Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (3) : 7    https://doi.org/10.1007/s11783-018-1015-1
RESEARCH ARTICLE
Occurrence of veterinary antibiotics in struvite recovery from swine wastewater by using a fluidized bed
Zhi-Long Ye, Yujun Deng, Yaoyin Lou, Xin Ye, Shaohua Chen()
Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
 Download: PDF(325 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Antibiotics in wastewater pose pharmacological threats to phosphorous recovery.

Recovered struvite particles possessed significantly antibiotic residues.

Smaller granules contained much more antibiotics than the larger ones.

Organic matters and struvite granulation process exerted significant impacts.

Recovering phosphorus from livestock wastewater has gained extensive attention. The residue of veterinary antibiotics in the wastewater may be present in the recovered products, thereby posing pharmacological threats to the agricultural planting and human health. This study investigated antibiotic occurrence in the struvite particles recovered from swine wastewater by using a fluidized bed. Results revealed that tetracyclines possessed significant residues in the struvite granules, with the values ranging from 195.2 mg·kg1 to 1995.0 mg·kg1. As for fluoroquinolones, their concentrations varied from 0.4 mg·kg1 to 1104.0 mg·kg1. Struvite particles were of various sizes and shapes and displayed different antibiotic adsorption capacities. The data also showed that the smaller granules contained much more antibiotics than the larger ones, indicating that the fluidized granulation process of struvite crystals plays an important role on the accumulation of antibiotics. For tetracyclines, organic matters and struvite adsorption exerted significant impacts on tetracyclines migration. The outcomes underscore the need to consider the residues of antibiotics in resource recovery from wastewater because they exert pharmacological impacts on the utilization of recovered products.

Keywords Antibiotic      Struvite      Phosphorus recovery      Swine wastewater      Fluidized bed     
Corresponding Author(s): Shaohua Chen   
Issue Date: 10 June 2018
 Cite this article:   
Zhi-Long Ye,Yujun Deng,Yaoyin Lou, et al. Occurrence of veterinary antibiotics in struvite recovery from swine wastewater by using a fluidized bed[J]. Front. Environ. Sci. Eng., 2018, 12(3): 7.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1015-1
https://academic.hep.com.cn/fese/EN/Y2018/V12/I3/7
Fig.1  SEM images of struvite particles in different sections of the reactor. (a) Cluster-agglomerating granule, withdrawn from the top section; (b) cluster-agglomerating granule, withdrawn from the middle section; (c) coating-growth granule, obtained from the bottom section; (d) cross-section image of the coating-growth granule
Day Section Composition (mg·g1) d0.5d
Struvite K-struvite a ACP b TOC c
20 Top 861.04 35.24 76.19 11.41 1129.01
Middle 825.39 34.38 77.10 10.20 1158.64
Bottom 815.33 35.85 82.00 9.38 1413.57
30 Top 901.72 32.78 61.44 10.73 977.5
Middle 897.70 33.30 60.41 11.71 1141.11
Bottom 892.61 33.51 54.73 9.57 1618.01
40 Top 933.50 31.03 37.67 10.12 971.29
Middle 865.03 32.16 37.42 8.40 1342.38
Bottom 874.29 32.79 35.47 7.95 1938.76
50 Top 936.82 31.56 23.24 6.55 1200.95
Middle 947.34 32.03 20.40 6.03 1505.00
Bottom 918.06 33.68 21.69 5.54 2440.43
60 Top 907.98 31.12 47.53 10.57 1050.55
Middle 927.33 31.54 33.99 6.40 1570.53
Bottom 931.28 32.97 13.34 5.58 3260.38
Tab.1  Compositions and equivalent diameters of the struvite particles (mg·g-1)
Fig.2  Tetracyclines contents in struvite particles withdrawn from different sections of fluidized bed
Fig.3  Fluoroquinolones contents in struvite particles withdrawn from different sections of fluidized bed
Fig.4  Relationship between TOC and TC in the struvite particles
Antibiotics Term Regression equation R2
TCs OTC y = 1621.4x – 315.46 0.6714
TC y = 1776.7x –450.59 0.7168
CTC y = 422.32x + 59.237 0.3803
DXC y = 1705.1x –349.14 0.5875
FLQs CIP y = 878.78x –188.04 0.298
ENX y = 60.418x + 74.719 0.0395
OFL y = 31.488x + 95.111 0.0223
Tab.2  Linear regression on antibiotics versus TOC in the struvite particles
1 Bai Z H, Ma  L, Qin W,  Chen Q, Oenema  O, Zhang F S. Changes in pig production in China and their effects on nitrogen and phosphorus use and losses. Environmental Science & Technology, 2014, 48(21): 12742–12749
https://doi.org/10.1021/es502160v pmid: 25292109
2 Li W, Ding  X, Liu M,  Guo Y, Liu  L. Optimization of process parameters for mature landfill leachate pretreatment using MAP precipitation. Frontiers of Environmental Science & Engineering, 2012, 6(6): 892–900
https://doi.org/10.1007/s11783-012-0440-9
3 Guedes P, Mateus  E P, Almeida  J, Ferreira A R,  Gouto N,  Ribeiro A B. Electrodialytic treatment of sewage sludge: Current intensity influence on phosphorus recovery and organic contaminants removal. Chemical Engineering Journal, 2016, 306(11): 1058–1066
https://doi.org/10.1016/j.cej.2016.08.040
4 Zhu Y G, Johnson  T A, Su  J Q, Qiao  M, Guo G X,  Stedtfeld R D,  Hashsham S A,  Tiedje J M. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3435–3440
https://doi.org/10.1073/pnas.1222743110 pmid: 23401528
5 Li X, Shi  H, Li K,  Zhang L,  Gan Y. Occurrence and fate of antibiotics in advanced wastewater treatment facilities and receiving rivers in Beijing, China. Frontiers of Environmental Science & Engineering, 2014, 8(6): 888–894
https://doi.org/10.1007/s11783-014-0735-0
6 Liu L, Liu  C, Zheng J,  Huang X,  Wang Z, Liu  Y, Zhu G. Elimination of veterinary antibiotics and antibiotic resistance genes from swine wastewater in the vertical flow constructed wetlands. Chemosphere, 2013, 91(8): 1088–1093
https://doi.org/10.1016/j.chemosphere.2013.01.007 pmid: 23380031
7 Lou Y, Deng  Y, Ye Z,  Ye X, Chen  S. Residues of veterinary antibiotics and heavy metals in precipitated prodcuts during struvite recovery from swine wastewater. Chinese Journal of Environmental Engineering, 2015, 9(11): 5341–5347 (in Chinese)
8 Álvarez-Torrellas S,  Ribeiro R S,  Gomes H T,  Ovejero G,  García J. Removal of antibiotic compounds by adsorption using glycerol-based carbon materials. Chemical Engineering Journal, 2016, 296: 277–288
https://doi.org/10.1016/j.cej.2016.03.112
9 Chen Y, Xi  X, Cao Q,  Wang B, Vince  F, Hong Y. Pharmaceutical compounds in aquatic environment in China: Locally screening and environmental risk assessment. Frontiers of Environmental Science & Engineering, 2015, 9(3): 394–401
https://doi.org/10.1007/s11783-014-0653-1
10 Wu H, Xie  H, He G,  Guan Y, Zhang  Y. Effects of the pH and anions on the adsorption of tetracycline on iron-montmorillonite. Applied Clay Science, 2016, 119(S1): 161–169
https://doi.org/10.1016/j.clay.2015.08.001
11 Desmidt E, Ghyselbrecht  K, Zhang Y,  Pinoy L,  Van der Bruggen B,  Verstraete W,  Rabaey K,  Meesschaert B. Global phosphorus scarcity and full-scale P-recovery techniques: A review. Critical Reviews in Environmental Science and Technology, 2015, 45(4): 336–384
https://doi.org/10.1080/10643389.2013.866531
12 Fattah K P, Mavinic  D S, Koch  F A. Influence of process parameters on the characteristics of struvite pellets. Journal of Environmental Engineering, 2012, 138(12): 1200–1209
https://doi.org/10.1061/(ASCE)EE.1943-7870.0000576
13 da Silva C A M,  Butzge J J,  Nitz M, Taranto  O P. Monitoring and control of coating and granulation processes in fluidized beds: A review. Advanced Powder Technology, 2014, 25(1): 195–210
https://doi.org/10.1016/j.apt.2013.04.008
14 APHA. Awwa, WEF. Standard Methods for the Examination of Water And Wastewater, 20th, ed. Washington DC: American Public Health Association, 1998
15 Ilić M, Budak  I, Vasić M V,  Nagode A,  Kozmidis-Luburić U,  Hodolič J,  Puškar T. Size and shape particle analysis by applying image analysis and laser diffraction—Inhalable dust in a dental laboratory. Measurement, 2015, 66: 109–117
https://doi.org/10.1016/j.measurement.2015.01.028
16 Ye Z, Shen  Y, Ye X,  Zhang Z,  Chen S, Shi  J. Phosphorus recovery from wastewater by struvite crystallization: property of aggregates. Journal of Environmental Sciences (China), 2014, 26(5): 991–1000
https://doi.org/10.1016/S1001-0742(13)60536-7 pmid: 25079629
17 Luo Y, Xu  L, Rysz M,  Wang Y, Zhang  H, Alvarez P J. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China. Environmental Science & Technology, 2011, 45(5): 1827–1833
https://doi.org/10.1021/es104009s pmid: 21309601
18 Zhao L, Dong  Y H, Wang  H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Science of the Total Environment, 2010, 408(5): 1069–1075
https://doi.org/10.1016/j.scitotenv.2009.11.014 pmid: 19954821
19 Yamada N, Mise  R, Ishida M,  Iwao Y, Noguchi  S, Itai S. Effects of the centrifugal coating and centrifugal fluidized bed coating methods on the physicochemical properties of sustained-release microparticles using a multi-functional rotor processor. Advanced Powder Technology, 2014, 25(1): 430–435
https://doi.org/10.1016/j.apt.2013.07.007
20 Shen Y, Ye  Z, Ye X,  Wu J, Chen  S. Phosphorus recovery from swine wastewater by struvite precipitation: the composition and heavy metals in the precipitates. Desalination and Water Treatment, 2016, 57(22): 10361–10369
https://doi.org/10.1080/19443994.2015.1035342
21 Loftin K A, Adams  C D, Meyer  M T, Surampalli  R. Effects of ionic strength, temperature, and pH on degradation of selected antibiotics. Journal of Environmental Quality, 2008, 37(2): 378–386
https://doi.org/10.2134/jeq2007.0230 pmid: 18268300
22 Martins A C, Pezoti  O, Cazetta A L,  Bedin K C,  Yamazaki D A S,  Bandoch G F G,  Asefa T,  Visentainer J V,  Almeida V C. Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: Kinetic and equilibrium studies. Chemical Engineering Journal, 2015, 260: 291–299
https://doi.org/10.1016/j.cej.2014.09.017
23 Prywer J, Torzewska  A. Bacterially induced struvite growth from synthetic urine: Experimental and theoretical characterization of crystal morphology. Crystal Growth & Design, 2009, 9(8): 3538–3543
https://doi.org/10.1021/cg900281g
24 Ye Z, Deng  Y, Lou Y,  Ye X, Chen  S. Adsorption behaviour of tetracyclines by struvite particles in the process of phosphorus recovery from swine wastewater. Chemical Engineering Journal, 2017, 313: 1633–1638
https://doi.org/10.1016/j.cej.2016.11.062
25 Kemacheevakul P, Chuangchote  S, Otani S,  Matsuda T,  Shimizu Y. Effect of magnesium dose on amount of pharmaceuticals in struvite recovered from urine. Water Science and Technology, 2015, 72(7): 1102–1110
https://doi.org/10.2166/wst.2015.313 pmid: 26398025
26 Ding Y, Teppen  B J, Boyd  S A, Li  H. Measurement of associations of pharmaceuticals with dissolved humic substances using solid phase extraction. Chemosphere, 2013, 91(3): 314–319
https://doi.org/10.1016/j.chemosphere.2012.11.039 pmid: 23260244
27 Zhou L J, Ying  G G, Liu  S, Zhao J L,  Chen F, Zhang  R Q, Peng  F Q, Zhang  Q Q. Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry. Journal of Chromatography. A, 2012, 1244: 123–138
https://doi.org/10.1016/j.chroma.2012.04.076 pmid: 22625208
28 Michael I, Rizzo  L, McArdell C S,  Manaia C M,  Merlin C,  Schwartz T,  Dagot C,  Fatta-Kassinos D. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Research, 2013, 47(3): 957–995
https://doi.org/10.1016/j.watres.2012.11.027 pmid: 23266388
[1] FSE-17111-OF-YZL_suppl_1 Download
[1] Yuan Meng, Weiyi Liu, Heidelore Fiedler, Jinlan Zhang, Xinrui Wei, Xiaohui Liu, Meng Peng, Tingting Zhang. Fate and risk assessment of emerging contaminants in reclaimed water production processes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 104-.
[2] Qinxue Wen, Shuo Yang, Zhiqiang Chen. Mesophilic and thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial communities and evolution of resistance genes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 94-.
[3] Pil Uthaug Rasmussen, Katrine Uhrbrand, Mette Damkjær Bartels, Helle Neustrup, Dorina Gabriela Karottki, Ute Bültmann, Anne Mette Madsen. Occupational risk of exposure to methicillin-resistant Staphylococcus aureus (MRSA) and the quality of infection hygiene in nursing homes[J]. Front. Environ. Sci. Eng., 2021, 15(3): 41-.
[4] Jinjin Fu, Quan Zhang, Baocheng Huang, Niansi Fan, Rencun Jin. A review on anammox process for the treatment of antibiotic-containing wastewater: Linking effects with corresponding mechanisms[J]. Front. Environ. Sci. Eng., 2021, 15(1): 17-.
[5] Kuo Fang, Fei Peng, Hui Gong, Huanzhen Zhang, Kaijun Wang. Ammonia removal from low-strength municipal wastewater by powdered resin combined with simultaneous recovery as struvite[J]. Front. Environ. Sci. Eng., 2021, 15(1): 8-.
[6] Ying Cui, Feng Tan, Yan Wang, Suyu Ren, Jingwen Chen. Diffusive gradients in thin films using molecularly imprinted polymer binding gels for in situ measurements of antibiotics in urban wastewaters[J]. Front. Environ. Sci. Eng., 2020, 14(6): 111-.
[7] Qingkun Ji, Caihong Zhang, Dan Li. Influences and mechanisms of nanofullerene on the horizontal transfer of plasmid-encoded antibiotic resistance genes between E. coli strains[J]. Front. Environ. Sci. Eng., 2020, 14(6): 108-.
[8] Dawei Yu, Jianxing Wang, Libin Zheng, Qianwen Sui, Hui Zhong, Meixue Cheng, Yuansong Wei. Effects of hydraulic retention time on net present value and performance in a membrane bioreactor treating antibiotic production wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(6): 101-.
[9] Nan Wu, Weiyu Zhang, Shiyu Xie, Ming Zeng, Haixue Liu, Jinghui Yang, Xinyuan Liu, Fan Yang. Increasing prevalence of antibiotic resistance genes in manured agricultural soils in northern China[J]. Front. Environ. Sci. Eng., 2020, 14(1): 1-.
[10] Kun Wan, Wenfang Lin, Shuai Zhu, Shenghua Zhang, Xin Yu. Biofiltration and disinfection codetermine the bacterial antibiotic resistome in drinking water: A review and meta-analysis[J]. Front. Environ. Sci. Eng., 2020, 14(1): 10-.
[11] Bin Liang, Deyong Kong, Mengyuan Qi, Hui Yun, Zhiling Li, Ke Shi, E Chen, Alisa S. Vangnai, Aijie Wang. Anaerobic biodegradation of trimethoprim with sulfate as an electron acceptor[J]. Front. Environ. Sci. Eng., 2019, 13(6): 84-.
[12] Zhenfeng Han, Ying Miao, Jing Dong, Zhiqiang Shen, Yuexi Zhou, Shan Liu, Chunping Yang. Enhanced nitrogen removal and microbial analysis in partially saturated constructed wetland for treating anaerobically digested swine wastewater[J]. Front. Environ. Sci. Eng., 2019, 13(4): 52-.
[13] Gastón Azziz, Matías Giménez, Héctor Romero, Patricia M. Valdespino-Castillo, Luisa I. Falcón, Lucas A. M. Ruberto, Walter P. Mac Cormack, Silvia Batista. Detection of presumed genes encoding beta-lactamases by sequence based screening of metagenomes derived from Antarctic microbial mats[J]. Front. Environ. Sci. Eng., 2019, 13(3): 44-.
[14] Weihua Wang, Wanfeng Zhang, Hong Liang, Dawen Gao. Occurrence and fate of typical antibiotics in wastewater treatment plants in Harbin, North-east China[J]. Front. Environ. Sci. Eng., 2019, 13(3): 34-.
[15] Jie Liao, Chaoxiang Liu, Lin Liu, Jie Li, Hongyong Fan, Jiaqi Ye, Zhichao Zeng. Influence of hydraulic retention time on behavior of antibiotics and antibiotic resistance genes in aerobic granular reactor treating biogas slurry[J]. Front. Environ. Sci. Eng., 2019, 13(3): 31-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed