Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (2) : 16    https://doi.org/10.1007/s11783-018-1028-9
VIEWS & COMMENTS
Stabilization-based soil remediation should consider long-term challenges
Zhengtao Shen1, Zhen Li2(), Daniel S. Alessi1
1. Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton AB T6G 2E3, Canada
2. College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
 Download: PDF(123 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Soil remediation is of increasing importance globally, especially in developing countries. Among available remediation options, stabilization, which aims to immobilize contaminants within soil, has considerable advantages, including that it is cost-effective, versatile, sustainable, rapid, and often results in less secondary pollution. However, there are emerging challenges regarding the long-term performance of the technology, which may be affected by a range of environmental factors. These challenges stem from a research gap regarding the development of accurate, quantitative laboratory simulations of long-term conditions, whereby laboratory accelerated aging methods could be normalized to real field conditions. Therefore, field trials coupled with long-term monitoring are critical to further verify conditions under which stabilization is effective. Sustainability is also an important factor affecting the long-term stability of site remediation. It is hence important to consider these challenges to develop an optimized application of stabilization technology in soil remediation.

Keywords Stabilization      Soil remediation      Long-term      Trace metals     
Corresponding Author(s): Zhen Li   
Issue Date: 25 January 2018
 Cite this article:   
Zhengtao Shen,Zhen Li,Daniel S. Alessi. Stabilization-based soil remediation should consider long-term challenges[J]. Front. Environ. Sci. Eng., 2018, 12(2): 16.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1028-9
https://academic.hep.com.cn/fese/EN/Y2018/V12/I2/16
Fig.1  Advantages of stabilization-based soil remediation
Fig.2  Long-term challenges of stabilization-based soil remediation
1 Zhang F, Li  G. China released the Action Plan on Prevention and Control of Soil Pollution. Frontiers of Environmental Science & Engineering, 2016, 10(4): 19
https://doi.org/10.1007/s11783-016-0867-5
2 Zeng G, Wan  J, Huang D,  Hu L, Huang  C, Cheng M,  Xue W, Gong  X, Wang R,  Jiang D. Precipitation, adsorption and rhizosphere effect: The mechanisms for Phosphate-induced Pb immobilization in soils-A review. Journal of Hazardous Materials, 2017, 339: 354–367
https://doi.org/10.1016/j.jhazmat.2017.05.038 pmid: 28668753
3 Dermont G, Bergeron  M, Mercier G,  Richer-Laflèche M. Soil washing for metal removal: A review of physical/chemical technologies and field applications. Journal of Hazardous Materials, 2008, 152(1): 1–31
https://doi.org/10.1016/j.jhazmat.2007.10.043 pmid: 18036735
4 Cui L, Pan  G, Li L,  Bian R, Liu  X, Yan J,  Quan G, Ding  C, Chen T,  Liu Y, Liu  Y, Yin C,  Wei C, Yang  Y, Hussain Q. Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil: A five-year field experiment. Ecological Engineering, 2016, 93: 1–8
https://doi.org/10.1016/j.ecoleng.2016.05.007
5 Wang F, Wang  H, Al-Tabbaa A. Leachability and heavy metal speciation of 17-year old stabilised/solidified contaminated site soils. Journal of Hazardous Materials, 2014, 278: 144–151
https://doi.org/10.1016/j.jhazmat.2014.05.102 pmid: 24956579
6 Suzuki T, Nakamura  A, Niinae M,  Nakata H,  Fujii H,  Tasaka Y. Lead immobilization in artificially contaminated kaolinite using magnesium oxide-based materials: Immobilization mechanisms and long-term evaluation. Chemical Engineering Journal, 2013, 232: 380–387
https://doi.org/10.1016/j.cej.2013.07.121
7 Hou D, Al-Tabbaa  A. Sustainability: A new imperative in contaminated land remediation. Environmental Science & Policy, 2014, 39: 25–34
https://doi.org/10.1016/j.envsci.2014.02.003
8 Hou D, Gu  Q, Ma F,  O’Connell S. Life cycle assessment comparison of thermal desorption and stabilization/solidification of mercury contaminated soil on agricultural land. Journal of Cleaner Production, 2016, 139: 949–956
https://doi.org/10.1016/j.jclepro.2016.08.108
9 Shen Z, Som  A M, Wang  F, Jin F,  McMillan O,  Al-Tabbaa A. Long-term impact of biochar on the immobilisation of nickel (II) and zinc (II) and the revegetation of a contaminated site. Science of the Total Environment, 2016, 542(Pt A): 771–776
https://doi.org/10.1016/j.scitotenv.2015.10.057 pmid: 26551277
10 Alam M S, Swaren  L, von Gunten K,  Cossio M,  Bishop B,  Robbins L J,  Hou D, Flynn  S L, Ok  Y S, Konhauser  K O, Alessi  D S. Application of surface complexation modeling to trace metals uptake by biochar-amended agricultural soils. Applied Geochemistry, 2017
https://doi.org/10.1016/j.apgeochem.2017.08.003
[1] Fanling Meng, Yunxue Xia, Jianshuai Zhang, Dong Qiu, Yaozhu Chu, Yuanyuan Tang. Cu/Cr co-stabilization mechanisms in a simulated Al2O3-Fe2O3-Cr2O3-CuO waste system[J]. Front. Environ. Sci. Eng., 2021, 15(6): 116-.
[2] Hefu Pu, Aamir Khan Mastoi, Xunlong Chen, Dingbao Song, Jinwei Qiu, Peng Yang. An integrated method for the rapid dewatering and solidification/stabilization of dredged contaminated sediment with a high water content[J]. Front. Environ. Sci. Eng., 2021, 15(4): 67-.
[3] Haiyan Mou, Wenchao Liu, Lili Zhao, Wenqing Chen, Tianqi Ao. Stabilization of hexavalent chromium with pretreatment and high temperature sintering in highly contaminated soil[J]. Front. Environ. Sci. Eng., 2021, 15(4): 61-.
[4] Zhengqing Cai, Xiao Zhao, Jun Duan, Dongye Zhao, Zhi Dang, Zhang Lin. Remediation of soil and groundwater contaminated with organic chemicals using stabilized nanoparticles: Lessons from the past two decades[J]. Front. Environ. Sci. Eng., 2020, 14(5): 84-.
[5] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[6] Weiqi Luo, Yanping Ji, Lu Qu, Zhi Dang, Yingying Xie, Chengfang Yang, Xueqin Tao, Jianmin Zhou, Guining Lu. Effects of eggshell addition on calcium-deficient acid soils contaminated with heavy metals[J]. Front. Environ. Sci. Eng., 2018, 12(3): 4-.
[7] Jie Ren, Zhuo Zhang, Mei Wang, Guanlin Guo, Ping Du, Fasheng Li. Phosphate-induced differences in stabilization efficiency for soils contaminated with lead, zinc, and cadmium[J]. Front. Environ. Sci. Eng., 2018, 12(2): 10-.
[8] Zifeng WANG, Min SHAO, Liangfu CHEN, Minghui TAO, Liuju ZHONG, Duohong CHEN, Meng FAN, Yang WANG, Xinhui WANG. Space view of the decadal variation for typical air pollutants in the Pearl River Delta (PRD) region in China[J]. Front. Environ. Sci. Eng., 2016, 10(5): 9-.
[9] Sanne Skov NIELSEN, Peter KJELDSEN, Rasmus JAKOBSEN. Full scale amendment of a contaminated wood impregnation site with iron water treatment residues[J]. Front. Environ. Sci. Eng., 2016, 10(4): 3-.
[10] Xuemei WANG,Weihua CHEN,Duohong CHEN,Zhiyong WU,Qi Fan. Long-term trends of fine particulate matter and chemical composition in the Pearl River Delta Economic Zone (PRDEZ), China[J]. Front. Environ. Sci. Eng., 2016, 10(1): 53-62.
[11] Yuebing SUN,Dan ZHAO,Yingming XU,Lin WANG,Xuefeng LIANG,Yue SHEN. Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological evaluation[J]. Front. Environ. Sci. Eng., 2016, 10(1): 85-92.
[12] Jie ZHU,Wei WANG,Xiuning HUA,Zhou XIA,Zhou DENG. Simultaneous CO2 capture and H2 generation using Fe2O3/Al2O3 and Fe2O3/CuO/Al2O3 as oxygen carriers in single packed bed reactor via chemical looping process[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1117-1129.
[13] YANG Shengxiang,LIANG Shichu,YI Langbo,XU Bibo,CAO Jianbing,GUO Yifeng,ZHOU Yu. Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings[J]. Front.Environ.Sci.Eng., 2014, 8(3): 394-404.
[14] LOU Ziyang,CHAI Xiaoli,ZHAO Youcai,SONG Yu,ZHU Nanwen,JIA Jinping. Indicating landfill stabilization state by using leachate property from Laogang Refuse Landfill[J]. Front.Environ.Sci.Eng., 2014, 8(3): 405-410.
[15] Jianguo LIU, Xiaoqin NIE, Xianwei ZENG, Zhaoji SU. Cement-based solidification/stabilization of contaminated soils by nitrobenzene[J]. Front Envir Sci Eng, 2012, 6(3): 437-443.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed