Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (3) : 5    https://doi.org/10.1007/s11783-018-1031-1
RESEARCH ARTICLE
Effectiveness of aerobic pretreatment of municipal solid waste for accelerating biogas generation during simulated landfilling
Munawar Ali1,2, Junli Zhang3, Roberto Raga4, Maria Cristina Lavagnolo4, Alberto Pivato4, Xu Wang1,2, Yuanyuan Zhang1, Raffaello Cossu4, Dongbei Yue1,2()
1. School of Environment, Tsinghua University, Beijing 100084, China
2. Key Laboratory for Solid Waste Management and Environment Safety (Tsinghua University), Ministry of Education of China, Beijing 100084, China
3. Solid waste and Chemical Management Centre, Ministry of Environmental Protection, Beijing 100029, China
4. DII, Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
 Download: PDF(285 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Effect of aerobic pretreatment of MSW on landfill gas generation was investigated.

Volatile solid (VS) loss of MSW is an effective and comparable indicator.

Chinese MSW requires at least a reduction of VS about 27% (w/w) prior to disposal.

Aerobic pretreatment of MSW reduced lag phase more than 90% before methanogenesis.

Aerobic pretreatment degree influences quantity of gas generation.

This study evaluates the effectiveness of aerobic pretreatment of municipal solid waste (MSW) on reducing lag phase and accelerating biogas generation. Aerobic pretreatment degree (APD) was determined on the basis of reduction in volatile solids (VS) on a wet weight basis. In this study, intermittent aeration (IA) was applied to three reactors as a main aeration mode; since a single reactor was operated under continuous aeration mode. However, the purpose of the experiment was to reduce VS content of waste, irrespective of the comparison between aeration modes. Fresh MSW was first pretreated aerobically with different aeration rates (10, 40, 60 and 85 L/min/m3) for the period of 30–50 days, resulting in VS-loss equivalent to 20%, 27%, 38% and 53% on w/w basis for the wastes A1, A2, A3 and A4, respectively. The cumulative biogas production, calculated based on the modified Gompertz model were 384, 195, 353, 215, and 114 L/kg VS for the wastes A0, A1, A2, A3 and A4, respectively. Untreated waste (A0) showed a long lag phase; whereas the lag phases of pretreated MSW were reduced by more than 90%. Aerobically pretreated wastes reached stable methanogenic phase within 41 days compared to 418 days for untreated waste. The waste mass decreased by about 8% to 27% compared to untreated MSW, indicative that even more MSW could be placed in the same landfill. The study confirmed the effectiveness of aerobic pretreatment of MSW prior to landfilling on reducing lag phase and accelerating biogas generation.

Keywords Municipal solid waste (MSW)      Aerobic pretreatment degree (APD)      Volatile solids (VS)      Intermittent aeration (IA)      Landfill gas      Landfilling     
Corresponding Author(s): Dongbei Yue   
Issue Date: 10 June 2018
 Cite this article:   
Munawar Ali,Junli Zhang,Roberto Raga, et al. Effectiveness of aerobic pretreatment of municipal solid waste for accelerating biogas generation during simulated landfilling[J]. Front. Environ. Sci. Eng., 2018, 12(3): 5.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1031-1
https://academic.hep.com.cn/fese/EN/Y2018/V12/I3/5
Area Year Moisture
content
Food
waste
Paper
waste
Plastic and rubber Others References
Beijing 2016 57.5 63.0 13.0 5.0 19.0 [18]
Beijing 2014 62.6 64.0 12.0 13.9 10.1 [26]
Beijing 2012 64.5 62.7 12.9 5.8 18.6 [27,28]
Beijing 2011 61.0 63.4 11.1 12.7 12.8 [29]
Beijing 1996 58.81 56.01 11.76 12.6 19.63 [30]
Shanghai 2015 69.0 7.0 7.0 17.0 [17]
Shanghai 2005 56.0 19.0 14.0 11.0 [31]
Shanghai 1996 58.85 58.55 6.68 11.84 22.93 [30]
Shenzhen 2014 49.7 55.0 10.0 10.0 25.0 [32]
Shenzhen 1996 55.0 57.0 4.65 14.05 24.3 [30]
Panjin 2013 59.8 13.5 10.7 16.0 [33]
Chongqing 2009 59.2 10.1 15.7 15 [34]
Guangzhou 1996 50.12 56.63 3.65 13.05 26.67 [30]
Hangzhou 1996 57.28 55.28 1.8 5.02 37.9 [30]
Tab.1  Composition of MSW in various cities of China
Components Values
Food waste 62.7
Paper 12.9
Textile 3.7
Wood 1.0
Plastic and Rubber 5.8
Metal 0.3
Glass 1.7
Stone 3.8
Others 8.1
Tab.2  Composition of untreated MSW samplea)
Fig.1  Schematic of the reactor with changeable aerobic and anaerobic operations
Reactor number Waste number Ratea) (L/min/m3) Frequency Time (d)
R0 A0
R1 A1 10 b) 30
R2 A2 40 c) 50
R3 A3 60 c) 50
R4 A4 85 c) 50
Tab.3  Pretreatment operational modes of the reactors
Waste number Aerobic pretreatement degree (APD) (%) Aerobically pretreated waste Anaerobically treated waste
Moisture (%) VS (%) Moisture (%) VS (%)
A0 0 64.5 61.9 72.0 32.8
A1 20 70.2 49.6 70.0 36.9
A2 27 68.4 45.2 70.2 24.3
A3 38 71.0 38.4 69.8 26.4
A4 53 70.0 29.0 70.4 16.1
Tab.4  Characteristics of waste before and after anaerobic treatment
Fig.2  Comparison of mass, density, and volume between aerobically pretreated and original MSW. The Y-axis indicates the normalized mass, density, and landfilling space demand of the aerobically pretreated waste compared with that of the untreated waste
Waste number Experimental biogas generation
A (L/kg VS)
Predicted biogas generation
A (L/kg VS)
Maximal daily biogas generation
mm (L/kg VS/d)
Lag time
l (d)
Correlation coefficient
R2
A0 387 384 6.6 418 1.00
A1 186 195 2.6 18 0.98
A2 338 353 6.2 41 0.99
A3 223 215 5.3 6 0.99
A4 121 114 5.2 8 0.98
Tab.5  Parameters of modified Gompertz model
Fig.3  Cumulative landfill gas generation during the anaerobic stage
Fig.4  NH4+-N concentration in leachate of pretreated wastes during the anaerobic stage
Fig.5  NH4+-N emission rates of pretreated wastes during the anaerobic stage
1 Cossu R, Lai  T, Sandon A. Standardization of BOD5/COD ratio as a biological stability index for MSW. Waste Management (New York, N.Y.), 2012, 32(8): 1503–1508
https://doi.org/10.1016/j.wasman.2012.04.001 pmid: 22549125
2 Di Maria F, Micale  C. A holistic life cycle analysis of waste management scenarios at increasing source segregation intensity: the case of an Italian urban area. Waste Management (New York, N.Y.), 2014, 34(11): 2382–2392
https://doi.org/10.1016/j.wasman.2014.06.007 pmid: 25008299
3 Salati S, Scaglia  B, di Gregorio A,  Carrera A,  Adani F. Mechanical biological treatment of organic fraction of MSW affected dissolved organic matter evolution in simulated landfill. Bioresource Technology, 2013, 142(Supplement C): 115–120
https://doi.org/10.1016/j.biortech.2013.05.049 pmid: 23743423
4 Scaglia B, Salati  S, Di Gregorio A,  Carrera A,  Tambone F,  Adani F. Short mechanical biological treatment of municipal solid waste allows landfill impact reduction saving waste energy content. Bioresource Technology, 2013, 143(Supplement C): 131–138
https://doi.org/10.1016/j.biortech.2013.05.051 pmid: 23792663
5 Gioannis G D, Muntoni  A, Cappai G,  Milia S. Landfill gas generation after mechanical biological treatment of municipal solid waste. Estimation of gas generation rate constants. Waste Management (New York, N.Y.), 2009, 29(3): 1026–1034
https://doi.org/10.1016/j.wasman.2008.08.016 pmid: 18954969
6 Ritzkowski M, Stegmann  R. Landfill aeration within the scope of post-closure care and its completion. Waste Management (New York, N.Y.), 2013, 33(10): 2074–2082
https://doi.org/10.1016/j.wasman.2013.02.004 pmid: 23474341
7 Erses A S, Onay  T T, Yenigun  O. Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills. Bioresource Technology, 2008, 99(13): 5418–5426
https://doi.org/10.1016/j.biortech.2007.11.008 pmid: 18082400
8 Mahar R B, Liu  J, Li H,  Nie Y. Bio-pretreatment of municipal solid waste prior to landfilling and its kinetics. Biodegradation, 2009, 20(3): 319–330
https://doi.org/10.1007/s10532-008-9222-2 pmid: 18923914
9 Gerassimidou S, Evangelou  A, Komilis D. Aerobic biological pretreatment of municipal solid waste with a high content of putrescibles: Effect on landfill emissions. Waste Management & Research, 2013, 31(8): 783–791
https://doi.org/10.1177/0734242X13493959 pmid: 23771878
10 Lornage R, Redon  E, Lagier T,  Hébé I,  Carré J. Performance of a low cost MBT prior to landfilling: Study of the biological treatment of size reduced MSW without mechanical sorting. Waste Management (New York, N.Y.), 2007, 27(12): 1755–1764
https://doi.org/10.1016/j.wasman.2006.10.018 pmid: 17207988
11 Broun R, Sattler  M. A comparison of greenhouse gas emissions and potential electricity recovery from conventional and bioreactor landfills. Journal of Cleaner Production, 2016, 112(Part 4): 2664–2673
https://doi.org/10.1016/j.jclepro.2015.10.010
12 Amini H R, Reinhart  D R. Regional prediction of long-term landfill gas to energy potential. Waste Management (New York, N.Y.), 2011, 31(9): 2020–2026
https://doi.org/10.1016/j.wasman.2011.05.010 pmid: 21703844
13 Li S, Yoo  H K, Macauley  M, Palmer K,  Shih J S. Assessing the role of renewable energy policies in landfill gas to energy projects. Energy Economics, 2015, 49(Supplement C): 687–697
https://doi.org/10.1016/j.eneco.2015.03.022
14 Fazeli A, Bakhtvar  F, Jahanshaloo L,  Che Sidik N A,  Bayat A E. Malaysia’s stand on municipal solid waste conversion to energy: A review. Renewable and Sustainable Energy Reviews, 2016, 58(Supplement C): 1007–1016
https://doi.org/10.1016/j.rser.2015.12.270
15 Cossu R. Technical evolution of landfilling. Waste Management (New York, N.Y.), 2010, 30(6): 947–948
https://doi.org/10.1016/j.wasman.2010.03.003 pmid: 20304621
16 Nie Y. The technology and policy of urban solid waste disposal in China. International Journal of Environmental Studies, 2010, 67(2): 183–193
https://doi.org/10.1080/00207231003683556
17 Xu Q, Tian  Y, Wang S,  Ko J H. A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors. Waste Management (New York, N.Y.), 2015, 41(Supplement C): 94–100
https://doi.org/10.1016/j.wasman.2015.03.023 pmid: 25857421
18 Ni Z, Liu  J, Girotto F,  Cossu R,  Qi G. Targeted modification of organic components of municipal solid waste by short-term pre-aeration and its enhancement on anaerobic degradation in simulated landfill bioreactors. Bioresource Technology, 2016, 216(Supplement C): 250–259
https://doi.org/10.1016/j.biortech.2016.05.088 pmid: 27243602
19 Fang J J, Yang  N, Cen D Y,  Shao L M,  He P J. Odor compounds from different sources of landfill: characterization and source identification. Waste Management (New York, N.Y.), 2012, 32(7): 1401–1410
https://doi.org/10.1016/j.wasman.2012.02.013 pmid: 22480726
20 Zhou C, Gong  Z, Hu J,  Cao A, Liang  H. A cost-benefit analysis of landfill mining and material recycling in China. Waste Management (New York, N.Y.), 2015, 35(Supplement C): 191–198
https://doi.org/10.1016/j.wasman.2014.09.029 pmid: 25453315
21 Ying D, Chuanyu  C, Bin H,  Yueen X,  Xuejuan Z,  Yingxu C,  Weixiang W. Characterization and control of odorous gases at a landfill site: A case study in Hangzhou, China. Waste Management (New York, N.Y.), 2012, 32(2): 317–326
https://doi.org/10.1016/j.wasman.2011.07.016 pmid: 22137772
22 National Bureau of Statistics of China. China Statistical Yearbook. Beijing: China Statistics Press, 2016 (in Chinese)
23 Cai B, Wang  J, Long Y,  Li W, Liu  J, Ni Z,  Bo X, Li  D, Wang J,  Chen X, Gao  Q, Zhang L. Evaluating the impact of odors from the 1955 landfills in China using a bottom-up approach. Journal of Environmental Management, 2015, 164(Supplement C): 206–214
https://doi.org/10.1016/j.jenvman.2015.09.009 pmid: 26398549
24 De Clercq D, Wen  Z, Fan F,  Caicedo L. Biomethane production potential from restaurant food waste in megacities and project level-bottlenecks: A case study in Beijing. Renewable and Sustainable Energy Reviews, 2016, 59(Supplement C): 1676–1685
https://doi.org/10.1016/j.rser.2015.12.323
25 Zhang H, Wen  Z, Chen Y. Environment and economic feasibility of municipal solid waste central sorting strategy: a case study in Beijing. Frontiers of Environmental Science & Engineering, 2016, 10(4): 10
https://doi.org/10.1007/s11783-016-0852-z
26 Sun Y, Yue  D, Li R,  Yang T, Liu  S. Assessing the performance of gas collection systems in select Chinese landfills according to the LandGEM model: Drawbacks and potential direction. Environmental Technology (United Kingdom), 2015,  36(23): 2912–2918
27 Zhang Y, Yue  D, Liu J,  Lu P, Wang  Y, Liu J,  Nie Y. Release of non-methane organic compounds during simulated landfilling of aerobically pretreated municipal solid waste. Journal of Environmental Management, 2012, 101(Supplement C): 54–58
https://doi.org/10.1016/j.jenvman.2011.10.018 pmid: 22406844
28 Zhang Y, Yue  D, Nie Y. Greenhouse gas emissions from two-stage landfilling of municipal solid waste. Atmospheric Environment, 2012, 55(Supplement C): 139–143
https://doi.org/10.1016/j.atmosenv.2012.03.056
29 Zhao Y, Christensen  T H, Lu  W, Wu H,  Wang H. Environmental impact assessment of solid waste management in Beijing City, China. Waste Management (New York, N.Y.), 2011, 31(4): 793–799
https://doi.org/10.1016/j.wasman.2010.11.007 pmid: 21145723
30 Wang H, Nie  Y. Municipal solid waste characteristics and management in China. Journal of the Air & Waste Management Association, 2001, 51(2): 250–263
https://doi.org/10.1080/10473289.2001.10464266 pmid: 11256500
31 Shao L M, He  P J, Zhang  H, Yu X H,  Li G J. Methanogenesis acceleration of fresh landfilled waste by micro-aeration. Journal of Environmental Sciences-China, 2005, 17(3): 371–374
pmid: 16083105
32 Xu Q, Jin  X, Ma Z,  Tao H, Ko  J H. Methane production in simulated hybrid bioreactor landfill. Bioresource Technology, 2014, 168(Supplement C): 92–96
https://doi.org/10.1016/j.biortech.2014.03.036 pmid: 24713237
33 Yue D, Han  B, Sun Y,  Yang T. Sulfide emissions from different areas of a municipal solid waste landfill in China. Waste Management (New York, N.Y.), 2014, 34(6): 1041–1044
https://doi.org/10.1016/j.wasman.2013.07.020 pmid: 23948050
34 Wang L, Pei  T, Huang C,  Yuan H. Management of municipal solid waste in the Three Gorges region. Waste Management (New York, N.Y.), 2009, 29(7): 2203–2208
https://doi.org/10.1016/j.wasman.2009.02.008 pmid: 19318240
35 Mahar R B, Liu  J, Yue D,  Nie Y. Landfilling of pretreated municipal solid waste by natural convection of air and its effects. Journal of Environmental Science and Health, Part A, 2007, 42(3): 351–359
https://doi.org/10.1080/10934520601144659 pmid: 17365302
36 Mahar R B, Liu  J, Yue D,  Nie Y. Biodegradation of organic matters from mixed unshredded municipal solid waste through air convection before landfilling. Journal of the Air & Waste Management Association, 2007, 57(1):39–46
https://doi.org/10.1080/10473289.2007.10465296 pmid: 17269228
37 Norbu T, Visvanathan  C, Basnayake B. Pretreatment of municipal solid waste prior to landfilling. Waste Management (New York, N.Y.), 2005, 25(10): 997–1003
https://doi.org/10.1016/j.wasman.2005.06.006 pmid: 16112563
38 Dennehy C, Lawlor  P G, Jiang  Y, Gardiner G E,  Xie S, Nghiem  L D, Zhan  X. Greenhouse gas emissions from different pig manure management techniques: a critical analysis.  Frontiers of Environmental Science & Engineering, 2017, 11(3): 11
39 van Praagh M, Heerenklage  J, Smidt E,  Modin H,  Stegmann R,  Persson K M. Potential emissions from two mechanically-biologically pretreated (MBT) wastes. Waste Management (New York, N.Y.), 2009, 29(2): 859–868
https://doi.org/10.1016/j.wasman.2008.06.028 pmid: 18782660
40 Zach A, Binner  E, Latif M. Improvement of municipal solid waste quality for landfilling by means of mechanical-biological pretreatment. Waste Management & Research, 2000, 18(1): 25–32
41 Peces M, Astals  S, Mata-Alvarez J. Assessing total and volatile solids in municipal solid waste samples. Environmental Technology, 2014, 35(24): 3041–3046
https://doi.org/10.1080/09593330.2014.929182 pmid: 25244131
42 Mahar R B, Sahito  A R, Yue  D, Khan K. Modeling and simulation of landfill gas production from pretreated MSW landfill simulator. Frontiers of Environmental Science & Engineering, 2016, 10(1): 159–167
https://doi.org/10.1007/s11783-014-0685-6
43 Mali Sandip T,  Khare Kanchan C,  Biradar Ashok H. Enhancement of methane production and bio-stabilisation of municipal solid waste in anaerobic bioreactor landfill. Bioresource Technology, 2012, 110(Supplement C): 10–17
https://doi.org/10.1016/j.biortech.2011.12.027 pmid: 22342079
44 Cossu R, Morello  L, Raga R,  Cerminara G. Biogas production enhancement using semi-aerobic pre-aeration in a hybrid bioreactor landfill. Waste Management (New York, N.Y.), 2016, 55(Supplement C): 83–92
https://doi.org/10.1016/j.wasman.2015.10.025 pmid: 26531047
45 Nikolaou A, Giannis  A, Gidarakos E. Comparative studies of aerobic and anaerobic treatment of MSW organic fraction in landfill bioreactors. Environmental Technology, 2010, 31(12): 1381–1389
https://doi.org/10.1080/09593331003743104 pmid: 21121461
46 Di Maria F, Sordi  A, Micale C. Experimental and life cycle assessment analysis of gas emission from mechanically-biologically pretreated waste in a landfill with energy recovery. Waste Management (New York, N.Y.), 2013, 33(11): 2557–2567
https://doi.org/10.1016/j.wasman.2013.07.011 pmid: 23910244
47 Luo J, Qian  G, Liu J,  Xu Z P. Anaerobic methanogenesis of fresh leachate from municipal solid waste: A brief review on current progress. Renewable & Sustainable Energy Reviews, 2015, 49(Supplement C): 21–28
https://doi.org/10.1016/j.rser.2015.04.053
48 Siddiqui A A, Richards  D J, Powrie  W. Biodegradation and flushing of MBT wastes. Waste Management (New York, N.Y.), 2013, 33(11): 2257–2266
https://doi.org/10.1016/j.wasman.2013.07.024 pmid: 23973052
49 Ağdağ O N,  Sponza D T. Effect of aeration on the performance of a simulated landfilling reactor stabilizing municipal solid wastes. Journal of Environmental Science and Health, Part A, 2004, 39(11–12): 2955–2972
https://doi.org/10.1081/LESA-200034316 pmid: 15533016
[1] Hua ZHANG, Zongguo WEN, Yixi CHEN. Environment and economic feasibility of municipal solid waste central sorting strategy: a case study in Beijing[J]. Front. Environ. Sci. Eng., 2016, 10(4): 10-.
[2] Rasool Bux MAHAR,Abdul Razaque SAHITO,Dongbei YUE,Kamranullah KHAN. Modeling and simulation of landfill gas production from pretreated MSW landfill simulator[J]. Front. Environ. Sci. Eng., 2016, 10(1): 159-167.
[3] Xinbei WANG, Yong GENG. Municipal solid waste management in Dalian: practices and challenges[J]. Front Envir Sci Eng, 2012, 6(4): 540-548.
[4] Gang XIAO, Baosheng JIN, Mingjiang NI, Kefa CEN, Yong CHI, Zhongxin TAN. A steam dried municipal solid waste gasification and melting process[J]. Front Envir Sci Eng Chin, 2011, 5(2): 193-204.
[5] Jiajun CHEN , Hao WANG , Na ZHANG , . Modified landfill gas generation rate model of first-order kinetics and two-stage reaction[J]. Front.Environ.Sci.Eng., 2009, 3(3): 313-319.
[6] Wei WANG, Yuxiang LUO, Zhou DENG. Bioenergy recovery from landfill gas: A case study in China[J]. Front Envir Sci Eng Chin, 2009, 3(1): 20-31.
[7] LIANG Shunwen, JIANG Jianguo, ZHANG Yan, XU Xin. Leaching characteristics of heavy metals during cement stabilization of fly ash from municipal solid waste incinerators[J]. Front.Environ.Sci.Eng., 2008, 2(3): 358-363.
[8] XIAO Gang, NI Mingjiang, CHI Yong, JIN Yuqi, ZHANG Jiaquan, MIAO Qi, CEN Kefa. Research on low emission MSW gasification and melting system[J]. Front.Environ.Sci.Eng., 2007, 1(4): 498-503.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed