Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (2) : 15    https://doi.org/10.1007/s11783-018-1017-z
RESEARCH ARTICLE
Abatement of mixed volatile organic compounds in a catalytic hybrid surface/packed-bed discharge plasma reactor
Lianjie Guo1,3, Nan Jiang1,2,3, Jie Li1,2,3(), Kefeng Shang1,2,3, Na Lu1,2,3, Yan Wu1,2,3
1. Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
2. School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China
3. School of Environmental Science & Technology, Dalian University of Technology, Dalian 116024, China
 Download: PDF(1472 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Mixed VOCs were successfully degraded by HSPBD reactor with Ag-Ce/γ-Al2O3 catalyst at room temperature.

• The removal performance of single-component and mixed VOCs were compared in both NTP and PPC processes.

• The single-component and mixed VOCs decomposition products after plasma-catalysis treatment were analyzed.

• There existed an optimal gas humid to achieve the highest mixed VOCs removal efficiency.

In this study, post plasma-catalysis degradation of mixed volatile organic compounds (benzene, toluene, and xylene) has been performed in a hybrid surface/packed-bed discharge plasma reactor with Ag-Ce/ g-Al2O3 catalyst at room temperature. The effect of relative air humidity on mixed VOCs degradation has also been investigated in both plasma-only and PPC systems. In comparison to the plasma-only system, a significant improvement can be observed in the degradation performance of mixed VOCs in PPC system with Ag-Ce/ g-Al2O3 catalyst. In PPC system, 68% benzene, 89% toluene, and 94% xylene were degraded at 800 J·L-1, respectively, which were 25%, 11%, and 9% higher than those in plasma-only system. This result can be attributed to the high catalytic activity of Ag-Ce/ g-Al2O3 catalyst to effectively decompose O3 and lead to generating more reactive species which are capable of destructing the VOCs molecules completely. Moreover, the presence of Ag-Ce/ g-Al2O3 catalyst in plasma significantly decreased the emission of discharge byproducts (NOx and O3) and promoted the mineralization of mixed VOCs towards CO2. Adding a small amount of water vapor into PPC system enhanced the degradation efficiencies of mixed VOCs, however, further increasing water vapor had a negative impact on the degradation efficiencies, which was primarily attributed to the quenching of energetic electrons by water vapor in plasma and the competitive adsorption of water vapor on the catalyst surface. Meanwhile, the catalysts before and after discharge were characterized by the Brunauer-Emment-Teller and X-ray photoelectron spectroscopy.

Keywords Mixed VOCs      HSPBD plasma reactor      Degradation      Catalyst      Relative humidity     
Corresponding Author(s): Jie Li   
Issue Date: 23 January 2018
 Cite this article:   
Lianjie Guo,Nan Jiang,Jie Li, et al. Abatement of mixed volatile organic compounds in a catalytic hybrid surface/packed-bed discharge plasma reactor[J]. Front. Environ. Sci. Eng., 2018, 12(2): 15.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1017-z
https://academic.hep.com.cn/fese/EN/Y2018/V12/I2/15
Fig.1  Schematic diagram of the experimental setup
Fig.2  Discharge voltage and current waveforms, gap current (ig) and displacement current (id) of (a) the positive pulse and (b) the negative pulse
Sample Surface area (m2·g-1) Total pore volume (cm3·g-1) Average pore diameter (nm)
γ-Al2O3 204.41 0.4382 8.38
Ag/γ-Al2O3 167.99 0.3732 8.89
Ce/γ-Al2O3 197.08 0.4319 8.76
Ag-Ce/γ-Al2O3 162.22 0.3808 9.39
Ag-Ce/γ-Al2O3
(After discharging 2 h)
163.33 0.3720 9.11
Tab.1  Physicochemical characteristics of the support and catalysts
Fig.3  XPS spectra of Ag /γ-Al2O3, Ce/γ-Al2O3, Ag-Ce/γ-Al2O3 and Ag-Ce/γ-Al2O3 (afer discharging 2 h) (a) Ag 3d (b) Ce 3d
Sample Surface Ce3+ (%) Surface Ce4+ (%)
Ce/γ-Al2O3 38.47 61.63
Ag-Ce/γ-Al2O3 37.99 62.01
Ag-Ce/γ-Al2O3
(After discharging 2 h)
29.56 70.44
Tab.2  Surface Ce element states of different catalysts
Fig.4  The degradation efficiencies of single-component VOCs and mixed VOCs in NTP and PPC processes
Fig.5  The variation of the concentration of mixed VOCs with/without catalyst
Fig.6  Energy yield concerning single-component and mixed VOCs as a function of SIE in NTP and PPC systems
Fig.7  FTIR spectra of gaseous products in hybrid surface/packed-bed discharge plasma reactor
Fig.8  CO2 selectivities as a function of the SIE in NTP and PPC processes
Fig.9  NO2 concentration as a function of the SIE in NTP and PPC processes
Fig.10  Effects of the relative humidity on degradation efficiencies and O3 concentration of mixed VOCs in NTP and PPC processes at 23 kV
1 Chang M B, Lee  C C. Destruction of formaldehyde with dielectric barrier discharge plasmas. Environmental Science & Technology, 1995, 29(1): 181–186
https://doi.org/10.1021/es00001a023 pmid: 22200217
2 Chang J S. Recent development of plasma pollution control technology: A critical review. Science and Technology of Advanced Materials, 2001, 2(2): 571–576
https://doi.org/10.1016/S1468-6996(01)00139-5
3 Marotta E, Callea  A, Rea M,  Paradisi C. DC corona electric discharges for air pollution control. Part 1. Efficiency and products of hydrocarbon processing. Environmental Science & Technology, 2007, 41(16): 5862–5868
https://doi.org/10.1021/es0707411 pmid: 17874798
4 Aerts R, Tu  X, Van Gaens W,  Whitehead J C,  Bogaerts A. Gas purification by nonthermal plasma: A case study of ethylene. Environmental Science & Technology, 2013, 47(12): 6478–6485
pmid: 23676182
5 Mizuno A, Kisanuki  Y, Noguchi M,  Katsura S. Indoor air cleaning using a pulsed discharge plasma. IEEE Transactions on Industry Applications, 1999, 35(6): 1284–1288
https://doi.org/10.1109/28.806040
6 Wang T C, Qu  G Z, Yan  Q H, Sun  Q, Liang D,  Hu S. Optimization of gas-liquid hybrid pulsed discharge plasma for p-nitrophenol contaminated dredged sediment remediation. Journal of Electrostatics, 2015, 77: 166–173
https://doi.org/10.1016/j.elstat.2015.08.011
7 Bo Z, Yan  J, Li X,  Chi Y, Cen  K. Nitrogen dioxide formation in the gliding arc discharge-assisted decomposition of volatile organic compounds. Journal of Hazardous Materials, 2009, 166(2–3): 1210–1216
https://doi.org/10.1016/j.jhazmat.2008.12.030 pmid: 19153003
8 Liang W J, Li  J, Li J X,  Zhu T, Jin  Y Q. Formaldehyde removal from gas streams by means of NaNO2 dielectric barrier discharge plasma. Journal of Hazardous Materials, 2010, 175(1–3): 1090–1095
https://doi.org/10.1016/j.jhazmat.2009.10.034 pmid: 19896770
9 Yamamoto T, Tamanathan  K, Lawless P A. Control of volatile organic compounds by an ac energized ferroelectric pellet reactor and a pulsed corona reactor. IEEE Transactions on Industry Applications, 1992, 28(3): 528–534
https://doi.org/10.1109/28.137430
10 Jiang N, Guo  L J, Shang  K F, Lu  N, Li J,  Wu Y. Discharge and optical characterizations of nanosecond pulse sliding dielectric barrier discharge plasma for volatile organic compound degradation. Journal of Physics. D, Applied Physics, 2017, 50(15): 155206
https://doi.org/10.1088/1361-6463/aa5fe9
11 Jiang N, Lu  N, Shang K,  Li J, Wu  Y. Innovative approach for benzene degradation using hybrid surface/packed-bed discharge plasmas. Environmental Science & Technology, 2013, 47(17): 9898–9903
https://doi.org/10.1021/es401110h pmid: 23919649
12 Tang X J, Feng  F D, Ye  L L, Zhang  X, Huang Y,  Liu Z, Yan  K. Removal of dilute VOCs in air by post-plasma catalysis over Ag-based composite oxide catalysts. Catalysis Today, 2013, 211: 39–43
https://doi.org/10.1016/j.cattod.2013.04.026
13 Einaga H, Ogata  A. Catalytic oxidation of benzene in the gas phase over alumina-supported silver catalysts. Environmental Science & Technology, 2010, 44(7): 2612–2617
https://doi.org/10.1021/es903095j pmid: 20222728
14 Zhu X B, Gao  X, Qin R,  Zeng Y, Qu  R, Zheng C,  Tu X. Plasma-catalytic removal of formaldehyde over Cu-Ce catalysts in a dielectric barrier discharge reactor. Applied Catalysis B: Environmental, 2015, 170-171: 293–300
https://doi.org/10.1016/j.apcatb.2015.01.032
15 Ding H X, Zhu  A M, Lu  F G, Xu  Y, Zhang J,  Yang X F. Low-temperature plasma-catalytic oxidation of formaldehyde in atmospheric pressure gas streams. Journal of Physics. D, Applied Physics, 2006, 39(16): 3603–3608
https://doi.org/10.1088/0022-3727/39/16/012
16 Oda T, Takahashi  T, Kohzuma S. Decomposition of dilute trichloroethylene by using nonthermal plasma processing-frequency and catalyst effects. IEEE Transactions on Industry Applications, 2001, 37(4): 965–970
https://doi.org/10.1109/TIA.2001.936385
17 Karuppiah J, Reddy  E L, Reddy  P M, Ramaraju  B, Karvembu R,  Subrahmanyam Ch. Abatement of mixture of volatile organic compounds (VOCs) in a catalytic non-thermal plasma reactor. Journal of Hazardous Materials, 2012, 237–238: 283–289
https://doi.org/10.1016/j.jhazmat.2012.08.040 pmid: 22975253
18 Morent R, Dewulf  J, Steenhaut N, Leys  C, Van Langenhove H. Hybrid plasma-catalyst system for the removal of trichloroethylene in air.  Journal of Advanced Oxidation Technologies, 2006, 9(1): 53–58
19 Zhu X B, Liu  S Y, Cai  Y X, Gao  X, Zhou J,  Zheng C,  Tu X. Post-plasma catalytic removal of methanol over Mn-Ce catalysts in an atmospheric dielectric barrier discharge. Applied Catalysis B: Environmental, 2016, 183: 124–132
https://doi.org/10.1016/j.apcatb.2015.10.013
20 Fan X, Zhu  T, Sun Y,  Yan X. The roles of various plasma species in the plasma and plasma-catalytic removal of low-concentration formaldehyde in air. Journal of Hazardous Materials, 2011, 196(196): 380–385
https://doi.org/10.1016/j.jhazmat.2011.09.044 pmid: 21968115
21 Einaga H, Ibusuki  T, Futamura S. Performance evaluation of a hybrid system comprising silent discharge plasma and manganese oxide catalysts for benzene composition. IEEE Transactions on Industry Applications, 2001, 37(5): 1476–1482
https://doi.org/10.1109/28.952524
22 Jiang N, Hu  J, Li J,  Shang K,  Lu N, Wu  Y. Plasma-catalytic degradation of benzene over Ag-Ce bimetallic oxide catalysts using hybrid surface/packed-bed discharge plasmas. Applied Catalysis B: Environmental, 2016, 184: 355–363
https://doi.org/10.1016/j.apcatb.2015.11.044
23 Chen H L, Lee  H M, Chen  S H, Chang  M B, Yu  S J, Li  S N. Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: A review of the performance enhancement mechanisms, current status, and suitable applications. Environmental Science & Technology, 2009, 43(7): 2216–2227
https://doi.org/10.1021/es802679b pmid: 19452866
24 Birdsall C M, Jenkins  A C, Spadinger  E. Iodometric determination of ozone. Analytical Chemistry, 1952, 24(4): 662–664
https://doi.org/10.1021/ac60064a013
25 Zhang S, Jia  L, Wang W C,  Yang D Z,  Tang K, Liu  Z J. The influencing factors of nanosecond pulse homogeneous dielectric barrier discharge in air. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2014, 117: 535–540
https://doi.org/10.1016/j.saa.2013.08.051 pmid: 24036046
26 Mei D H, Zhu  X B, He  Y L. Plasma-assisted conversion of CO2 in a dielectric barrier discharge reactor: understanding the effect of packing materials. Plasma Sources Science & Technology, 2015, (24): 015011
27 Aba’a Ndong A C,  Zouzou N,  Benard N. Geometrical optimization of a surface DBD powered by a nanosecond pulsed high voltage. Journal of Electrostatics, 2013, 71(3): 246–253
https://doi.org/10.1016/j.elstat.2012.11.030
28 Zhu X B, Gao  X, Yu X N. Catalyst screening for acetone removal in a single-stage plasma-catalysis system. Catalysis Today, 2016, (256): 108–114
29 Durme J V, Dewulf  J, Leys C. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review. Applied Catalysis B: Environmental, 2008, 78(3–4): 324–333
https://doi.org/10.1016/j.apcatb.2007.09.035
30 Skoda M, Cabala  M, Matolinova I,  Skála T,  Veltruská K,  Matolín V. A photoemission study of the ceria and Au-doped ceria/Cu(111) interfaces. Vacuum, 2009, 84(1): 8–12
https://doi.org/10.1016/j.vacuum.2009.04.058
31 Ogata A, Ito  D, Mizuno K,  Kushiyama S,  Gal A, Yamamoto  T. Effect of coexisting components on aromatic decomposition in a packed-bed plasma reactor. Applied Catalysis A, General, 2002, 236(1–2): 9–15
https://doi.org/10.1016/S0926-860X(02)00280-6
32 Futamura S, Zhang  A, Einaga H,  Kabashima H. Involvement of catalyst materials in nonthermal plasma chemical processing of hazardous air pollutants. Catalysis Today, 2002, 72(3–4): 259–265
https://doi.org/10.1016/S0920-5861(01)00503-X
33 vanVeldhuizen E M. Electrical Discharges for Environmental Purposes: Fundamentals and Applications. New York: Nova Science Publishers, 2000
34 Durme J V, Dewulf  J, Sysmans W,  Leys C, Langenhove  H V. Efficient toluene abatement in indoor air by a plasma catalytic hybrid system. Applied Catalysis B: Environmental, 2007, 74(1–2): 161–169
https://doi.org/10.1016/j.apcatb.2007.02.006
35 Cvetanovic R J. Evaluated chemical kinetic data for the reactions of atomic oxygen O(3P) with understand hydrocarbons. Journal of Physical and Chemical Reference Data, 1987, 16(2): 261–321 
https://doi.org/10.1063/1.555783
36 Lias S G. Ionization energy evaluation, In: NIST Standard Reference Database. Maillard W G, Linstrom P J, eds. National Institute of Standard and Technology, Gaithersburg, MD, 2006
[1] Guowen Hu, Zeqi Zhang, Xuan Zhang, Tianrong Li. Size and shape effects of MnFe2O4 nanoparticles as catalysts for reductive degradation of dye pollutants[J]. Front. Environ. Sci. Eng., 2021, 15(5): 108-.
[2] Yuanyuan Luo, Yangyang Zhang, Mengfan Lang, Xuetao Guo, Tianjiao Xia, Tiecheng Wang, Hanzhong Jia, Lingyan Zhu. Identification of sources, characteristics and photochemical transformations of dissolved organic matter with EEM-PARAFAC in the Wei River of China[J]. Front. Environ. Sci. Eng., 2021, 15(5): 96-.
[3] Qiuzhun Chen, Xiang Zhang, Bing Li, Shengli Niu, Gaiju Zhao, Dong Wang, Yue Peng, Junhua Li, Chunmei Lu, John Crittenden. Insight into the promotion mechanism of activated carbon on the monolithic honeycomb red mud catalyst for selective catalytic reduction of NOx[J]. Front. Environ. Sci. Eng., 2021, 15(5): 92-.
[4] Xinzheng Li, Zhiming Li, Zhihui Xing, Zhimin Song, Bei Ye, Zhengming Wang, Qianyuan Wu. UV-LED/P25-based photocatalysis for effective degradation of isothiazolone biocide[J]. Front. Environ. Sci. Eng., 2021, 15(5): 85-.
[5] Ting Wang, Renxian Zhou. PM-support interfacial effect and oxygen mobility in Pt, Pd or Rh-loaded (Ce,Zr,La)O2 catalysts[J]. Front. Environ. Sci. Eng., 2021, 15(4): 76-.
[6] Xinshu Liu, Xiaoman Su, Sijie Tian, Yue Li, Rongfang Yuan. Mechanisms for simultaneous ozonation of sulfamethoxazole and natural organic matters in secondary effluent from sewage treatment plant[J]. Front. Environ. Sci. Eng., 2021, 15(4): 75-.
[7] Chenchen Li, Lijie Yan, Yiming Li, Dan Zhang, Mutai Bao, Limei Dong. TiO2@palygorskite composite for the efficient remediation of oil spills via a dispersion-photodegradation synergy[J]. Front. Environ. Sci. Eng., 2021, 15(4): 72-.
[8] Xinyi Liu, Caichao Wan, Xianjun Li, Song Wei, Luyu Zhang, Wenyan Tian, Ken-Tye Yong, Yiqiang Wu, Jian Li. Sustainable wood-based nanotechnologies for photocatalytic degradation of organic contaminants in aquatic environment[J]. Front. Environ. Sci. Eng., 2021, 15(4): 54-.
[9] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[10] Chen Wang, Jun Wang, Jianqiang Wang, Meiqing Shen. Promotional effect of ion-exchanged K on the low-temperature hydrothermal stability of Cu/SAPO-34 and its synergic application with Fe/Beta catalysts[J]. Front. Environ. Sci. Eng., 2021, 15(2): 30-.
[11] Paul Olusegun Bankole, Kirk Taylor Semple, Byong-Hun Jeon, Sanjay Prabhu Govindwar. Enhanced enzymatic removal of anthracene by the mangrove soil-derived fungus, Aspergillus sydowii BPOI[J]. Front. Environ. Sci. Eng., 2020, 14(6): 113-.
[12] Mona Akbar, Muhammad Farooq Saleem Khan, Ling Qian, Hui Wang. Degradation of polyacrylamide (PAM) and methane production by mesophilic and thermophilic anaerobic digestion: Effect of temperature and concentration[J]. Front. Environ. Sci. Eng., 2020, 14(6): 98-.
[13] Wenqing Xu, Mark L. Segall, Zhao Li. Reactivity of Pyrogenic Carbonaceous Matter (PCM) in mediating environmental reactions: Current knowledge and future trends[J]. Front. Environ. Sci. Eng., 2020, 14(5): 86-.
[14] Yapeng Song, Hui Gong, Jianbing Wang, Fengmin Chang, Kaijun Wang. Enhanced triallyl isocyanurate (TAIC) degradation through application of an O3/UV process: Performance optimization and degradation pathways[J]. Front. Environ. Sci. Eng., 2020, 14(4): 64-.
[15] Yan Zhang, Yuyan Zhang, Xue Li, Xiaohan Zhao, Cosmos Anning, John Crittenden, Xianjun Lyu. Photocatalytic water splitting of ternary graphene-like photocatalyst for the photocatalytic hydrogen production[J]. Front. Environ. Sci. Eng., 2020, 14(4): 69-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed