Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (1) : 7    https://doi.org/10.1007/s11783-018-1013-3
RESEARCH ARTICLE
Accelerated degradation of orange G over a wide pH range in the presence of FeVO4
Xiaoxia Ou1(), Jianfang Yan2, Fengjie Zhang1, Chunhua Zhang1
1. College of Environmental and Resource Sciences, Dalian Nationalities University, Dalian 116600, China
2. College of Life Science, Dalian Nationalities University, Dalian 116600, China
 Download: PDF(611 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The applicability of FeVO4 extended the optimum pH range for heterogeneous Fenton process towards neutral conditions.

The datas for the removal of OG in FeVO4 systems conform to the Langmuir–Hinshelwood model.

The irradiation of FeVO4 by visible light significantly increases the degradation rate of OG due to the enhanced rates of the iron and vanadium cycles.

In this study, FeVO4 was prepared and used as Fenton-like catalyst to degrade orange G (OG) dye. The removal of OG in an aqueous solution containing 0.5 g·L-1 FeVO4 and 15 mmol·L-1 hydrogen peroxide at pH 7.0 reached 93.2%. Similar rates were achieved at pH 5.7 (k = 0.0471 min-1), pH 7.0 (k = 0.0438 min-1), and pH 7.7 (k = 0.0434 min-1). The FeVO4 catalyst successfully overcomes the problem faced in the heterogeneous Fenton process, i.e., the narrow working pH range. The data for the removal of OG in FeVO4 systems containing H2O2 conform to the Langmuir–Hinshelwood model (R2 = 0.9988), indicating that adsorption and surface reaction are the two basic mechanisms for OG removal in the FeVO4–H2O2 system. Furthermore, the irradiation of FeVO4 by visible light significantly increases the degradation rate of OG, which is attributed to the enhanced rates of the iron cycles and vanadium cycles.

Keywords Azo dye      Degradation      FeVO4      Kinetics      Advanced oxidation processes     
Corresponding Author(s): Xiaoxia Ou   
Issue Date: 05 January 2018
 Cite this article:   
Xiaoxia Ou,Jianfang Yan,Fengjie Zhang, et al. Accelerated degradation of orange G over a wide pH range in the presence of FeVO4[J]. Front. Environ. Sci. Eng., 2018, 12(1): 7.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1013-3
https://academic.hep.com.cn/fese/EN/Y2018/V12/I1/7
Fig.1  (a) Orange G (OG) removalvs time (b) total organic carbon (TOC) removal vs FeVO4 concentration after 1 h reaction. [OG]0 =20 mg·L-1, [H2O2]0 = 15 mmol·L-1, and pH= 7.0±0.1
Fig.2  (a) OG removal vs time and(b) TOC removal vs H2O2 concentration after reaction for 1 h, 2h and 3h. [OG]0 = 20 mg·L-1, [FeVO4]0 = 0.5 g·L-1, and pH= 7.0±0.1
Fig.3  The effect of initial OGconcentrations: (a) Pseudo-first-order kinetics; (b) reciprocal ofthe pseudo-first-order rate constant vs the initial concentrationof OG. [FeVO4]0 = 0.5 g·L-1, [H2O2] 0 = 15 mmol·L-1, and pH= 7.0±0.1
Fig.4  Effect of pH on the degradationof OG (a) and k vs pH (b). [FeVO4]0 = 0.5 g·L-1, [H2O2] 0 = 15 mmol·L-1, and [OG]0 = 20 mg·L-1
Fig.5  Effect of visible light irradiationon the degradation of OG. [OG]0 = 20 mg·L-1, [FeVO4]0 = 0.5 g·L-1, and [H2O2]0 = 15 mmol·L-1
1 Duesterberg C K,  Mylon S E,  Waite T D. pH effects on iron-catalyzed oxidation using Fenton’s reagent. Environmental Science & Technology, 2008, 42(22): 8522–8527
https://doi.org/10.1021/es801720d pmid: 19068842
2 Woo Y S, Rafatullah  M, Al-Karkhi A F M,  Tow T T. Removal of Terasil Red R dye by using Fenton oxidation: A statistical analysis. Desalination and Water Treatment, 2014, 52(22-24): 4583–4591
https://doi.org/10.1080/19443994.2013.804454
3 Su C Y, Li  W G, Liu  X Z, Huang  X F, Yu  X D. Fe-Mn-sepiolite as an effective heterogeneous Fenton-like catalyst for the decolorization of reactive brilliant blue. Frontiers of Environmental Science & Engineering, 2016, 10(1): 37–45
https://doi.org/10.1007/s11783-014-0729-y
4 Ayodele O B, Togunwa  O S. Catalytic activity of copper modified bentonite supported ferrioxalate on the aqueous degradation and kinetics of mineralization of Direct Blue 71, Acid Green 25 and Reactive Blue 4 in photo-Fenton process. Applied Catalysis A, General, 2014, 470: 285–293
https://doi.org/10.1016/j.apcata.2013.11.013
5 Herney-Ramirez J, Vicente  M A, Madeira  L M. Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: A review. Applied Catalysis B: Environmental, 2010, 98(1-2): 10–26
https://doi.org/10.1016/j.apcatb.2010.05.004
6 Daud N K, Akpan  U G, Hameed  B H. Decolorization of sunzol black DN conc. in aqueous solution by Fenton oxidation process: effect of system parameters and kinetic study. Desalination and Water Treatment, 2012, 37(1-3): 1–7
https://doi.org/10.1080/19443994.2012.661246
7 Ou X X, Wang  C, Zhang F J,  Sun H J,  Wu Y N. Degradation of methyl violet by Fenton’s reagent: kinetic modeling and effects of parameters. Desalination and Water Treatment, 2013, 51(13–15): 2536–2542
https://doi.org/10.1080/19443994.2012.749000
8 Georgi A, Schierz  A, Trommler U,  Horwitz C P,  Collins T J,  Kopinke F D. Humic acid modified Fenton reagent for enhancement of the working pH range. Applied Catalysis B: Environmental, 2007, 72(1–2): 26–36
https://doi.org/10.1016/j.apcatb.2006.10.009
9 Bandara J, Mielczarski  J A, Lopez  A, Kiwi J. Sensitized degradation of chlorophenols on iron oxides induced by visible light: Comparison with titanium oxide. Applied Catalysis B: Environmental, 2001, 34: 321–333
https://doi.org/10.1016/S0926-3373(01)00225-9
10 Chou S, Huang  C. Application of a supported iron oxyhydroxide catalyst in oxidation of benzoic acid by hydrogen peroxide. Chemosphere, 1999, 38(12): 2719–2731
https://doi.org/10.1016/S0045-6535(98)00474-3
11 Gu J, Yu  H T, Quan  X, Chen S. Covering  a-Fe2O3 protection layer on the surface of p-Si micropillar array for enhanced photoelectrochemical performance. Frontiers of Environmental Science & Engineering, 2017, 11(6): 13 doi:10.1007/s11783-017-0957-z
12 Costa R C C,  Lelis M F F,  Oliveira L C A,  Fabris J D,  Ardisson J D,  Rios R R V A,  Silva C N,  Lago R M. Novel active heterogeneous Fenton system based on Fe3-xMxO4 (Fe, Co, Mn, Ni): the role of M2+ species on the reactivity towards H2O2 reactions. Journal of Hazardous Materials, 2006, 129(1–3): 171–178
https://doi.org/10.1016/j.jhazmat.2005.08.028 pmid: 16298475
13 Liu S J, Yang  H Y, Yang  Y K, Guo  Y P, Qi  Y. Novel coprecipitation–oxidation method for recovering iron from steel waste pickling liquor. Frontiers of Environmental Science & Engineering, 2017, 11(1): 9 doi:10.1007/s11783-017-0938-2
14 Deng J, Jiang  J, Zhang Y,  Lin X, Du  C, Xiong Y. FeVO4 as a highly active heterogeneous Fenton-like catalyst towards the degradation of Orange II. Applied Catalysis B: Environmental, 2008, 84(3–4): 468–473
https://doi.org/10.1016/j.apcatb.2008.04.029
15 Kwan W P, Voelker  B M. Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environmental Science & Technology, 2003, 37(6): 1150–1158
https://doi.org/10.1021/es020874g pmid: 12680668
16 Khaliullin R Z,  Bell A T,  Head-Gordon M. A density functional theory study of the mechanism of free radical generation in the system vanadate/PCA/H2O2. Journal of Photochemistry and Photobiology. B, Biology, 2005, 109(38): 17984–17992
https://doi.org/10.1021/jp058162a pmid: 16853308
17 Kozlov Y N, Nizova  G V, Shulpin  G B. Oxidations by the reagent “O2–H2O2–vanadium derivative–pyrazine-2-carboxylic acid”: Part 14. Competitive oxidation of alkanes and acetonitrile (solvent). Journal of Molecular Catalysis A Chemical, 2005, 227(1-2): 247–253
https://doi.org/10.1016/j.molcata.2004.10.043
18 Bouchemal N, Azoudj  Y, Merzougui Z,  Addoun F. Adsorption modeling of Orange G dye on mesoporous activated carbon prepared from Algerian date pits using experimental designs. Desalination and Water Treatment, 2012, 45(1–3): 284–290
https://doi.org/10.1080/19443994.2012.692042
19 Poizot P, Baudrin  E, Laruelle S,  Dupont L,  Touboul M,  Tarascon J M. Low temperature synthesis and electrochemical performance of crystallized FeVO4•1.1H2O. Solid State Ionics, 2000, 138(1–2): 31–40
https://doi.org/10.1016/S0167-2738(00)00784-0
20 Ramirez J H, Maldonado-Hodar  F J, Perez-Cadenas  A F, Moreno-Castilla  C, Costa C A,  Madeira L M. Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon–Fe catalysts. Applied Catalysis B: Environmental, 2007, 75(3–4): 312–323
https://doi.org/10.1016/j.apcatb.2007.05.003
21 Yang L, Yu  L E, Ray  M B. Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis. Water Research, 2008, 42(13): 3480–3488
https://doi.org/10.1016/j.watres.2008.04.023 pmid: 18519147
22 Tokumura M, Znad  H T, Kawase  Y. Decolorization of dark brown colored coffee effluent by solar photo-Fenton reaction: effect of solar light dose on decolorization kinetics. Water Research, 2008, 42(18): 4665–4673
https://doi.org/10.1016/j.watres.2008.08.007 pmid: 18762315
23 Daneshvar N, Rabbani  M, Modirshahla N,  Behnajady M A. Kinetic modeling of photocatalytic degradation of Acid Red 27 in UV/TiO2 process. Journal of Photochemistry and Photobiology A Chemistry, 2004, 168(1–2): 39–45
https://doi.org/10.1016/j.jphotochem.2004.05.011
24 Behnajady M A,  Modirshahla N,  Hamzavi R. Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. Journal of Hazardous Materials, 2006, 133(1–3): 226–232
https://doi.org/10.1016/j.jhazmat.2005.10.022 pmid: 16310945
25 Chen D W, Ray  A K. Photodegradation kinetics of 4-nitrophenol in TiO2 suspension. Water Research, 1998, 11(11): 3223–3234
https://doi.org/10.1016/S0043-1354(98)00118-3
26 Rossetti I, Fabbrini  L, Ballarini N,  Oliva C,  Cavani F,  Cericola A,  Bonelli B,  Piumetti M,  Garrone E,  Dyrbeck H,  Blekkan E A,  Forni L. V–Al–O catalysts prepared by flame pyrolysis for the oxidative dehydrogenation of propane to propylene. Catalysis Today, 2009, 141(3–4): 271–281
https://doi.org/10.1016/j.cattod.2008.05.020
27 Parks G A. The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chemical Reviews, 1965, 65(2): 177–198
https://doi.org/10.1021/cr60234a002
28 Ozturk B, Soylu  G S P. Synthesis of surfactant-assisted FeVO4 nanostructure: characterization and photocatalytic degradation of phenol. Journal of Molecular Catalysis A Chemical, 2015, 398: 65–71
https://doi.org/10.1016/j.molcata.2014.11.013
29 Zhao Y, Yao  K, Cai Q,  Shi Z J,  Sheng M Q,  Lin H Y,  Shao M W. Hydrothermal route to metastable phase FeVO4 ultrathin nanosheets with exposed {010} facets: synthesis, photocatalysis and gas-sensing. CrystEngComm, 2014, 16(2): 270–276
https://doi.org/10.1039/C3CE41692E
30 Duttaa D P, Ramakrishnanb  M, Roya M,  Kumara A. Effect of transition metal doping on the photocatalytic properties of FeVO4 nanoparticles. Journal of Photochemistry and Photobiology A Chemistry, 2017, 335: 102–111
https://doi.org/10.1016/j.jphotochem.2016.11.022
31 Bozzi A, Yuranova  Y, Mielezarski E,  Mielezarski J,  Buffat P A,  Lais P, Kiwi  J. Superior biodegradability mediated by immobilized Fe-fabrics of waste waters compared to Fenton homogeneous reactions. Applied Catalysis B: Environmental, 2003, 42(3): 289–303
https://doi.org/10.1016/S0926-3373(02)00263-1
32 Noorjahan M, Durga Kumari  V, Subrahmanyam M,  Panda L. Immobilized Fe(III)-HY: An efficient and stable photo-Fenton catalyst. Applied Catalysis B: Environmental, 2005, 57(4): 291–298
https://doi.org/10.1016/j.apcatb.2004.11.006
33 Hua Y, Wang  C, Liu J,  Wang B, Liu  X, Wu C,  Liu X. Visible photocatalytic degradation of Rhodamine B using Fe(III)-substituted phosphotungstic heteropolyanion. Journal of Molecular Catalysis A Chemical, 2012, 365: 8–14
https://doi.org/10.1016/j.molcata.2012.07.031
[1] Guowen Hu, Zeqi Zhang, Xuan Zhang, Tianrong Li. Size and shape effects of MnFe2O4 nanoparticles as catalysts for reductive degradation of dye pollutants[J]. Front. Environ. Sci. Eng., 2021, 15(5): 108-.
[2] Majid Mustafa, Huijiao Wang, Richard H. Lindberg, Jerker Fick, Yujue Wang, Mats Tysklind. Identification of resistant pharmaceuticals in ozonation using QSAR modeling and their fate in electro-peroxone process[J]. Front. Environ. Sci. Eng., 2021, 15(5): 106-.
[3] Yuanyuan Luo, Yangyang Zhang, Mengfan Lang, Xuetao Guo, Tianjiao Xia, Tiecheng Wang, Hanzhong Jia, Lingyan Zhu. Identification of sources, characteristics and photochemical transformations of dissolved organic matter with EEM-PARAFAC in the Wei River of China[J]. Front. Environ. Sci. Eng., 2021, 15(5): 96-.
[4] Xinzheng Li, Zhiming Li, Zhihui Xing, Zhimin Song, Bei Ye, Zhengming Wang, Qianyuan Wu. UV-LED/P25-based photocatalysis for effective degradation of isothiazolone biocide[J]. Front. Environ. Sci. Eng., 2021, 15(5): 85-.
[5] Xinshu Liu, Xiaoman Su, Sijie Tian, Yue Li, Rongfang Yuan. Mechanisms for simultaneous ozonation of sulfamethoxazole and natural organic matters in secondary effluent from sewage treatment plant[J]. Front. Environ. Sci. Eng., 2021, 15(4): 75-.
[6] Chenchen Li, Lijie Yan, Yiming Li, Dan Zhang, Mutai Bao, Limei Dong. TiO2@palygorskite composite for the efficient remediation of oil spills via a dispersion-photodegradation synergy[J]. Front. Environ. Sci. Eng., 2021, 15(4): 72-.
[7] Xinyi Liu, Caichao Wan, Xianjun Li, Song Wei, Luyu Zhang, Wenyan Tian, Ken-Tye Yong, Yiqiang Wu, Jian Li. Sustainable wood-based nanotechnologies for photocatalytic degradation of organic contaminants in aquatic environment[J]. Front. Environ. Sci. Eng., 2021, 15(4): 54-.
[8] Milan Malhotra, Anurag Garg. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge[J]. Front. Environ. Sci. Eng., 2021, 15(1): 13-.
[9] Paul Olusegun Bankole, Kirk Taylor Semple, Byong-Hun Jeon, Sanjay Prabhu Govindwar. Enhanced enzymatic removal of anthracene by the mangrove soil-derived fungus, Aspergillus sydowii BPOI[J]. Front. Environ. Sci. Eng., 2020, 14(6): 113-.
[10] Mona Akbar, Muhammad Farooq Saleem Khan, Ling Qian, Hui Wang. Degradation of polyacrylamide (PAM) and methane production by mesophilic and thermophilic anaerobic digestion: Effect of temperature and concentration[J]. Front. Environ. Sci. Eng., 2020, 14(6): 98-.
[11] Wenqing Xu, Mark L. Segall, Zhao Li. Reactivity of Pyrogenic Carbonaceous Matter (PCM) in mediating environmental reactions: Current knowledge and future trends[J]. Front. Environ. Sci. Eng., 2020, 14(5): 86-.
[12] Jianzhi Huang, Huichun Zhang. Redox reactions of iron and manganese oxides in complex systems[J]. Front. Environ. Sci. Eng., 2020, 14(5): 76-.
[13] Yapeng Song, Hui Gong, Jianbing Wang, Fengmin Chang, Kaijun Wang. Enhanced triallyl isocyanurate (TAIC) degradation through application of an O3/UV process: Performance optimization and degradation pathways[J]. Front. Environ. Sci. Eng., 2020, 14(4): 64-.
[14] Yiquan Wu, Ying Xu, Ningyi Zhou. A newly defined dioxygenase system from Mycobacterium vanbaalenii PYR-1 endowed with an enhanced activity of dihydroxylation of high-molecular-weight polyaromatic hydrocarbons[J]. Front. Environ. Sci. Eng., 2020, 14(1): 14-.
[15] Ling Huang, Syed Bilal Shah, Haiyang Hu, Ping Xu, Hongzhi Tang. Pollution and biodegradation of hexabromocyclododecanes: A review[J]. Front. Environ. Sci. Eng., 2020, 14(1): 11-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed