Perspectives, 2008, 116(3): 292–296
https://doi.org/10.1289/ehp.10684 pmid: 18335093
3 A Franzetti, I Gandolfi, E Gaspari, R Ambrosini, G Bestetti. Seasonal variability of bacteria in fine and coarse urban air particulate matter. Applied Microbiology and Biotechnology, 2011, 90(2): 745–753
https://doi.org/10.1007/s00253-010-3048-7 pmid: 21184061
4 J A Huffman, A J Prenni, P J DeMott, C Pöehlker, R H Mason, N H Robinson, J Fröehlich-Nowoisky, Y Tobo, V R Després, E Garcia, D J Gochis, E Harris, I Müeller-Germann, C Ruzene, B Schmer, B Sinha, D A Day, M O Andreae, J L Jimenez, M Gallagher, S M Kreidenweis, A K Bertram, U Pöeschl. High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmospheric Chemistry and Physics, 2013, 13: 6151–6164
https://doi.org/10.5194/acp-13-6151-2013
5 Y S Joung, Z Ge, C R Buie. Bioaerosol generation by raindrops on soil. Nature Communications, 2017, 8: 14668
https://doi.org/10.1038/ncomms14668 pmid: 28267145
6 E L Brodie, T Z DeSantis, J P M Parker, I X Zubietta, Y M Piceno, G L Andersen. Urban aerosols harbor diverse and dynamic bacterial populations. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(1): 299–304
https://doi.org/10.1073/pnas.0608255104 pmid: 17182744
7 E M Jeon, H J Kim, K Jung, J H Kim, M Y Kim, Y P Kim, J O Ka. Impact of Asian dust events on airborne bacterial community assessed by molecular analyses. Atmospheric Environment, 2011, 45(25): 4313–4321
https://doi.org/10.1016/j.atmosenv.2010.11.054
8 T Maki, F Puspitasari, K Hara, M Yamada, F Kobayashi, H Hasegawa, Y Iwasaka. Variations in the structure of airborne bacterial communities in a downwind area during an Asian dust (Kosa) event. Science of the Total Environment, 2014, 488– 489: 75–84
https://doi.org/10.1016/j.scitotenv.2014.04.044 pmid: 24815557
9 T Maki, K Hara, A Iwata, K C Lee, K Kawai, K Kai, F Kobayashi, S B Pointing, S Archer, H Hasegawa, Y Iwasaka. Variations in airborne bacterial communities at high altitudes over the Noto Peninsula (Japan) in response to Asian dust events. Atmospheric Chemistry and Physics Discussion, 2017, 1–32
https://doi.org/10.5194/acp-2016-1095
10 B C Cho, G I Jang. Active and diverse rainwater bacteria collected at an inland site in spring and summer 2011. Atmospheric Environment, 2014, 94: 409–416
https://doi.org/10.1016/j.atmosenv.2014.05.048
11 J Y Aller, M R Kuznetsova, C J Jahns, P F Kemp. The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols. Journal of Aerosol Science, 2005, 36(5–6): 801–812
https://doi.org/10.1016/j.jaerosci.2004.10.012
12 B C Cho, C Y Hwang. Prokaryotic abundance and 16S rRNA gene sequences detected in marine aerosols on the East Sea (Korea). FEMS Microbiology Ecology, 2011, 76(2): 327–341
https://doi.org/10.1111/j.1574-6941.2011.01053.x pmid: 21255051
13 H Schäfer, G Muyzer. Denaturing gradient gel electrophoresis in marine microbial ecology. Methods in Microbiology, 2001, 30: 425–468
https://doi.org/10.1016/S0580-9517(01)30057-0
14 P D Schloss, S L Westcott, T Ryabin, J R Hall, M Hartmann, E B Hollister, R A Lesniewski, B B Oakley, D H Parks, C J Robinson, J W Sahl, B Stres, G G Thallinger, D J Van Horn, C F Weber. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 2009, 75(23): 7537–7541
https://doi.org/10.1128/AEM.01541-09 pmid: 19801464
15 K R Clarke, R M Warwick. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd edition. Plymouth: PRIMER-E, 2001
16 R M Bowers, S McLetchie, R Knight, N Fierer. Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. The ISME Journal, 2011, 5(4): 601–612
https://doi.org/10.1038/ismej.2010.167 pmid: 21048802
17 R R Draxler, G D Rolph. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY. College Park, MD: NOAA Air Resources Laboratory, 2013.
18 K S Sfanos, W B Isaacs. An evaluation of PCR primer sets used for detection of Propionibacterium acnes in prostate tissue samples. Prostate, 2008, 68(14): 1492–1495
https://doi.org/10.1002/pros.20820 pmid: 18651578
19 S Cha, D Lee, J H Jang, S Lim, D Yang, T Seo. Alterations in the airborne bacterial community during Asian dust events occurring between February and March 2015 in South Korea. Scientific Reports, 2016, 6: 37271
https://doi.org/10.1038/srep37271 pmid: 27849049
20 R M Bowers, I B McCubbin, A G Hallar, N Fierer. Seasonal variability in airborne bacterial communities at a high-elevation site. Atmospheric Environment, 2012, 50: 41–49
https://doi.org/10.1016/j.atmosenv.2012.01.005
21 R M Bowers, N Clements, J B Emerson, C Wiedinmyer, M P Hannigan, N Fierer. Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere. Environmental Science & Technology, 2013, 47(21): 12097–12106
https://doi.org/10.1021/es402970s pmid: 24083487
22 E Stackebrandt, F A Rainey, N L Ward-Rainey. Proposal for a new hierarchic classification system, Actinobacteria classis nov. International Journal of Systematic Bacteriology, 1997, 47(2): 479–491
https://doi.org/10.1099/00207713-47-2-479
23 P Normand. Geodermatophilaceae fam. nov., a formal description. International Journal of Systematic and Evolutionary Microbiology, 2006, 56(10): 2277–2278
https://doi.org/10.1099/ijs.0.64298-0 pmid: 17012547
24 C S Cox. Relative humidity and temperature. In: Cox C, editor. The Aerobiological Pathway of Microorganisms. New York: John Wiley & Sons, 1987, 172–205
25 R Ehrlich, S Miller, R L Walker. Effects of atmospheric humidity and temperature on the survival of airborne Flavobacterium. Applied Microbiology, 1970, 20(6): 884–887
pmid: 4992653
26 V R Després, J A Huffman, S M Burrows, C Hoose, A S Safatov, G Buryak, J Fröhlich-Nowoisky, W Elbert, M O Andreae, U Pöschl, R Jaenicke. Primary biological aerosol particles in the atmosphere: A review. Tellus B: Chemical and Physical Meteorology, 2012, 64(1): 15598
https://doi.org/10.3402/tellusb.v64i0.15598
27 L Cuthbertson, H Amores-Arrocha, L A Malard, N Els, B Sattler, D A Pearce. Characterisation of Arctic bacterial communities in the air above Svalbard. Biology (Basel), 2017, 6(2): 29
https://doi.org/10.3390/biology6020029 pmid: 28481257
28 H M Kim, C Y Hwang, B C Cho. Arcobacter marinus sp. nov. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(3): 531–536
https://doi.org/10.1099/ijs.0.007740-0 pmid: 19654359
29 M J Figueras, L Collado, A Levican, J Perez, M J Solsona, C Yustes. Arcobacter molluscorum sp. nov., a new species isolated from shellfish. Systematic and Applied Microbiology, 2011, 34(2): 105–109
https://doi.org/10.1016/j.syapm.2010.10.001 pmid: 21185143
30 Y Tong, B Lighthart. Solar radiation is shown to select for pigmented bacteria in the ambient outdoor atmosphere. Photochemistry and Photobiology, 1997, 65(1): 103–106
https://doi.org/10.1111/j.1751-1097.1997.tb01884.x
31 D W Ehresmann, M T Hatch. Effect of relative humidity on the survival of airborne unicellular algae. Applied Microbiology, 1975, 29(3): 352–357
pmid: 1115506
32 M Simon, F Azam. Protein content and protein synthesis rates of planktonic marine bacteria. Marine Ecology Progress Series, 1989, 51: 201–213
https://doi.org/10.3354/meps051201
33 P E Taylor, H Jonsson. Thunderstorm asthma. Current Allergy and Asthma Reports, 2004, 4(5): 409–413
https://doi.org/10.1007/s11882-004-0092-3 pmid: 15283882
34 R Locci. Actinomycete spores. In: Encyclopedia of Life Sciences (eLS). New York: John Wiley & Sons, 2006, doi: 10.1038/nng.els.004237
35 R M Harrison, A M Jones, P D Biggins, N Pomeroy, C S Cox, S P Kidd, J L Hobman, N L Brown, A Beswick. Climate factors influencing bacterial count in background air samples. International Journal of Biometeorology, 2005, 49(3): 167–178
https://doi.org/10.1007/s00484-004-0225-3 pmid: 15290434
36 A C Woo, M S Brar, Y Chan, M C Y Lau, F C C Leung, J A Scott, L L P Vrijmoed, P Zawar-Reza, S B Pointing. Temporal variation in airborne microbial populations and microbially-derived allergens in a tropical urban landscape. Atmospheric Environment, 2013, 74: 291–300
https://doi.org/10.1016/j.atmosenv.2013.03.047
37 I Gandolfi, V Bertolini, R Ambrosini, G Bestetti, A Franzetti. Unravelling the bacterial diversity in the atmosphere. Applied Microbiology and Biotechnology, 2013, 97(11): 4727–4736
https://doi.org/10.1007/s00253-013-4901-2 pmid: 23604562
[1] FSE-17106-OF-JG_suppl_1 Download
[1] Yiqun Cao, Qingxin Ma, Biwu Chu, Hong He. Homogeneous and heterogeneous photolysis of nitrate in the atmosphere: state of the science, current research needs, and future prospects[J]. Front. Environ. Sci. Eng., 2023, 17(4): 48-.
[2] Hongcan Cui, Ronghua Xu, Zhong Yu, Yuanyuan Yao, Shaoqing Zhang, Fangang Meng. Tank-dependence of the functionality and network differentiation of activated sludge community in a full-scale anaerobic/anoxic/aerobic municipal sewage treatment plant[J]. Front. Environ. Sci. Eng., 2023, 17(3): 36-.
[3] Zhizhuo Liu, Zhemin Shen, Shouyan Xiang, Yang sun, Jiahua Cui, Jinping Jia. Evaluation of 1,4-naphthoquinone derivatives as antibacterial agents: activity and mechanistic studies[J]. Front. Environ. Sci. Eng., 2023, 17(3): 31-.
[4] Donglin Wang, Jie Zhou, Hui Lin, Junwen Chen, Jing Qi, Yaohui Bai, Jiuhui Qu. Impacts of backwashing on micropollutant removal and associated microbial assembly processes in sand filters[J]. Front. Environ. Sci. Eng., 2023, 17(3): 34-.
[5] Min Shang, Yadong Kong, Zhijuan Yang, Rong Cheng, Xiang Zheng, Yi Liu, Tongping Chen. Removal of virus aerosols by the combination of filtration and UV-C irradiation[J]. Front. Environ. Sci. Eng., 2023, 17(3): 27-.
[6] Xin Zhou, Xiaoya Ren, Yu Chen, Haopeng Feng, Jiangfang Yu, Kang Peng, Yuying Zhang, Wenhao Chen, Jing Tang, Jiajia Wang, Lin Tang. Bacteria inactivation by sulfate radical: progress and non-negligible disinfection by-products[J]. Front. Environ. Sci. Eng., 2023, 17(3): 29-.
[7] Fan Yang, Junpeng Li, Huan Wang, Xiaofeng Xiao, Rui Bai, Feng Zhao. Visible light induces bacteria to produce superoxide for manganese oxidation[J]. Front. Environ. Sci. Eng., 2023, 17(2): 19-.
[8] Xuehong Zhang, Yuanyuan Zhang, Dan Zhu, Zhiyi Lin, Na Sun, Chang Su, Hua Lin, Junjian Zheng. Chromium phytoextraction and physiological responses of the hyperaccumulator Leersia hexandra Swartz to plant growth-promoting rhizobacterium inoculation[J]. Front. Environ. Sci. Eng., 2023, 17(1): 9-.
[9] Qianqian Gao, Xiaojing Zhu, Qihuang Wang, Kaili Zhou, Xiaohui Lu, Zimeng Wang, Xiaofei Wang. Enrichment and transfer of polycyclic aromatic hydrocarbons (PAHs) through dust aerosol generation from soil to the air[J]. Front. Environ. Sci. Eng., 2023, 17(1): 10-.
[10] Shaoping Luo, Yi Peng, Ying Liu, Yongzhen Peng. Research progress and prospects of complete ammonia oxidizing bacteria in wastewater treatment[J]. Front. Environ. Sci. Eng., 2022, 16(9): 123-.
[11] María del Carmen Calderón-Ezquerro, Elizabeth Selene Gómez-Acata, Carolina Brunner-Mendoza. Airborne bacteria associated with particulate matter from a highly urbanised metropolis: A potential risk to the population’s health[J]. Front. Environ. Sci. Eng., 2022, 16(9): 120-.
[12] Menghao Chen, Liangliang Shi, Gang Liu, Xiaojin Wu, Yun Lu. Aerosol exposure assessment during reclaimed water utilization in China and risk evaluation in case of Legionella[J]. Front. Environ. Sci. Eng., 2022, 16(7): 95-.
[13] Yanlin Li, Bo Wang, Lei Zhu, Yixing Yuan, Lujun Chen, Jun Ma. Selective targeted adsorption and inactivation of antibiotic-resistant bacteria by Cr-loaded mixed metal oxides[J]. Front. Environ. Sci. Eng., 2022, 16(6): 68-.
[14] Quanli Man, Peilian Zhang, Weiqi Huang, Qing Zhu, Xiaoling He, Dongsheng Wei. A heterotrophic nitrification-aerobic denitrification bacterium Halomonas venusta TJPU05 suitable for nitrogen removal from high-salinity wastewater[J]. Front. Environ. Sci. Eng., 2022, 16(6): 69-.
[15] Weiying Li, Yu Tian, Jiping Chen, Xinmin Wang, Yu Zhou, Nuo Shi. Synergistic effects of sodium hypochlorite disinfection and iron-oxidizing bacteria on early corrosion in cast iron pipes[J]. Front. Environ. Sci. Eng., 2022, 16(6): 72-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed