Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (3) : 9    https://doi.org/10.1007/s11783-018-1034-y
RESEARCH ARTICLE
Effect of placement angles on wireless electrocoagulation for bipolar aluminum electrodes
Zhenlian Qi, Jinna Zhang, Shijie You()
State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
 Download: PDF(305 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A new electrocoagulation process based on bipolar aluminum electrode is proposed.

The placement angles of bipolar electrode are key parameter.

The numerical simulations support the experimental results.

We in our previous study reported the wireless electrocoagulation (WEC) based on bipolar electrochemistry for water purification. One of the most important advantages of WEC is the omission of ohmic connection between bipolar electrode (BPE) and power supply, and thus the electrochemical reactions on BPE are driven by electric field in solution induced by driving electrodes. In this study, the impact of placement angle of bipolar aluminum electrode on WEC was investigated to provide a detailed analysis on the correlations between the bipolar electrode placement angle and bipolar electrocoagulation reactions. The results showed that the WEC cell with a horizontal BPE placed at 0° produced the maximum dissolved aluminum coagulant, accounting for 71.6 % higher than that with a vertical one placed at 90°. Moreover, the finite element simulations of current and potential distribution were carried out along the surface of BPE at different placement angles, revealing the mechanism of different BPE placement angles on aluminum dissolution rates in WEC system.

Keywords Bipolar electrochemistry      Wireless electrocoagulation      Placement angle     
Corresponding Author(s): Shijie You   
Issue Date: 29 March 2018
 Cite this article:   
Zhenlian Qi,Jinna Zhang,Shijie You. Effect of placement angles on wireless electrocoagulation for bipolar aluminum electrodes[J]. Front. Environ. Sci. Eng., 2018, 12(3): 9.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1034-y
https://academic.hep.com.cn/fese/EN/Y2018/V12/I3/9
Fig.1  Total aluminum concentration as a function of (a) driving voltage at different electrolyte conductivities and (b) electrolyte conductivity at the driving voltage of 15 V in the reaction time of 20 min
Fig.2  Total aluminum concentration as a function of BPE placement angle at 0° (horizontal), 45° (sloping) and 90° (vertical) relative to the horizontal electric field line formed in the solution
Fig.3  Potential distribution along the surface of BPE at different placement angles (0°, 45°, and 90°) relative to the direction of electric field
Fig.4  Numerical simulation of potential (colored scale) and current (white line) in the (a) absence and presence of BPE for different placing angles of (b) 90°, (c) 45°, (d) 0° relative to the horizontal direction
Fig.5  SEM observation of corrosion morphology along the length of horizontal BPE at location of (a) 0 mm, (b) 20 mm, (c) 30 mm and (d) 50 mm distanced from the anodic end.
1 Mollah M Y, Schennach R, Parga J R, Cocke D L. Electrocoagulation (EC)-science and applications. Journal of Hazardous Materials, 2001, 84(1): 29–41
https://doi.org/10.1016/S0304-3894(01)00176-5
2 Mollah M Y A, Morkovsky P, Gomes J A G, Kesmez M, Parga J, Cocke D. Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, 2004, 114(1–3): 199–210
https://doi.org/10.1016/j.jhazmat.2004.08.009
3 Verma A K, Dash R R, Bhunia P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 2012, 93(1): 154–168
https://doi.org/10.1016/j.jenvman.2011.09.012
4 Gu J, Yu H T, Quan X, Chen S. Covering α-Fe2O3 protection layer on the surface of p-Si micropillar array for enhanced photoelectrochemical performance. Frontiers of Environmental Science & Engineering, 2017, 11(6): 13
5 Wei X N, Guo S H, Wu B, Li F M, Li G. Effects of reducing agent and approaching anodes on chromium removal in electrokinetic soil remediation. Frontiers of Environmental Science & Engineering, 2016, 10(2): 253–261
6 Sahu O, Mazumdar B, Chaudhari P K. Treatment of wastewater by electrocoagulation: A review. Environmental Science and Pollution Research International, 2014, 21(4): 2397–2413
https://doi.org/10.1007/s11356-013-2208-6
7 Erb U, Gleiter H, Schwitzgebel G. The effect of boundary structure (energy) on interfacial corrosion. Acta Metallurgica, 1982, 30(7): 1377–1380
https://doi.org/10.1016/0001-6160(82)90157-2
8 Qi Z, You S, Ren N. Wireless electrocoagulation in water treatment based on bipolar electrochemistry. Electrochimica Acta, 2017, 229(1): 96–101
https://doi.org/10.1016/j.electacta.2017.01.151
9 Bayramoglu M, Eyvaz M, Kobya M. Treatment of the textile wastewater by electrocoagulation. Chemical Engineering Journal, 2007, 128(2–3): 155–161
https://doi.org/10.1016/j.cej.2006.10.008
10 Kobya M, Bayramoglu M, Eyvaz M. Techno-economical evaluation of electrocoagulation for the textile wastewater using different electrode connections. Journal of Hazardous Materials, 2007, 148(1–2): 311–318
https://doi.org/10.1016/j.jhazmat.2007.02.036
11 Mameri N, Yeddou A R, Lounici H, Belhocine D, Grib H, Bariou B. Defluoridation of septentrional Sahara water of north Africa by electrocoagulation process using bipolar aluminium electrodes. Water Research, 1998, 32(5): 1604–1612
https://doi.org/10.1016/S0043-1354(97)00357-6
12 Mameri N, Lounici H, Belhocine D, Grib H, Piron D L, Yahiat Y. Defluoridation of Sahara water by small plant electrocoagulation using bipolar aluminium electrodes. Separation and Purification Technology, 2001, 24(1–2): 113–119
https://doi.org/10.1016/S1383-5866(00)00218-5
13 Ghosh D, Medhi C R, Purkait M K. Treatment of fluoride containing drinking water by electrocoagulation using monopolar and bipolar electrode connections. Chemosphere, 2008, 73(9): 1393–1400
https://doi.org/10.1016/j.chemosphere.2008.08.041
14 Demirci Y, Pekel L C, Alpbaz M. Investigation of different electrode connections in electrocoagulation of textile wastewater treatment. International Journal of Electrochemical Science, 2015, 10(3): 2685–2693
15 Naje A S, Chelliapan S, Zakaria Z. Treatment performance of textile wastewater using electrocoagulation (EC) process under combined electrical connection of electrodes. International Journal of Electrochemical Science, 2015, 10(7): 5924–5941
16 Hu C Y, Lo S L, Kuan W H. Effects of co-existing anions on fluoride removal in electrocoagulation (EC) process using aluminum electrodes. Water Research, 2003, 37(18): 4513–4523
https://doi.org/10.1016/S0043-1354(03)00378-6
17 Daneshvar N, Ashassi Sorkhabi H, Kasiri M B. Decolorization of dye solution containing Acid Red 14 by electrocoagulation with a comparative investigation of different electrode connections. Journal of Hazardous Materials, 2004, 112(1–2): 55–62
https://doi.org/10.1016/j.jhazmat.2004.03.021
18 Modirshahla N, Behnajady M A, Mohammadi-Aghdam S. Investigation of the effect of different electrodes and their connections on the removal efficiency of 4-nitrophenol from aqueous solution by electrocoagulation. Journal of Hazardous Materials, 2008, 154(1–3): 778–786
https://doi.org/10.1016/j.jhazmat.2007.10.120
19 Duval J, Kleijn J M, van Leeuwen H P. Bipolar electrode behaviour of the aluminium surface in a lateral electric field. Journal of Electroanalytical Chemistry, 2001, 505(1–2): 1–11
https://doi.org/10.1016/S0022-0728(01)00461-2
20 Duval J F L, Buffle J, van Leeuwen H P. Quasi-reversible faradaic depolarization processes in the electrokinetics of the metal/ solution interface. Journal of Physical Chemistry B, 2006, 110(12): 6081–6094
https://doi.org/10.1021/jp055650+
21 Cañizares P, Jiménez C, Martínez F, Sáez C, Rodrigo M A. Study of the electrocoagulation process using aluminum and iron electrodes. Industrial & Engineering Chemistry Research, 2007, 46(19): 6189–6195
https://doi.org/10.1021/ie070059f
22 Chen X, Chen G, Yue P L. Separation of pollutants from restaurant wastewater by electrocoagulation. Separation and Purification Technology, 2000, 19(1–2): 65–76
https://doi.org/10.1016/S1383-5866(99)00072-6
23 Lakshmanan D, Clifford D A, Samanta G. Ferrous and ferric ion generation during iron electrocoagulation. Environmental Science & Technology, 2009, 43(10): 3853–3859
https://doi.org/10.1021/es8036669
24 van Genuchten C M, Bandaru S R S, Surorova E, Amrose S E, Gadgil A J, Peña J. Formation of macroscopic surface layers on Fe(0) electrocoagulation electrodes during an extended field trial of arsenic treatment. Chemosphere, 2016, 153(3): 270–279
https://doi.org/10.1016/j.chemosphere.2016.03.027
25 Llanos J, Cotillas S, Cañizares P, Rodrigo M A. Effect of bipolar electrode material on the reclamation of urban wastewater by an integrated electrodisinfection/electrocoagulation process. Water Research, 2014, 53(1): 329–338
https://doi.org/10.1016/j.watres.2014.01.041
26 Greenberg A E, Trussell R R, Clesceri L S. Standard Methods for the Examination of Water and Wastewater : Supplement to the Sixteenth Edition. Washington, D. C: American Public Health Association, 1988
27 Fosdick S E, Crooks J A, Chang B Y, Crooks R M. Two-dimensional bipolar electrochemistry. Journal of the American Chemical Society, 2010, 132(27): 9226–9227
https://doi.org/10.1021/ja103667y
28 Mansouri K, Ibrik K, Bensalah N, Abdel-Wahab A. Anodic dissolution of pure aluminum during electrocoagulation process: Influence of supporting electrolyte, initial pH, and current density. Industrial & Engineering Chemistry Research, 2011, 50(23): 13362–13372
https://doi.org/10.1021/ie201206d
29 Mavré F, Chow K F, Sheridan E, Chang B Y, Crooks J A, Crooks R M. A theoretical and experimental framework for understanding electrogenerated chemiluminescence (ECL) emission at bipolar electrodes. Analytical Chemistry, 2009, 81(15): 6218–6225
https://doi.org/10.1021/ac900744p
30 Krabbenborg S O, Huskens J. Electrochemically generated gradients. Angewandte Chemie International Edition, 2014, 53(35): 9152–9167
https://doi.org/10.1002/anie.201310349
31 Fan S, Shannon C. Electrochemiluminescence quenching by halide ions at bipolar electrodes. Electroanalysis, 2016, 28(3): 533–538
https://doi.org/10.1002/elan.201500472
32 Kayran Y U, Eßmann V, Grützke S, Schuhmann W. Selection of highly Sers-active nanostructures from a size gradient of Au nanovoids on a single bipolar electrode. ChemElectroChem, 2016, 3(3): 399–403
https://doi.org/10.1002/celc.201500423
33 Hansen T S, Lind J U, Daugaard A E, Hvilsted S, Andresen T L, Larsen N B. Complex surface concentration gradients by stenciled. Electro Click Chemistry. Langmuir, 2010, 26(20): 16171–16177
https://doi.org/10.1021/la102652p
34 Pébère N, Vivier V. Local electrochemical measurements in bipolar experiments for corrosion studies. ChemElectroChem, 2016, 3(3): 415–421
https://doi.org/10.1002/celc.201500375
35 Kuokkanen V, Kuokkanen T, Rämö J, Lassi U. Recent applications of electrocoagulation in treatment of water and wastewater-A review. Green and Sustainable Chemistry, 2013, 3(2): 89–121
https://doi.org/10.4236/gsc.2013.32013
36 Vidal J, Villegas L, Peralta-Hernandez J M, Salazar González R. Removal of acid black 194 dye from water by electrocoagulation with aluminum anode. Journal of Environmental Science and Health, 2016, 51(4): 289–296
https://doi.org/10.1080/10934529.2015.1109385
37 Keddam M, Nóvoa X R, Vivier V. The concept of floating electrode for contact-less electrochemical measurements: Application to reinforcing steel-bar corrosion in concrete. Corrosion Science, 2009, 51(8): 1795–1801
https://doi.org/10.1016/j.corsci.2009.05.006
38 Eßmann V, Clausmeyer J, Schuhmann W. Alternating current-bipolar electrochemistry. Electrochemistry Communications, 2017, 75(6): 82–85
https://doi.org/10.1016/j.elecom.2017.01.006
39 Dubey P K, Sinha A S K, Talapatra S, Koratkar N, Ajayan P M, Srivastava O N. Hydrogen generation by water electrolysis using carbon nanotube anode. International Journal of Hydrogen Energy, 2010, 35(9): 3945–3950
https://doi.org/10.1016/j.ijhydene.2010.01.139
40 Bouffier L, Arbault S, Kuhn A, Sojic N. Generation of electrochemiluminescence at bipolar electrodes: Concepts and applications. Analytical and Bioanalytical Chemistry, 2016, 408(25): 7003–7011
https://doi.org/10.1007/s00216-016-9606-9
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed