Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (1) : 15    https://doi.org/10.1007/s11783-018-1012-4
RESEARCH ARTICLE
Effect of alumina and zirconia as binders on the activity of Fe-BEA for NH3-SCR of NO
Jin Shi1, Zihao Zhang1, Mingxia Chen1, Zhixiang Zhang1, Wenfeng Shangguan1(), Shunchao Gu2,3, Hirano Shin-ichi3
1. Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, Shanghai 200240, China
2. School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
3. Hirano Institute for Materials Innovation, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(1199 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fe-BEA with zirconia binder has higher SCR activity in high temperature.

Alumina enhances the low-temperature activity for greater NO oxidation and storage.

The SCR activity of Fe-BEA/Al decreases in high temperature.

Fe-BEA catalysts are active for the NH3-SCR of NO. For industrial application, a binder should be added to the Fe-BEA catalysts to make them tightly adhere to the monoliths. The addition of alumina and zirconia as binders to the Fe-BEA led to a different effect on NO conversion. The catalytic activity of the mixed samples was evaluated by the temperature programmed procedure in a flow-reactor system, and the mechanism was analyzed via SEM, BET, XRD and XPS. It was found that larger iron particles were formed by the migration of parent iron particles in the Fe-BEA catalyst with alumina. This led to the increase of Fe3+ magnitude and iron cluster, enhancing the abilities of NO oxidation and storage. Accordingly, the SCR activity increased slightly in low temperature but decreased sharply in high temperature. For the Fe-BEA with zirconia sample, NO oxidation and storage abilities decreased due to the less iron clusters. The increase of Fe3+ magnitude resulted in higher catalytic oxidation ability, which gave rise to little change in the SCR activity compared with the Fe-BEA.

Keywords NH3-SCR      NO      Fe-BEA      Binder      Alumina      Zirconia     
Corresponding Author(s): Wenfeng Shangguan   
Issue Date: 05 December 2017
 Cite this article:   
Jin Shi,Zihao Zhang,Mingxia Chen, et al. Effect of alumina and zirconia as binders on the activity of Fe-BEA for NH3-SCR of NO[J]. Front. Environ. Sci. Eng., 2018, 12(1): 15.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1012-4
https://academic.hep.com.cn/fese/EN/Y2018/V12/I1/15
Fig.1  NO conversion over catalysts
Fig.2  SEM of powders. (a) Parent Fe-BEA ; (b) Zr; (c) Al; (d) Fe-BEA; (e) Fe-BEA/Zr; (f) Fe-BEA/Al
Fig.3   XRD patterns of catalysts
Fig.4  N2 adsorption-desorption isotherms of catalysts
Fig.5  NO-TPD(a) and NO-oxidation(b) over catalysts
Fig.6  H2-TPR(a) and O2-TPD(b) over powder catalysts
Fig.7  XPS patterns of powder catalysts. (a)Fe-BEA, (b)Fe-BEA/Zr, (c)Fe-BEA/Al
SampleA (m2/g)Da (nm)Vb (cm3/g)Fe3+/(Fe2+ + Fe3+) (%)
Fe-BEA438.11.820.1051
Fe-BEA/Zr416.61.870.1061
Fe-BEA/Al463.51.790.2368
Zr17.58.970.10
Al161.32.650.31
Tab.1  BET surface area (A), average pore size (D), pore volume (V) and relative amount of Fe3+ of samples
1 Franco A, Diaz A R. The future challenges for “clean coal technologies”: Joining efficiency increase and pollutant emission control. Energy, 2009, 34(3): 348–354 
https://doi.org/10.1016/j.energy.2008.09.012
2 Johnson B T. Diesel engine emissions and their control. Platinum Metals Review, 2008, 52(1): 23–37 
https://doi.org/10.1595/147106708X248750
3 Rahkamaa-Tolonen K, Maunula T, Lomma M, Huuhtanen M, Keiski R L. The effect of NO2 on the activity of fresh and aged zeolite catalysts in the NH3-SCR reaction. Catalysis Today, 2005, 100(3): 217–222 
https://doi.org/10.1016/j.cattod.2004.09.056
4 Sjövall H, Fridell E, Blint R J, Olsson L. Identification of adsorbed species on Cu-ZSM-5 under NH3 SCR conditions. Topics in Catalysis, 2007, 42–43(1–4): 113–117 
https://doi.org/10.1007/s11244-007-0162-6
5 Gao F, Zheng Y, Kukkadapu R K, Wang Y, Walter E D, Schwenzer B, Szanyi J, Peden C H F. Iron loading effects in Fe/SSZ-13 NH3-SCR catalysts: Nature of the Fe ions and structure–function relationships. ACS Catalysis, 2016, 6(5): 2939–2954 
https://doi.org/10.1021/acscatal.6b00647
6 Stakheev A Y, Mytareva A I, Bokarev D A, Baeva G N, Krivoruchenko D S, Kustov A L, Grill M, Thøgersen J R. Combined catalytic systems for enhanced low-temperature NOx abatement. Catalysis Today, 2015, 258: 183–189
https://doi.org/10.1016/j.cattod.2015.05.023
7 Metkar P S, Harold M P, Balakotaiah V. Selective catalytic reduction of NOx on combined Fe- and Cu-zeolite monolithic catalysts: Sequential and dual layer configurations. Applied Catalysis B: Environmental, 2012, 111–112: 67–80 
https://doi.org/10.1016/j.apcatb.2011.09.019
8 Colombo M, Nova I, Tronconi E. A comparative study of the NH3-SCR reactions over a Cu-zeolite and a Fe-zeolite catalyst. Catalysis Today, 2010, 151(3–4): 223–230 
https://doi.org/10.1016/j.cattod.2010.01.010
9 Kamasamudram K, Currier N W, Chen X, Yezerets A. Overview of the practically important behaviors of zeolite-based urea-SCR catalysts, using compact experimental protocol. Catalysis Today, 2010, 151(3–4): 212–222
https://doi.org/10.1016/j.cattod.2010.03.055
10 Metkar P S, Harold M P, Balakotaiah V. Experimental and kinetic modeling study of NH3-SCR of NOx on Fe-ZSM-5, Cu-chabazite and combined Fe- and Cu-zeolite monolithic catalysts. Chemical Engineering Science, 2013, 87: 51–66 
https://doi.org/10.1016/j.ces.2012.09.008
11 Boix A V, Mir� E E, Lombardo E A, Fierro J L G. The inhibiting effect of extra-framework Al on monolithic Co-ZSM5 catalysts used for NOx SCR. Catalysis Today, 2008, 133–135: 428–434 
https://doi.org/10.1016/j.cattod.2007.12.122
12 Avila P, Montes M, Mir� E E. Monolithic reactors for environmental applications. Chemical Engineering Journal, 2005, 109(1–3): 11– 36 
https://doi.org/10.1016/j.cej.2005.02.025
13 Nijhuis T A, Beers A E W, Vergunst T, Hoek I, Kapteijn F, Moulijn J A. Preparation of monolithic catalysts. Catalysis Reviews, 2001, 43(4): 345–380
https://doi.org/10.1081/CR-120001807
14 Zamaro J M, Ulla M A, Miró E E. Zeolite washcoating onto cordierite honeycomb reactors for environmental applications. Chemical Engineering Journal, 2005, 106(1): 25–33 
https://doi.org/10.1016/j.cej.2004.11.003
15 Majumdar S S, Celik G, Alexander A M, Gawade P , Ozkan U S. In-situ incorporation of binder during sol-gel preparation of Pd-based sulfated zirconia for reduction of nitrogen oxides under lean-burn conditions: Effect on activity and wash-coating characteristics. Applied Catalysis B: Environmental, 2017, 202: 134–146 
https://doi.org/10.1016/j.apcatb.2016.08.062
16 Weib W, Qiana G, Sunb Y. Effects of acid pretreatment on Fe-ZSM-5 and Fe-beta catalysts for N2O decomposition. Chinese Journal of Catalysis, 2016, 37(6): 898–907 
https://doi.org/10.1016/S1872-2067(15)61052-X
17 Devadas M, Kröcher O, Elsener M, Wokaun A, Mitrikas G, Söger N, Pfeifer M, Demel Y, Mussmann L. Characterization and catalytic investigation of Fe-ZSM5 for urea-SCR. Catalysis Today, 2007, 119(1–4): 137–144 
https://doi.org/10.1016/j.cattod.2006.08.018
18 Nedyalkova R, Shwan S, Skoglundh M, Olsson L. Improved low-temperature SCR activity for Fe-BEA catalysts by H2-pretreatment. Applied Catalysis B: Environmental, 2013, 138–139: 373–380 
https://doi.org/10.1016/j.apcatb.2013.03.009
19 Shwan S, Jansson J, Olsson L, Skoglundh M. Effect of post-synthesis hydrogen-treatment on the nature of iron species in Fe-BEA as NH3-SCR catalyst. Catalysis Science & Technology, 2014, 4(9): 2932–2937 
https://doi.org/10.1039/C4CY00236A
20 Mauvezin M, Delahay G, Coq B, Kieger S, Jumas J C, Olivier-Fourcade J. Identification of iron species in Fe-BEA: Influence of the exchange level. Journal of Physical Chemistry B, 2001, 105(5): 928–935
https://doi.org/10.1021/jp0021906
21 Pérez-Ramírez J, Kapteijn F, Mul G, Moulijn J A. NO-Assisted N2O decomposition over Fe-based catalysts: Effects of gas-phase composition and catalyst constitution. Journal of Catalysis, 2002, 208(1): 211–223 
https://doi.org/10.1006/jcat.2002.3559
22 Hao Z, Cheng D, Guo Y, Liang Y. Supported gold catalysts used for ozone decomposition and simultaneous elimination of ozone and carbon monoxide at ambient temperature. Applied Catalysis B: Environmental, 2001, 33(3): 217–222 
https://doi.org/10.1016/S0926-3373(01)00172-2
23 Shwan S, Jansson J, Korsgren J, Olsson L, Skoglundh M. Kinetic modeling of H-BEA and Fe-BEA as NH3-SCR catalysts—Effect of hydrothermal treatment. Catalysis Today, 2012, 197(1): 24–37 
https://doi.org/10.1016/j.cattod.2012.06.014
[1] FSE-17099-OF-SJ_suppl_1 Download
[1] Chengjie Xue, Juan Wu, Kuang Wang, Yunqiang Yi, Zhanqiang Fang, Wen Cheng, Jianzhang Fang. Effects of different types of biochar on the properties and reactivity of nano zero-valent iron in soil remediation[J]. Front. Environ. Sci. Eng., 2021, 15(5): 101-.
[2] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[3] Guowen Hu, Zeqi Zhang, Xuan Zhang, Tianrong Li. Size and shape effects of MnFe2O4 nanoparticles as catalysts for reductive degradation of dye pollutants[J]. Front. Environ. Sci. Eng., 2021, 15(5): 108-.
[4] Yi Qian, Weichuan Qiao, Yunhao Zhang. Toxic effect of sodium perfluorononyloxy-benzenesulfonate on Pseudomonas stutzeri in aerobic denitrification, cell structure and gene expression[J]. Front. Environ. Sci. Eng., 2021, 15(5): 100-.
[5] Qiuzhun Chen, Xiang Zhang, Bing Li, Shengli Niu, Gaiju Zhao, Dong Wang, Yue Peng, Junhua Li, Chunmei Lu, John Crittenden. Insight into the promotion mechanism of activated carbon on the monolithic honeycomb red mud catalyst for selective catalytic reduction of NOx[J]. Front. Environ. Sci. Eng., 2021, 15(5): 92-.
[6] Byungjin Lee, Eun Seo Jo, Dong-Wha Park, Jinsub Choi. Submerged arc plasma system combined with ozone oxidation for the treatment of wastewater containing non-degradable organic compounds[J]. Front. Environ. Sci. Eng., 2021, 15(5): 90-.
[7] Lina Gan, Kezhi Li, Hejingying Niu, Yue Peng, Jianjun Chen, Yuandong Huang, Junhua Li. Simultaneous removal of NOx and chlorobenzene on V2O5/TiO2 granular catalyst: Kinetic study and performance prediction[J]. Front. Environ. Sci. Eng., 2021, 15(4): 70-.
[8] Danyang Liu, Johny Cabrera, Lijuan Zhong, Wenjing Wang, Dingyuan Duan, Xiaomao Wang, Shuming Liu, Yuefeng F. Xie. Using loose nanofiltration membrane for lake water treatment: A pilot study[J]. Front. Environ. Sci. Eng., 2021, 15(4): 69-.
[9] Xinyi Liu, Caichao Wan, Xianjun Li, Song Wei, Luyu Zhang, Wenyan Tian, Ken-Tye Yong, Yiqiang Wu, Jian Li. Sustainable wood-based nanotechnologies for photocatalytic degradation of organic contaminants in aquatic environment[J]. Front. Environ. Sci. Eng., 2021, 15(4): 54-.
[10] Tianhao Xi, Xiaodan Li, Qihui Zhang, Ning Liu, Shu Niu, Zhaojun Dong, Cong Lyu. Enhanced catalytic oxidation of 2,4-dichlorophenol via singlet oxygen dominated peroxymonosulfate activation on CoOOH@Bi2O3 composite[J]. Front. Environ. Sci. Eng., 2021, 15(4): 55-.
[11] Fan Lu, Tianyu Hu, Shunyan Wei, Liming Shao, Pinjing He. Bioaerosolization behavior along sewage sludge biostabilization[J]. Front. Environ. Sci. Eng., 2021, 15(3): 45-.
[12] Ting Chen, Yingying Zhao, Xiaopeng Qiu, Xiaoyan Zhu, Xiaojie Liu, Jun Yin, Dongsheng Shen, Huajun Feng. Economics analysis of food waste treatment in China and its influencing factors[J]. Front. Environ. Sci. Eng., 2021, 15(2): 33-.
[13] Reza Katal, Mohammad Tanhaei, Jiangyong Hu. Photocatalytic degradation of the acetaminophen by nanocrystal-engineered TiO2 thin film in batch and continuous system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 27-.
[14] Shanwei Ma, Hang Li, Guan Zhang, Tahir Iqbal, Kai Li, Qiang Lu. Catalytic fast pyrolysis of walnut shell for alkylphenols production with nitrogen-doped activated carbon catalyst[J]. Front. Environ. Sci. Eng., 2021, 15(2): 25-.
[15] Om Prakash, Stefan J. Green, Pooja Singh, Puja Jasrotia, Joel E. Kostka. Stress-related ecophysiology of members of the genus Rhodanobacter isolated from a mixed waste contaminated subsurface[J]. Front. Environ. Sci. Eng., 2021, 15(2): 23-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed