Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (1) : 6    https://doi.org/10.1007/s11783-018-1022-2
RESEARCH ARTICLE
Significant enhancement in catalytic ozonation efficacy: From granular to super-fine powdered activated carbon
Tianyi Chen1, Wancong Gu1, Gen Li2, Qiuying Wang1, Peng Liang1, Xiaoyuan Zhang1(), Xia Huang1()
1. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
2. Department of Urban Construction, Wuhan University of Science and Technology, Wuhan 400065, China
 Download: PDF(901 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

SPAC significantly enhanced the efficacy of catalytic ozonation.

Large external surface reduced the diffusion resistance.

Surface reaction was dominant for SPAC-based catalytic ozonation.

Simple ball milling brought favorable material characteristics for catalysis.

In this study, super-fine powdered activated carbon (SPAC) has been proposed and investigated as a novel catalyst for the catalytic ozonation of oxalate for the first time. SPAC was prepared from commercial granular activated carbon (GAC) by ball milling. SPAC exhibited high external surface area with a far greater member of meso- and macropores (563% increase in volume). The catalytic performances of activated carbons (ACs) of 8 sizes were compared and the rate constant for pseudo first-order total organic carbon removal increased from 0.012 min-1 to 0.568 min-1 (47-fold increase) with the decrease in size of AC from 20 to 40 mesh (863 mm) to SPAC (~1.0 mm). Furthermore, the diffusion resistance of SPAC decreased 17-fold compared with GAC. The ratio of oxalate degradation by surface reaction increased by 57%. The rate of transformation of ozone to radicals by SPAC was 330 times that of GAC. The results suggest that a series of changes stimulated by ball milling, including a larger ratio of external surface area, less diffusion resistance, significant surface reaction and potential oxidized surface all contributed to enhancing catalytic ozonation performance. This study demonstrated that SPAC is a simple and effective catalyst for enhancing catalytic ozonation efficacy.

Keywords Super-fine activated carbon      Catalytic ozonation      External surface area      Surface reaction      Hydroxyl radical     
Corresponding Author(s): Xiaoyuan Zhang,Xia Huang   
Issue Date: 05 January 2018
 Cite this article:   
Tianyi Chen,Wancong Gu,Gen Li, et al. Significant enhancement in catalytic ozonation efficacy: From granular to super-fine powdered activated carbon[J]. Front. Environ. Sci. Eng., 2018, 12(1): 6.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1022-2
https://academic.hep.com.cn/fese/EN/Y2018/V12/I1/6
Fig.1  (a) TOC removal by the catalyticozonation of oxalate using SPAC and GAC as catalysts over time and(b) pseudo first order rate constants at different SPAC and GAC doses.The dotted lines are kinetic fitting results. The numbers after SPACand GAC are doses with a unit of g/L. Experimental conditions: oxalateconcentration: 100 mg/L, O3 concentration:180–200 mg/L, and flow rate: 1.0 L/min. The pH was not buffered
Fig.2  (a) TOC removal by the catalyticozonation of oxalate using AC catalysts with various sizes and (b)the relationship between pseudo first-order rate constants and carbonradius. The dotted lines in (a) and (b) are kinetics fitting resultsand fitting trend. Experimental conditions: oxalate concentration:100 mg/L, O3 concentration: 180–200 mg/L,flow rate: 1.0 L/min, carbon dose: 2 g/L. The pH was not buffered
Fig.3  (a) Adsorption of oxalateby SPAC and GAC with and without sonication; (b) pseudo second-orderrate constants; (c) initial adsorption rates; (d) adsorbed oxalateat equilibrium. Experimental conditions: oxalate concentration: 100mg/L, carbon dose: 2 g/L. The pH was not buffered
Sample SBET (m2/g) Sa, b)micro
(m2/g)
Sa)ext
(m2/g)
Va, b)micro
(cm3/g)
Vb)meso+macro
(cm3/g)
Vtot
(cm3/g)
GAC 456.9±1.9 208.5 248.4 0.0954 0.0316 0.127
100–160 mesh AC 476.2±2.6 220.7 255.4 0.0948 0.1112 0.206
SPAC 745.3±6.1 24.4 720.9 0.0048 0.2102 0.215
Tab.1  Surface area characterizationsof GAC, 100–160 mesh AC and SPAC
Fig.4  Oxalate removal by ozonealone (green area), ozone+ carbon+ t-butanol (yellow, orange area)and ozone+ carbon (line) in the case of (a) GAC and (b) SPAC. Experimentalconditions: oxalate concentration (OA): 100 mg/L, t-butanol: 1 mM,O3 concentration: 180–200 mg/L, flowrate: 1.0 L/min, carbon dose: 2 g/L. The pH was not buffered
Fig.5  Rct plots for ozone alone, and ozone with GACand SPAC at various carbon doses. The slope of the fitting line representsthe Rct value.Detailed parameters are shown in Table S1. Experimental conditions: pCBA concentration: 2 mM, t-butanol concentration: 320 mM. The pH was not buffered
1 Khamparia S, Jaspal  D K. Adsorption in combination with ozonation for the treatment of textile waste water: A critical review. Frontiers of Environmental Science & Engineering, 2017, 11(1): 8 doi:10.1007/s11783-017-0899-5
2 Oller I, Malato  S, Sánchez-Pérez  J A. Combination of advanced oxidation processes and biological treatments for wastewater decontamination—A review. Science of the Total Environment, 2011, 409(20): 4141–4166
https://doi.org/10.1016/j.scitotenv.2010.08.061 pmid: 20956012
3 Matilainen A, Sillanpää  M. Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere, 2010, 80(4): 351–365
https://doi.org/10.1016/j.chemosphere.2010.04.067 pmid: 20494399
4 Bard A J, Faulkner  L R. Electrochemical Methods: Fundamentals and applications. 2nd ed.New York: John Wiley and Sons Inc., 2001
5 Faria P C C,  Órfão J J M,  Pereira M F R. Activated carbon catalytic ozonation of oxamic and oxalic acids. Applied Catalysis B: Environmental, 2008, 79(3): 237–243
https://doi.org/10.1016/j.apcatb.2007.10.021
6 Staehelin J, Hoigne  J. Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environmental Science & Technology, 1985, 19(12): 1206–1213
https://doi.org/10.1021/es00142a012 pmid: 22280139
7 Alvárez P, García-Araya  J, Beltrán F,  Giráldez I,  Jaramillo J,  Gµmez-Serrano V. The influence of various factors on aqueous ozone decomposition by granular activated carbons and the development of a mechanistic approach. Carbon, 2006, 44(14): 3102–3112
https://doi.org/10.1016/j.carbon.2006.03.016
8 Legube B, Leitner  N K V. Catalytic ozonation: A promising advanced oxidation technology for water treatment. Catalysis Today, 1999, 53(1): 61–72
https://doi.org/10.1016/S0920-5861(99)00103-0
9 Ma J, Graham  N J D. Degradation of atrazine by manganese-catalysed ozonation: Influence of humic substances. Water Research, 1999, 33(3): 785–793
https://doi.org/10.1016/S0043-1354(98)00266-8
10 Pines D S, Reckhow  D A. Effect of dissolved cobalt(II) on the ozonation of oxalic acid. Environmental Science & Technology, 2002, 36(19): 4046–4051
https://doi.org/10.1021/es011230w pmid: 12380073
11 Beltrán F J,  Rivas F J,  Montero-de-Espinosa R. Iron type catalysts for the ozonation of oxalic acid in water. Water Research, 2005, 39(15): 3553–3564
https://doi.org/10.1016/j.watres.2005.06.018 pmid: 16095660
12 Andreozzi R, Caprio  V, Insola A,  Marotta R,  Tufano V. The ozonation of pyruvic acid in aqueous solutions catalyzed by suspended and dissolved manganese. Water Research, 1998, 32(5): 1492–1496
https://doi.org/10.1016/S0043-1354(97)00367-9
13 Nawrocki J, Kasprzyk-Hordern  B. The efficiency and mechanisms of catalytic ozonation. Applied Catalysis B: Environmental, 2010, 99(1–2): 27–42
https://doi.org/10.1016/j.apcatb.2010.06.033
14 Fan X, Restivo  J, Órfão J J M, Pereira M F R,  Lapkin A A. The role of multiwalled carbon nanotubes (MWCNTs) in the catalytic ozonation of atrazine. Chemical Engineering Journal, 2014, 241: 66–76
https://doi.org/10.1016/j.cej.2013.12.023
15 Oulton R, Haase  J P, Kaalberg  S, Redmond C T,  Nalbandian M J,  Cwiertny D M. Hydroxyl radical formation during ozonation of multiwalled carbon nanotubes: performance optimization and demonstration of a reactive CNT filter. Environmental Science & Technology, 2015, 49(6): 3687–3697
https://doi.org/10.1021/es505430v pmid: 25730285
16 Rocha R P, Gonçalves  A G, Pastrana-Martínez  L M, Bordoni  B C, Soares  O S G P, Órfão  J J M, Faria  J L, Figueiredo  J L, Silva  A M T, Pereira  M F R. Nitrogen-doped graphene-based materials for advanced oxidation processes. Catalysis Today, 2015, 249: 192–198
https://doi.org/10.1016/j.cattod.2014.10.046
17 Restivo J, Garcia-Bordejé  E, Órfão J J M, Pereira M F R. Carbon nanofibers doped with nitrogen for the continuous catalytic ozonation of organic pollutants. Chemical Engineering Journal, 2016, 293: 102–111
https://doi.org/10.1016/j.cej.2016.02.055
18 Zhang T, Li  C, Ma J,  Tian H, Qiang  Z. Surface hydroxyl groups of synthetic  a-FeOOH in promoting ·OH generation from aqueous ozone: Property and activity relationship. Applied Catalysis B: Environmental, 2008, 82(1–2): 131–137
https://doi.org/10.1016/j.apcatb.2008.01.008
19 Zhang T, Li  W, Croué J P. Catalytic ozonation of oxalate with a cerium supported palladium oxide: An efficient degradation not relying on hydroxyl radical oxidation. Environmental Science & Technology, 2011, 45(21): 9339–9346
https://doi.org/10.1021/es202209j pmid: 21970593
20 Marsh H. Introduction to Carbon Technologies. Alicante: University of Alicante, 1997
21 Figueiredo J L,  Pereira M F R. The role of surface chemistry in catalysis with carbons. Catalysis Today, 2010, 150(1–2): 2–7
https://doi.org/10.1016/j.cattod.2009.04.010
22 Figueiredo J L,  Pereira M F R,  Freitas M M A,  Orfao J J M. Modification of the surface chemistry of activated carbons. Carbon, 1999, 37(9): 1379–1389
https://doi.org/10.1016/S0008-6223(98)00333-9
23 Krzyżyńska B,  Malaika A,  Rechnia P,  Kozłowski M. Study on catalytic centres of activated carbons modified in oxidising or reducing conditions. Journal of Molecular Catalysis A Chemical, 2014, 395: 523–533
https://doi.org/10.1016/j.molcata.2014.09.014
24 Sánchez-Polo M,  von Gunten U,  Rivera-Utrilla J. Efficiency of activated carbon to transform ozone into *OH radicals: influence of operational parameters. Water Research, 2005, 39(14): 3189–3198
https://doi.org/10.1016/j.watres.2005.05.026 pmid: 16005933
25 Xing L, Xie  Y, Cao H,  Minakata D,  Zhang Y,  Crittenden J C. Activated carbon-enhanced ozonation of oxalate attributed to HO• oxidation in bulk solution and surface oxidation: Effects of the type and number of basic sites. Chemical Engineering Journal, 2014, 245: 71–79
https://doi.org/10.1016/j.cej.2014.01.104
26 Cao H, Xing  L, Wu G,  Xie Y, Shi  S, Zhang Y,  Minakata D,  Crittenden J C. Promoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acid. Applied Catalysis B: Environmental, 2014, 146: 169–176
https://doi.org/10.1016/j.apcatb.2013.05.006
27 Jans U, Hoigne  J. Activated carbon and carbon black catalyzed transformation of aqueous ozone into OH-radicals. Ozone Science and Engineering, 1998, 20(1): 67–90
https://doi.org/10.1080/01919519808547291
28 Álvarez P M,  Masa F J,  Jaramillo J,  Beltran F J,  Gomezserrano V. Kinetics of ozone decomposition by granular activated carbon. Industrial & Engineering Chemistry Research, 2008, 47(8): 2545–2553
https://doi.org/10.1021/ie071360z
29 Qiao N, Zhang  X, He C,  Li Y, Zhang  Z, Cheng J,  Hao Z. Enhanced performances in catalytic oxidation of o-xylene over hierarchical macro-/mesoporous silica-supported palladium catalysts.  Frontiers of Environmental Science & Engineering, 2016, 10(3): 458–466 doi:10.1007/s11783-015-0802-1
30 Bonvin F, Jost  L, Randin L,  Bonvin E,  Kohn T. Super-fine powdered activated carbon (SPAC) for efficient removal of micropollutants from wastewater treatment plant effluent. Water Research, 2016, 90: 90–99
https://doi.org/10.1016/j.watres.2015.12.001 pmid: 26724443
31 Partlan E, Davis  K, Ren Y,  Apul O G,  Mefford O T,  Karanfil T,  Ladner D A. Effect of bead milling on chemical and physical characteristics of activated carbons pulverized to superfine sizes. Water Research, 2016, 89: 161–170
https://doi.org/10.1016/j.watres.2015.11.041 pmid: 26657354
32 Matsui Y, Ando  N, Yoshida T,  Kurotobi R,  Matsushita T,  Ohno K. Modeling high adsorption capacity and kinetics of organic macromolecules on super-powdered activated carbon. Water Research, 2011, 45(4): 1720–1728
https://doi.org/10.1016/j.watres.2010.11.020 pmid: 21172719
33 Ando N, Matsui  Y, Kurotobi R,  Nakano Y,  Matsushita T,  Ohno K. Comparison of natural organic matter adsorption capacities of super-powdered activated carbon and powdered activated carbon. Water Research, 2010, 44(14): 4127–4136
https://doi.org/10.1016/j.watres.2010.05.029 pmid: 20561665
34 Elovitz M S, von Gunten  U. Hydroxyl radical/ozone ratios during ozonation processes. I. The RCT concept. Ozone Science and Engineering, 1999, 21(3): 239–260 doi:10.1080/01919519908547239
35 Rivera-Utrilla J, Sánchez-Polo  M. Ozonation of 1,3,6-naphthalenetrisulphonic acid catalysed by activated carbon in aqueous phase. Applied Catalysis B: Environmental, 2002, 39(4): 319–329
https://doi.org/10.1016/S0926-3373(02)00117-0
36 Nawrocki J, Fijołek  L. Catalytic ozonation—Effect of carbon contaminants on the process of ozone decomposition. Applied Catalysis B: Environmental, 2013, 142–143: 307–314
https://doi.org/10.1016/j.apcatb.2013.05.028
37 Boehm H P. Chemical Identification of Surface Groups. Advances in Catalysis, 1966, 16: 179–274
38 Dastgheib S A,  Karanfil T,  Cheng W. Tailoring activated carbons for enhanced removal of natural organic matter from natural waters. Carbon, 2004, 42(3): 547–557
https://doi.org/10.1016/j.carbon.2003.12.062
39 Valdés H, Sánchez-Polo  M, Rivera-Utrilla J,  Zaror C A. Effect of ozone treatment on surface properties of activated carbon. Langmuir, 2002, 18(6): 2111–2116
https://doi.org/10.1021/la010920a
40 Vecitis C D, Lesko  T, Colussi A J,  Hoffmann M R. Sonolytic decomposition of aqueous bioxalate in the presence of ozone. The Journal of Physical Chemistry A, 2010, 114(14): 4968–4980
https://doi.org/10.1021/jp9115386 pmid: 20229985
41 Hoigné J, Bader  H. Rate constants of reactions of ozone with organic and inorganic compounds in water—II: Dissociating organic compounds. Water Research, 1983, 17(2): 185–194
https://doi.org/10.1016/0043-1354(83)90099-4
42 Sehested K, Getoff  N, Schwoerer F,  Markovic V M,  Nielsen S O. Pulse radiolysis of oxalic acid and oxalates. Journal of Physical Chemistry, 1971, 75(6): 749–755
https://doi.org/10.1021/j100676a004
43 Bader H, Hoigne  J. Determination of ozone in water by the indigo method. Water Research, 1981, 15(4): 449–456
https://doi.org/10.1016/0043-1354(81)90054-3
44 American Water Works Association (AWWA) A P H A A. Standard Methods for the Examination of Water and Wastewater. 22nd Ed.Washington, DC: Water Environment Federation, 2012
45 Zhao D, Cheng  J, Vecitis C D,  Hoffmann M R. Sorption of perfluorochemicals to granular activated carbon in the presence of ultrasound. The Journal of Physical Chemistry A, 2011, 115(11): 2250–2257
https://doi.org/10.1021/jp111784k pmid: 21370832
46 Wang H, Yuan  S, Zhan J,  Wang Y, Yu  G, Deng S,  Huang J,  Wang B. Mechanisms of enhanced total organic carbon elimination from oxalic acid solutions by electro-peroxone process. Water Research, 2015, 80: 20–29
https://doi.org/10.1016/j.watres.2015.05.024 pmid: 25989593
47 Xing L, Xie  Y, Minakata D,  Cao H, Xiao  J, Zhang Y,  Crittenden J C. Activated carbon enhanced ozonation of oxalate attributed to HO oxidation in bulk solution and surface oxidation: Effect of activated carbon dosage and pH. Journal of Environmental Sciences (China), 2014, 26(10): 2095–2105
https://doi.org/10.1016/j.jes.2014.08.009 pmid: 25288554
48 Fogler H S. Elements of Chemical Reaction Engineering, 3rd Ed. Upper Saddle River, NJ: Prentice Hall PTR, 1999
49 Beltrán F J,  Rivas J,  Álvarez P,  Montero-de-Espinosa  R M. Kinetics of heterogeneous catalytic ozone decomposition in water in an activated carbon. Ozone Science and Engineering, 2002, 24(4): 227–237
https://doi.org/10.1080/01919510208901614
50 Wang J, Cheng  J, Wang C,  Yang S, Zhu  W. Catalytic ozonation of dimethyl phthalate with RuO2/Al2O3 catalysts prepared by microwave irradiation. Catalysis Communications, 2013, 41: 1–5
https://doi.org/10.1016/j.catcom.2013.06.030
51 Breitbach M, Bathen  D. Influence of ultrasound on adsorption processes. Ultrasonics Sonochemistry, 2001, 8(3): 277–283
https://doi.org/10.1016/S1350-4177(01)00089-X pmid: 11441611
52 Liu C, Sun  Y, Wang D,  Sun Z, Chen  M, Zhou Z,  Chen W. Performance and mechanism of low-frequency ultrasound to regenerate the biological activated carbon. Ultrasonics Sonochemistry, 2017, 34: 142–153
https://doi.org/10.1016/j.ultsonch.2016.05.036 pmid: 27773230
53 Park J S, Choi  H, Cho J. Kinetic decomposition of ozone and para-chlorobenzoic acid (pCBA) during catalytic ozonation. Water Research, 2004, 38(9): 2285–2292
https://doi.org/10.1016/j.watres.2004.01.040 pmid: 15142789
54 von Gunten U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Research, 2003, 37(7): 1443–1467
https://doi.org/10.1016/S0043-1354(02)00457-8 pmid: 12600374
55 Alvárez P M,  García-Araya J F,  Beltrán F J,  Giráldez I,  Jaramillo J,  Gµmez-Serrano V. The influence of various factors on aqueous ozone decomposition by granular activated carbons and the development of a mechanistic approach. Carbon, 2006, 44(14): 3102–3112
https://doi.org/10.1016/j.carbon.2006.03.016
56 Faria P C C,  Órfão J J M,  Pereira M F R. Ozone decomposition in water catalyzed by activated carbon: Influence of chemical and textural properties. Industrial & Engineering Chemistry Research, 2006, 45(8): 2715–2721
https://doi.org/10.1021/ie060056n
57 Chen C, Huang  W. Aggregation kinetics of nanosized activated carbons in aquatic environments. Chemical Engineering Journal, 2017, 313: 882–889
https://doi.org/10.1016/j.cej.2016.10.128
[1] FSE-17119-OF-CTY_suppl_1 Download
[1] Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34-.
[2] Bei Ye, Zhuo Chen, Xinzheng Li, Jianan Liu, Qianyuan Wu, Cheng Yang, Hongying Hu, Ronghe Wang. Inhibition of bromate formation by reduced graphene oxide supported cerium dioxide during ozonation of bromide-containing water[J]. Front. Environ. Sci. Eng., 2019, 13(6): 86-.
[3] Siyu Chen, Lee Blaney, Ping Chen, Shanshan Deng, Mamatha Hopanna, Yixiang Bao, Gang Yu. Ozonation of the 5-fluorouracil anticancer drug and its prodrug capecitabine: Reaction kinetics, oxidation mechanisms, and residual toxicity[J]. Front. Environ. Sci. Eng., 2019, 13(4): 59-.
[4] Yaobin Lu, Songli He, Dantong Wang, Siyuan Luo, Aiping Liu, Haiping Luo, Guangli Liu, Renduo Zhang. A pulsed switching peroxi-coagulation process to control hydroxyl radical production and to enhance 2,4-Dichlorophenoxyacetic acid degradation[J]. Front. Environ. Sci. Eng., 2018, 12(5): 9-.
[5] Shraddha Khamparia,Dipika Kaur Jaspal. Adsorption in combination with ozonation for the treatment of textile waste water: a critical review[J]. Front. Environ. Sci. Eng., 2017, 11(1): 8-.
[6] Chengyuan SU,Weiguang LI,Xingzhe LIU,Xiaofei HUANG,Xiaodan YU. Fe-Mn-sepiolite as an effective heterogeneous Fenton-like catalyst for the decolorization of reactive brilliant blue[J]. Front. Environ. Sci. Eng., 2016, 10(1): 37-45.
[7] Hong SUN,Min SUN,Yaobin ZHANG,Xie QUAN. Catalytic ozonation of reactive red X-3B in aqueous solution under low pressure: decolorization and OH· generation[J]. Front. Environ. Sci. Eng., 2015, 9(4): 591-595.
[8] Zhendong YANG, Aihua LV, Yulun NIE, Chun HU. Catalytic ozonation performance and surface property of supported Fe3O4 catalysts dispersions[J]. Front Envir Sci Eng, 2013, 7(3): 451-456.
[9] LIU Zhengqian, MA Jun, ZHAO Lei. Effect of preparation parameters on catalytic properties of Pt/graphite[J]. Front.Environ.Sci.Eng., 2007, 1(4): 482-487.
[10] ZHAN Manjun, YANG Xi, KONG Lingren, YANG Hongshen. Effect of natural aquatic humic substances on the photodegradation of bisphenol A[J]. Front.Environ.Sci.Eng., 2007, 1(3): 311-315.
[11] PI Yunzheng, WANG Jianlong. Pathway of the ozonation of 2,4,6-trichlorophenol in aqueous solution[J]. Front.Environ.Sci.Eng., 2007, 1(2): 179-183.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed