Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (4) : 4    https://doi.org/10.1007/s11783-018-1045-8
RESEARCH ARTICLE
Microbial community dynamics at high organic loading rates revealed by pyrosequencing during sugar refinery wastewater treatment in a UASB reactor
Liguo Zhang1, Qiaoying Ban1, Jianzheng Li2()
1. College of Environmental and Resource Sciences, Shanxi University, Taiyuan 030000, China
2. State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150000, China
 Download: PDF(395 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

High strength sugar refinery wastewater was treated in a mesophilic UASB.

Pyrosequencing reveals microbial community succession with OLR increase.

Diversity of microbial communities in OLR12 is much higher than those in OLR36 and OLR54.0 kgCOD/(kg VSS·d).

Fermentative bacteria could deal with increasing OLR through the increase of microbial diversity and quantity.

Hydrogen-producing acotogens and methanogens mainly coped with high OLR shocks by increasing the quantity of community

The performance and microbial community structure in an upflow anaerobic sludge blanket reactor (UASB) treating sugar refinery wastewater were investigated. The chemical oxygen demand (COD) removal reached above 92.0% at organic loading rates (OLRs) of 12.0–54.0 kgCOD/(m3·d). The volatile fatty acids (VFAs) in effluent were increased to 451.1 mg/L from 147.9 mg/L and the specific methane production rate improved by 1.2–2.2-fold as the OLR increased. The evolution of microbial communities in anaerobic sludge at three different OLRs was investigated using pyrosequencing. Operational taxonomic units (OTUs) at a 3% distance were 353, 337 and 233 for OLR12, OLR36 and OLR54, respectively. When the OLR was increased to 54.0 kgCOD /(m3·d) from 12.0 kgCOD/(m3·d) by stepwise, the microbial community structure were changed significantly. Five genera (Bacteroides, Trichococcus, Chryseobacterium, Longilinea and Aerococcus) were the dominant fermentative bacteria at the OLR 12.0 kgCOD/(m3·d). However, the sample of OLR36 was dominated by Lactococcus, Trichococcus, Anaeroarcus and Veillonella. At the last stage (OLR= 54.0 kgCOD/(m3·d)), the diversity and percentage of fermentative bacteria were markedly increased. Apart from fermentative bacteria, an obvious shift was observed in hydrogen-producing acetogens and non-acetotrophic methanogens as OLR increased. Syntrophobacter, Geobacter and Methanomethylovorans were the dominant hydrogen-producing acetogens and methylotrophic methanogens in the samples of OLR12 and OLR36. When the OLR was increased to 54.0 kgCOD/(m3·d), the main hydrogen-producing acetogens and hydrogenotrophic methanogens were substituted with Desulfovibrio and Methanospirillum. However, the composition of acetotrophic methanogens (Methanosaeta) was relatively stable during the whole operation period of the UASB reactor.

Keywords Upflow anaerobic sludge blanket      Sugar refinery wastewater      Organic loading rate      Pyrosequencing      Microbial community structure     
Corresponding Author(s): Jianzheng Li   
Issue Date: 10 July 2018
 Cite this article:   
Liguo Zhang,Qiaoying Ban,Jianzheng Li. Microbial community dynamics at high organic loading rates revealed by pyrosequencing during sugar refinery wastewater treatment in a UASB reactor[J]. Front. Environ. Sci. Eng., 2018, 12(4): 4.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1045-8
https://academic.hep.com.cn/fese/EN/Y2018/V12/I4/4
Fig.1  Schematic diagram of the UASB in this study
OLR(kgCOD/(m3·d)) 12.0 36.0 54.0
VFAs (mg/L) Acetate 52.9±8.3 65.0±3.9 140.8±9.6
Propionate 88.0±1.9 106.0±4.6 281.7±21.2
Butyrate 7.0±1.4 21.0±4.7 28.6±9.4
Total VFAs 147.9±10.2 192.0±18.3 451.1±36.9
COD (mg/L) Influent 4000±51 12000±186 18000±201
Effluent 238±11 540±41 1446±95
COD removal (mg/L) 94.2±2.0 95.0±3.3 92.0±4.1
Biomass (gMLVSS/L) 18.7±1.3 23.9±0.8 28.5±2.7
Specific methane production rate
(LCH4(kg VSS/d))
258±13 560±21 827±16
Tab.1  Operational performance of the UASB under different OLR conditions
Sample Sequence reads OTUs Diversity/Richness indices Good’s sampling coverage
Raw
reads number
Effective
reads number
Shannon diversity
index
Simpson diversity index Chao1 estimator
OLR12 18418 10463 353 6.61 0.99 643.67 99.6%
OLR36 17209 10456 337 5.98 0.96 524.41 99.5%
OLR54 16707 10210 233 5.55 0.95 375.28 99.7%
Tab.2  Sequence reads, diversity/richness indices, coverage and operational taxonomic units (OTUs) at 97% sequence identity
Fig.2  Rarefaction curves base on pyrosequencing of all samples. The Operational taxonomic units (OTUs) were defined by 3% distances
Fig.3  Heat map (a) and Principal component analysis (PCA) (b) base on pyrosequencing of all samples. (a) The y-axis is the clustering of the 60 most abundant OTUs (3% distance) in reads. The color intensity (log10 transformed) in each panel shows the number of an OTU in each sample
Fig.4  Venn diagram of OLR12, OLR36 and OLR54 based on OTUs (3% distance), and the taxonomic identities of the shared OTUs at family level. The number in parentheses represents the total number of OTUs in that community
Fig.5  The Relative abundance of microbial communities at the (a) phylum, (b) class, and (c) genus levels in all samples (OLR12, OLR36 and OLR54). Taxa represented occurred at>0.5% abundance for bacteria or>0.1% abundance for methanogens in at least one sample. Phyla, classes, and genera making up less than 0.5% for bacteria or 0.1% for methanogens of total composition in all three libraries were classified as "other"
Trophic group Taxon classification Relative abundance (%)
Genus OLR12 OLR36 OLR54
Fermentative acidogenic bacteria Brooklawnia 0.2 0.3 1.3
Parabacteroides 0.4 0.9 2.3
Bacteroides 2.3 0.5 1.2
Lactococcus 0.5 6.5 1.4
Trichococcus 2.0 2.4
Chryseobacterium 3.6
Longilinea 1.2
Aerococcus 1.0
Leuconostoc 0.2 1.2
Butyricicoccus 0.1 1.8
Anaeroarcus 1.4
Veillonella 1.8 1.0
Prevotella 14.8
Streptococcus 6.6
Oribacterium 1.8
Oscillibacter 1.4
Megasphaera 6.2
Hydrogen-producing acetogens Desulfovibrio 0.3 2.0
Syntrophobacter 1.0 0.5
Geobacter 0.2 0.7
Homoacetogens Acetobacterium 0.5 1.3
Methanogens Methanosaeta 1.6 2 1.1
Methanospirillum 0.1
Methanomethylovorans 0.1 0.2
Tab.3  Shift of dominant bacteria and archaea as OLR increase
1 Amani T, Nosrati M, Mousavi S M (2012). Response surface methodology analysis of anaerobic syntrophic degradation of volatile fatty acids in an upflow anaerobic sludge bed reactor inoculated with enriched cultures. Biotechnol Bioprocess Eng, 17(1): 133–144
https://doi.org/10.1007/s12257-011-0248-7
2 Ambuschi J J, Liu J, Wang H, Shan L, Zhou X, Mohammed M O A, Feng Y (2016). Microbial community structural analysis of an expanded granular sludge bed (EGSB) reactor for beet sugar industrial wastewater treatment. Appl Microbiol Biotechnol, 100(10): 4651–4661
https://doi.org/10.1007/s00253-015-7245-2
3 Antwi P, Li J, Boadi P O, Meng J, Shi E, Chi X, Zhang Y (2017). Functional bacterial and archaeal diversity revealed by 16S rRNA gene pyrosequencing during potato starch processing wastewater treatment in an UASB. Bioresour Technol, 235: 348–357
https://doi.org/10.1016/j.biortech.2017.03.141
4 APHA (1995). Standard methods for the examination of water and wastewater. American Public Health Association
5 Astals S, Nolla-Ardèvol V, Mata-Alvarez J (2012). Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: biogas and digestate. Bioresour Technol, 110: 63–70
https://doi.org/10.1016/j.biortech.2012.01.080
6 Ban Q, Li J, Zhang L, Jha A K, Nies L (2013a). Linking performance with microbial community characteristics in an anaerobic baffled reactor. Appl Biochem Biotechnol, 169(6): 1822–1836
https://doi.org/10.1007/s12010-013-0105-6
7 Ban Q, Li J, Zhang L, Jha A K, Zhang Y (2013b). Quantitative analysis of previously identified propionate-oxidizing bacteria and methanogens at different temperatures in an UASB reactor containing propionate as a sole carbon source. Appl Biochem Biotechnol, 171(8): 2129–2141
https://doi.org/10.1007/s12010-013-0465-y
8 Betian H G, Linehan B A, Bryant M P, Holdeman L V (1977). Isolation of a Cellulolytic Bacteroides sp. from Human Feces. Appl Environ Microbiol, 33(4): 1009–1010
9 Bryant M P, Campbell L L, Reddy C A, Crabill M R (1977). Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic Bacteria. Appl Environ Microbiol, 33(5): 1162–1169
10 Buschhorn H, Durre P, Gottschalk G (1989). Production and utilization of ethanol by the homoacetogen Acetobacterium woodii. Appl Environ Microbiol, 55(7): 1835–1840
11 Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Peña A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh P J, Walters W A, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010). QIIME allows analysis of high-throughput community sequencing data. Nat Methods, 7(5): 335–336
https://doi.org/10.1038/nmeth.f.303
12 Cha I T, Min U G, Kim S J, Yim K J, Roh S W, Rhee S K (2013). Methanomethylovorans uponensis sp. nov., a methylotrophic methanogen isolated from wetland sediment. Antonie van Leeuwenhoek, 104(6): 1005–1012
https://doi.org/10.1007/s10482-013-0020-4
13 Crawford P A, Crowley J R, Sambandam N, Muegge B D, Costello E K, Hamady M, Knight R, Gordon J I (2009). Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation. Proc Natl Acad Sci USA, 106(27): 11276–11281
https://doi.org/10.1073/pnas.0902366106
14 Delforno T, Moura A, Okada D, Varesche M (2014). Effect of biomass adaptation to the degradation of anionic surfactants in laundry wastewater using EGSB reactors. Bioresour Technol, 154: 114–121
https://doi.org/10.1016/j.biortech.2013.11.102
15 Demirel B, Scherer P (2008). The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass methane: A review. Rev in Environ Sci Bio, 7: 173–190
16 Díaz C, Baena S, Fardeau M L, Patel B K C (2007). Aminiphilus circumscriptus gen. nov., sp. nov., ananaerobic amino-acid-degrading bacterium from an upflow anaerobic sludge reactor. Int J Syst Evol Microbiol, 57(8): 1914–1918
https://doi.org/10.1099/ijs.0.63614-0
17 Elshahed M S, McInerney M J (2001). Benzoate fermentation by the anaerobic bacterium syntrophus aciditrophicus in the absence of hydrogen-using microorganisms. Appl Environ Microbiol, 67(12): 5520–5525
https://doi.org/10.1128/AEM.67.12.5520-5525.2001
18 Férnandez N, Díaz E E, Amils R, Sanz J L (2008). Analysis of microbial community during biofilm development in an anaerobic wastewater treatment reactor. Microb Ecol, 56(1): 121–136
https://doi.org/10.1007/s00248-007-9330-2
19 Gaur R Z, Khan A A, Suthar S (2017). Effect of thermal pre-treatment on co-digestion of duckweed (Lemna gibba) and waste activated sludge on biogas production. Chemosphere, 174: 754–763
https://doi.org/10.1016/j.chemosphere.2017.01.133
20 Grabowski A, Tindall B J, Bardin V, Blanchet D, Jeanthon C (2005). Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir. Int J Syst Evol Microbiol, 55(3): 1113–1121
https://doi.org/10.1099/ijs.0.63426-0
21 Harmsen H J M, van Kuijk B L M, Plugge C M, Akkermans A D L, de Vos W M, Stams A J M (1998). Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate- degrading sulfate reducing bacterium. Int J Syst Bacteriol, 48(4): 1383–1387
https://doi.org/10.1099/00207713-48-4-1383
22 Hesham A E L, Qi R, Yang M (2011). Comparision of bacterial community structures in two systems of asewage treatment plant using PCR-DGGE analysis. J Environ Sci (China), 23(12): 2049–2054
https://doi.org/10.1016/S1001-0742(10)60647-X
23 Imachi H, Sakai S, Kubota T, Miyazaki M, Saito Y, Takai K (2016). Sedimentibacter acidaminivorans sp. nov., an anaerobic, amino-acid-utilizing bacterium isolated from marine subsurface sediment. Int J Syst Evol Microbiol, 66(3): 1293–1300
https://doi.org/10.1099/ijsem.0.000878
24 Jiang B, Parshina S N, Van D W, Lomans B P, Stams A J (2005). Methanomethylovorans thermophila sp. nov., a thermophilic, methylotrophic methanogen from an anaerobic reactor fed with methanol. Int J Syst Evol Microbiol, 55(6): 2465–2470
https://doi.org/10.1099/ijs.0.63818-0
25 Jiang X, Shen J, Han Y, Lou S, Han W, Sun X, Li J, Mu Y, Wang L (2016). Efficient nitro reduction and dechlorination of 2,4-dinitrochlorobenzene through the integration of bioelectrochemical system into upflow anaerobic sludge blanket: A comprehensive study. Water Res, 88: 257–265
https://doi.org/10.1016/j.watres.2015.10.023
27 Ke S, Zhang M, Shi Z, Zhang T, Fang H H P (2008). Phenol degradation and microbial characteristics in upflow anaerobic sludge blanket reactors at ambient and mesophilic temperatures. Int J Environ Pollut, 32(1): 68–77
https://doi.org/10.1504/IJEP.2008.016899
28 Keyser M, Witthuhn R C, Lamprecht C, Coetzee M P A, Britz T J (2006). PCR-based DGGE fingerprinting and identification of methanogens detected in three different types of UASB granules. Syst Appl Microbiol, 29(1): 77–84
https://doi.org/10.1016/j.syapm.2005.06.003
29 Kim T G, Yun J, Cho K S (2015). The close relation between Lactococcus and Methanosaeta is a keystone for stable methane production from molasses wastewater in a UASB reactor. Appl Microbiol Biotechnol, 99(19): 8271–8283
https://doi.org/10.1007/s00253-015-6725-8
30 Kitahara M, Sakamoto M, Tsuchida S, Kawasumi K, Amao H, Benno Y, Ohkuma M (2013). Parabacteroides chinchillae sp. nov., isolated from chinchilla (Chincilla lanigera) faeces. Int J Syst Evol Microbiol, 63(Pt 9): 3470–3474
https://doi.org/10.1099/ijs.0.050146-0
26 Kovacik Jr W P, Scholten J C M, Culley D, Hickey R, Zhang W, Brockman F J (2010). Microbial dynamics in upflow anaerobic sludge blanket (UASB) bioreactor granules in response to short-term changes in substrate feed. Microbiology, 156(8): 2418–2427
https://doi.org/10.1099/mic.0.036715-0
31 Li J, Li B, Zhu G, Ren N, Bao L, He J (2007). Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR). Int J Hydrogen Energy, 32(15): 3274–3283
https://doi.org/10.1016/j.ijhydene.2007.04.023
32 Li X (2014). Nitrogen removal by combined nitritationanammox process in an upflow anaerobic sludge blanket (UASB) reactor. Ames: Iowa State University
33 Liu Y, Whitman W B (2008). Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci, 1125(1): 171–189
https://doi.org/10.1196/annals.1419.019
34 Lomans B P, Maas R, Luderer R, Camp H J M O D, Pol A, Van der Drift C, Vogels G D (1999). Isolation and Characterization of Methanomethylovorans hollandica gen. nov., sp. nov., isolated from freshwater sediment, a methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol. Appl Environ Microbiol, 65: 3641–3650
35 Lu L, Xing D, Ren N (2012). Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge. Water Res, 46(7): 2425–2434
https://doi.org/10.1016/j.watres.2012.02.005
36 Moertelmaier C, Li C, Winter J, Gallert C (2014). Fatty acid metabolism and population dynamics in a wet biowaste digester during re-start after revision. Bioresour Technol, 166: 479–484
https://doi.org/10.1016/j.biortech.2014.05.085
37 Müller V, Imkamp F, Biegel E, Schmidt S, Dilling S (2008). Discovery of aferredoxin:NAD+-oxidoreductase (Rnf) in Acetobacterium woodii. Ann N Y Acad Sci, 125(1): 137–146
https://doi.org/10.1196/annals.1419.011
38 Niu Q, He S, Zhang Y, Ma H, Liu Y, Li Y Y (2016). Process stability and the recovery control associated with inhibition factors in a UASB-anammox reactor with a long-term operation. Bioresour Technol, 203: 132–141
https://doi.org/10.1016/j.biortech.2015.12.003
39 Riviere D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A (2009). Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J, 3(6): 700–714
https://doi.org/10.1038/ismej.2009.2
40 Shi R, Zhang Y, Yang W, Xu H (2012). Microbial community characterization of an UASB treating increased organic loading rates of vitamin C biosynthesis wastewater. Water Sci Technol, 65(2): 254–261
https://doi.org/10.2166/wst.2012.772
41 Shigematsu T, Era S, Mizuno Y, Ninomiya K, Kamegawa Y, Morimura S, Kida K (2006). Microbial community of a mesophilic propionate-degrading methanogenic consortium in chemostat cultivation analyzed based on 16S rRNA and acetate kinase genes. Appl Microbiol Biotechnol, 72(2): 401–415
https://doi.org/10.1007/s00253-005-0275-4
42 Stams A J M, Sousa D Z, Kleerebezem R, Plugge C M (2012). Role of syntrophic microbial communities in high-rate methanogenic bioreactors. Water Sci Technol, 66(2): 352–362
https://doi.org/10.2166/wst.2012.192
43 Strepis N, Sánchez-Andrea I, van Gelder A H, van Kruistum H, Shapiro N, Kyrpides N, Göker M, Klenk H P, Schaap P, Stams A J M, Sousa D Z (2016). Description of Trichococcusilyis sp. nov. by combined physiological and in silico genome hybridization analyses. Int J Syst Evol Microbiol, 66(10): 3957–3963
https://doi.org/10.1099/ijsem.0.001294
44 Summers Z M, Fogarty H E, Leang C, Franks A E, Malvankar N S, Lovley D R (2010). Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science, 330(6009): 1413–1415
https://doi.org/10.1126/science.1196526
45 Uyanik S (2003). Granule development in anaerobic baffled reactor. Turkish Journal of Environenal Science and Engineering, 27: 131–144
46 Wallrabenstein C, Hauschild E, Schink B (1995). Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Arch Microbiol, 164(5): 346–352
https://doi.org/10.1007/BF02529981
47 Wang Y, Qian P Y (2009). Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One, 4(10): 1–9
https://doi.org/10.1371/journal.pone.0007401
48 Worm P, Fermoso F G, Lens P N L, Plugge C M (2009). Decreased activity of a propionate degrading community in a UASB reactor fed with synthetic medium without molybdenum, tungsten and selenium. Enzyme Microb Technol, 45(2): 139–145
https://doi.org/10.1016/j.enzmictec.2009.02.001
49 Yamada T, Imachi H, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y (2007). Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int J Syst Evol Microbiol, 57(10): 2299–2306
https://doi.org/10.1099/ijs.0.65098-0
50 Yang Y, Guo J, Hu Z (2013). Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion. Water Res, 47(17): 6790–6800
https://doi.org/10.1016/j.watres.2013.09.012
51 Yoon J H, Kang S J, Oh T K (2007). Chryseobacterium daeguense sp. nov., isolated from wastewater of a textile dye works. Int J Syst Evol Microbiol, 57(6): 1355–1359
https://doi.org/10.1099/ijs.0.64936-0
52 Zhang J, Cai X, Qi L, Shao C, Lin Y, Zhang J, Zhang Y, Shen P, Wei Y (2015b). Effects of aeration strategy on the evolution of dissolved organic matter (DOM) and microbial community structure during sludge bio-drying. Appl Microbiol Biotechnol, 99(17): 7321–7331
https://doi.org/10.1007/s00253-015-6640-z
53 Zhang T, Shao M, Ye L (2012). 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J, 6(6): 1137–1147
https://doi.org/10.1038/ismej.2011.188
54 Zhang Y, Wang X, Hu M, Li P (2015a). Effect of hydraulic retention time (HRT) on the biodegradation of trichloroethylene wastewater and anaerobic bacterial community in the UASB reactor. Appl Microbiol Biotechnol, 99(4): 1977–1987
https://doi.org/10.1007/s00253-014-6096-6
55 Zheng D, Raskin L (2000). Quantification of Methanosaeta species in anaerobic bioreactors using genus- and species-specific hybridization probes. Microb Ecol, 39: 246–262
[1] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[2] Zhiqiang Chen, Lizhi Zhao, Ye Ji, Qinxue Wen, Long Huang. Reconsideration on the effect of nitrogen on mixed culture polyhydroxyalkanoate production toward high organic loading enrichment history[J]. Front. Environ. Sci. Eng., 2019, 13(4): 54-.
[3] Xiaohui Wang, Shuai Du, Tao Ya, Zhiqiang Shen, Jing Dong, Xiaobiao Zhu. Removal of tetrachlorobisphenol A and the effects on bacterial communities in a hybrid sequencing biofilm batch reactor-constructed wetland system[J]. Front. Environ. Sci. Eng., 2019, 13(1): 14-.
[4] Zechong Guo, Lei Gao, Ling Wang, Wenzong Liu, Aijie Wang. Enhanced methane recovery and exoelectrogen-methanogen evolution from low-strength wastewater in an up-flow biofilm reactor with conductive granular graphite fillers[J]. Front. Environ. Sci. Eng., 2018, 12(4): 13-.
[5] Gwang Il Jang, Chung Yeon Hwang, Byung Cheol Cho. Effects of heavy rainfall on the composition of airborne bacterial communities[J]. Front. Environ. Sci. Eng., 2018, 12(2): 12-.
[6] Jiaxuan YANG, Jun MA, Dan SONG, Xuedong ZHAI, Xiujuan KONG. Impact of preozonation on the bioactivity and biodiversity of subsequent biofilters under low temperature conditions—A pilot study[J]. Front. Environ. Sci. Eng., 2016, 10(4): 5-.
[7] Yiwen LIN,Dan LI,Siyu ZENG,Miao HE. Changes of microbial composition during wastewater reclamation and distribution systems revealed by high-throughput sequencing analyses[J]. Front. Environ. Sci. Eng., 2016, 10(3): 539-547.
[8] Husen ZHANG. Using pyrosequencing and quantitative PCR to analyze microbial communities[J]. Front Envir Sci Eng Chin, 2011, 5(1): 21-27.
[9] Shucheng YANG, Yanling HE, Charles CHOU, Pengxiang ZHANG, Dongqi WANG, Yonghong LIU, . Effect of wastewater composition on the calcium carbonate precipitation in upflow anaerobic sludge blanket reactors[J]. Front.Environ.Sci.Eng., 2010, 4(2): 142-149.
[10] Pinjing HE, Min LI, Suyun XU, Liming SHAO, . Anaerobic treatment of fresh leachate from a municipal solid waste incinerator by upflow blanket filter reactor[J]. Front.Environ.Sci.Eng., 2009, 3(4): 404-411.
[11] ZHAO Yangguo, WANG Aijie, REN Nanqi, ZHAO Yan. Microbial community structure in different wastewater treatment processes characterized by single-strand conformation polymorphism (SSCP) technique[J]. Front.Environ.Sci.Eng., 2008, 2(1): 116-121.
[12] ZHOU Xuefei, REN Nanqi. Acid resistance of methanogenic bacteria in a two-stage anaerobic process treating high concentration methanol wastewater[J]. Front.Environ.Sci.Eng., 2007, 1(1): 53-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed