Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (4) : 1    https://doi.org/10.1007/s11783-018-1052-9
FEATURE ARTICLE
“NEW” resource recovery from wastewater using bioelectrochemical systems: Moving forward with functions
Akshay Jain, Zhen He()
Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
 Download: PDF(366 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Resource recovery from wastewater is a key function of bioelectrochemical systems.

NEW resources to recover include Nutrient, Energy, and Water.

Identifying proper application niches can guide BES research and development.

More efforts should be invested to the application of recovered resources.

A mindset for energy performance and system scaling is critically important.

Bioelectrochemical systems (BES) have been extensively studied for resource recovery from wastewater. By taking advantage of interactions between microorganisms and electrodes, BES can accomplish wastewater treatment while simultaneously recovering various resources including nutrients, energy and water (“NEW”). Despite much progress in laboratory studies, BES have not been advanced to practical applications. This paper aims to provide some subjective opinions and a concise discussion of several key challenges in BES-based resource recovery and help identify the potential application niches that may guide further technological development. In addition to further increasing recovery efficiency, it is also important to have more focus on the applications of the recovered resources such as how to use the harvested electricity and gaseous energy and how to separate the recovered nutrients in an energy-efficient way. A change in mindset for energy performance of BES is necessary to understand overall energy production and consumption. Scaling up BES can go through laboratory scale, transitional scale, and then pilot scale. Using functions as driving forces for BES research and development will better guide the investment of efforts.

Keywords Bioelectrochemical systems      Resource recovery      Wastewater treatment      Energy      Nutrients     
Corresponding Author(s): Zhen He   
Issue Date: 12 July 2018
 Cite this article:   
Akshay Jain,Zhen He. “NEW” resource recovery from wastewater using bioelectrochemical systems: Moving forward with functions[J]. Front. Environ. Sci. Eng., 2018, 12(4): 1.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1052-9
https://academic.hep.com.cn/fese/EN/Y2018/V12/I4/1
Fig.1  Number of BES publications over a period of 1980–2017. Data obtained through search in Web of Science in March 2018 using keywords “bioelectrochemical systems, microbial fuel cell, microbial electrolysis cell, microbial desalination cell, and microbial electrosynthesis”
Fig.2  Paradigm of resource recovery from wastewater using bioelectrochemical systems
Fig.3  Power management system based on capacitor for harvesting energy from MFCs. Reproduction with permission from (Sun et al., 2016)
Fig.4  Gas production in a pilot-scale membraneless MEC winery wastewater: (a) gas composition; and (b) gas production rate. Reproduction with permission from (Cusick et al., 2011)
Fig.5  Specific energy consumption (SECNH4-N) for different aeration flow rate in an MEC. Reproduction with permission from (Zou and He, 2018)
1 Ahn Y H (2006). Sustainable nitrogen elimination biotechnologies: A review. Process Biochemistry, 41(8): 1709–1721
https://doi.org/10.1016/j.procbio.2006.03.033
2 Bennetto H P, Delaney G M, Mason J R, Roller S D, Stirling J L, Thurston C F (1985). The sucrose fuel cell: Efficient biomass conversion using a microbial catalyst. Biotechnology Letters, 7(10): 699–704
https://doi.org/10.1007/BF01032279
3 Bennetto H P, Stirling J L, Tanaka K, Vega C A (1983). Anodic reactions in microbial fuel cells. Biotechnology and Bioengineering, 25(2): 559–568
https://doi.org/10.1002/bit.260250219 pmid: 18548670
4 Cai T, Park S Y, Li Y (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable & Sustainable Energy Reviews, 19: 360–369
https://doi.org/10.1016/j.rser.2012.11.030
5 Call D, Logan B E (2008). Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environmental Science & Technology, 42(9): 3401–3406
https://doi.org/10.1021/es8001822 pmid: 18522125
6 Cath T Y, Childress A E, Elimelech M (2006). Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science, 281(1–2): 70–87
https://doi.org/10.1016/j.memsci.2006.05.048
7 Chae K J, Choi M J, Kim K Y, Ajayi F F, Chang I S, Kim I S (2010). Selective inhibition of methanogens for the improvement of biohydrogen production in microbial electrolysis cells. International Journal of Hydrogen Energy, 35(24): 13379–13386
https://doi.org/10.1016/j.ijhydene.2009.11.114
8 Cheng S, Xing D, Call D F, Logan B E (2009). Direct biological conversion of electrical current into methane by electromethanogenesis. Environmental Science & Technology, 43(10): 3953–3958
https://doi.org/10.1021/es803531g pmid: 19544913
9 Clauwaert P, Verstraete W (2009). Methanogenesis in membraneless microbial electrolysis cells. Applied Microbiology and Biotechnology, 82(5): 829–836
https://doi.org/10.1007/s00253-008-1796-4 pmid: 19050859
10 Cohen B (1931). The bacterial culture as an electric half-cell. Journal of Bacteriology, 21(1): 18–19
11 Cotterill S E, Dolfing J, Jones C, Curtis T P, Heidrich E S (2017). Low temperature domestic wastewater treatment in a microbial electrolysis cell with 1 m2 anodes: Towards system scale-up. Fuel Cells (Weinheim), 17(5): 584–592
https://doi.org/10.1002/fuce.201700034
12 Cusick R D, Bryan B, Parker D S, Merrill M D, Mehanna M, Kiely P D, Liu G, Logan B E (2011). Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Applied Microbiology and Biotechnology, 89(6): 2053–2063
https://doi.org/10.1007/s00253-011-3130-9 pmid: 21305277
13 Cusick R D, Logan B E (2012). Phosphate recovery as struvite within a single chamber microbial electrolysis cell. Bioresource Technology, 107: 110–115
https://doi.org/10.1016/j.biortech.2011.12.038 pmid: 22212692
14 Delaney G M, Bennetto H P, Mason J R, Roller S D, Stirling J L, Thurston C F (1984). Electron-transfer coupling in microbial fuel cells. 2. Performance of fuel cells containing selected microorganism‒mediator‒substrate combinations. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 34(1): 13–27
https://doi.org/10.1002/jctb.280340104
15 Dong Y, Qu Y, He W, Du Y, Liu J, Han X, Feng Y (2015). A 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode. Bioresource Technology, 195: 66–72
https://doi.org/10.1016/j.biortech.2015.06.026 pmid: 26096580
16 Donovan C, Dewan A, Peng H, Heo D, Beyenal H (2011). Power management system for a 2.5 W remote sensor powered by a sediment microbial fuel cell. Journal of Power Sources, 196(3): 1171–1177
https://doi.org/10.1016/j.jpowsour.2010.08.099
17 El Diwani G, El Rafie S, El Ibiari N N, El-Aila H I (2007). Recovery of ammonia nitrogen from industrial wastewater treatment as struvite slow releasing fertilizer. Desalination, 214(1–3): 200–214
https://doi.org/10.1016/j.desal.2006.08.019
18 Escapa A, Mateos R, Martínez E J, Blanes J (2016). Microbial electrolysis cells: An emerging technology for wastewater treatment and energy recovery. From laboratory to pilot plant and beyond. Renewable & Sustainable Energy Reviews, 55: 942–956
https://doi.org/10.1016/j.rser.2015.11.029
19 Feng Y, He W, Liu J, Wang X, Qu Y, Ren N (2014). A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment. Bioresource Technology, 156: 132–138
https://doi.org/10.1016/j.biortech.2013.12.104 pmid: 24495538
20 Foley J M, Rozendal R A, Hertle C K, Lant P A, Rabaey K (2010). Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environmental Science & Technology, 44(9): 3629–3637
https://doi.org/10.1021/es100125h pmid: 20356090
21 Ge Z, He Z (2012). Effects of draw solutions and membrane conditions on electricity generation and water flux in osmotic microbial fuel cells. Bioresource Technology, 109: 70–76
https://doi.org/10.1016/j.biortech.2012.01.044 pmid: 22305538
22 Ge Z, He Z (2016). Long-term performance of a 200-L modularized microbial fuel cell system treating municipal wastewater: treatment, energy and cost. Environmental Science. Water Research & Technology, 2(2): 274–281
https://doi.org/10.1039/C6EW00020G
23 Ge Z, Li J, Xiao L, Tong Y, He Z (2014). Recovery of electrical energy in microbial fuel cells. Environmental Science & Technology Letters, 1(2): 137–141
https://doi.org/10.1021/ez4000324
24 Ghimire A, Kumar G, Sivagurunathan P, Shobana S, Saratale G D, Kim H W, Luongo V, Esposito G, Munoz R (2017). Bio-hythane production from microalgae biomass: Key challenges and potential opportunities for algal bio-refineries. Bioresource Technology, 241: 525–536
https://doi.org/10.1016/j.biortech.2017.05.156 pmid: 28601770
25 He Z (2013). Microbial fuel cells: Now let us talk about energy. Environmental Science & Technology, 47(1): 332–333
https://doi.org/10.1021/es304937e pmid: 23244020
26 He Z (2017). Development of microbial fuel cells needs to go beyond “power density”. ACS Energy Letters, 2(3): 700–702
https://doi.org/10.1021/acsenergylett.7b00041
27 Hiegemann H, Herzer D, Nettmann E, Lübken M, Schulte P, Schmelz K G, Gredigk-Hoffmann S, Wichern M (2016). An integrated 45L pilot microbial fuel cell system at a full-scale wastewater treatment plant. Bioresource Technology, 218: 115–122
https://doi.org/10.1016/j.biortech.2016.06.052 pmid: 27351707
28 Hiegemann H, Lübken M, Schulte P, Schmelz K G, Gredigk-Hoffmann S, Wichern M (2018). Inhibition of microbial fuel cell operation for municipal wastewater treatment by impact loads of free ammonia in bench- and 45L-scale. Science of the Total Environment, 624: 34–39
https://doi.org/10.1016/j.scitotenv.2017.12.072 pmid: 29245036
29 Huang Z, Lu L, Jiang D, Xing D, Ren Z J (2017). Electrochemical hythane production for renewable energy storage and biogas upgrading. Applied Energy, 187: 595–600
https://doi.org/10.1016/j.apenergy.2016.11.099
30 Ichihashi O, Hirooka K (2012). Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell. Bioresource Technology, 114: 303–307
https://doi.org/10.1016/j.biortech.2012.02.124 pmid: 22445264
31 Karube I, Matsunaga T, Tsuru S, Suzuki S (1977). Biochemical fuel cell utilizing immobilized cells of clostridium butyricum. Biotechnology and Bioengineering, 19(11): 1727–1733
https://doi.org/10.1002/bit.260191112
32 Kelly P T, He Z (2014). Nutrients removal and recovery in bioelectrochemical systems: A review. Bioresource Technology, 153: 351–360
https://doi.org/10.1016/j.biortech.2013.12.046 pmid: 24388692
33 Le Corre K S, Valsami-Jones E, Hobbs P, Parsons S A (2009). Phosphorus recovery from wastewater by struvite crystallization: A review. Critical Reviews in Environmental Science and Technology, 39(6): 433–477
https://doi.org/10.1080/10643380701640573
34 Lee E J, Criddle C S, Bobel P, Freyberg D L (2013). Assessing the scale of resource recovery for centralized and satellite wastewater treatment. Environmental Science & Technology, 47(19): 10762–10770
https://doi.org/10.1021/es401011k pmid: 23930682
35 Li J, Ge Z, He Z (2014). A fluidized bed membrane bioelectrochemical reactor for energy-efficient wastewater treatment. Bioresource Technology, 167: 310–315
https://doi.org/10.1016/j.biortech.2014.06.034 pmid: 24997373
36 Li Y, Zhou W, Hu B, Min M, Chen P, Ruan R R (2011). Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: strains screening and significance evaluation of environmental factors. Bioresource Technology, 102(23): 10861–10867
https://doi.org/10.1016/j.biortech.2011.09.064 pmid: 21982450
37 Liang P, Wei J, Li M, Huang X (2013). Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode. Frontiers of Environmental Science & Engineering, 7(6): 913–919
https://doi.org/10.1007/s11783-013-0583-3
38 Liu H, Logan B E (2004). Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology, 38(14): 4040–4046
https://doi.org/10.1021/es0499344 pmid: 15298217
39 Liu J, Liu L, Gao B, Yang F, Crittenden J, Ren N (2014). Integration of microbial fuel cell with independent membrane cathode bioreactor for power generation, membrane fouling mitigation and wastewater treatment. International Journal of Hydrogen Energy, 39(31): 17865–17872
https://doi.org/10.1016/j.ijhydene.2014.08.123
40 Logan B E (2010). Scaling up microbial fuel cells and other bioelectrochemical systems. Applied Microbiology and Biotechnology, 85(6): 1665–1671
https://doi.org/10.1007/s00253-009-2378-9 pmid: 20013119
41 Logan B E, Regan J M (2006). Electricity-producing bacterial communities in microbial fuel cells. Trends in Microbiology, 14(12): 512–518
https://doi.org/10.1016/j.tim.2006.10.003 pmid: 17049240
42 Lovley D R (2006). Microbial fuel cells: novel microbial physiologies and engineering approaches. Current Opinion in Biotechnology, 17(3): 327–332
https://doi.org/10.1016/j.copbio.2006.04.006 pmid: 16679010
43 Lu L, Hou D, Wang X, Jassby D, Ren Z J (2016). Active H2 harvesting prevents methanogenesis in microbial electrolysis cells. Environmental Science & Technology Letters, 3(8): 286–290
https://doi.org/10.1021/acs.estlett.6b00209
44 Luo H, Qin B, Liu G, Zhang R, Tang Y, Hou Y (2015). Selective recovery of Cu2+ and Ni2+ from wastewater using bioelectrochemical system. Frontiers of Environmental Science & Engineering, 9(3): 522–527
https://doi.org/10.1007/s11783-014-0633-5
45 Luo S, Jain A, Aguilera A, He Z (2017). Effective control of biohythane composition through operational strategies in an innovative microbial electrolysis cell. Applied Energy, 206: 879–886
https://doi.org/10.1016/j.apenergy.2017.08.241
46 McCarty P L, Bae J, Kim J (2011). Domestic wastewater treatment as a net energy producer—Can this be achieved? Environmental Science & Technology, 45(17): 7100–7106
https://doi.org/10.1021/es2014264 pmid: 21749111
47 Milledge J J (2011). Commercial application of microalgae other than as biofuels: A brief review. Reviews in Environmental Science and Biotechnology, 10(1): 31–41
https://doi.org/10.1007/s11157-010-9214-7
48 Pham T H, Aelterman P, Verstraete W (2009). Bioanode performance in bioelectrochemical systems: recent improvements and prospects. Trends in Biotechnology, 27(3): 168–178
https://doi.org/10.1016/j.tibtech.2008.11.005 pmid: 19187991
49 Potter M C (1911). Electrical effects accompanying the decomposition of organic compounds. Proceedings of the Royal Society B (London), 84(571): 260–276
https://doi.org/10.1098/rspb.1911.0073
50 Qin M, Abu-Reesh I M, He Z (2016). Effects of current generation and electrolyte pH on reverse salt flux across thin film composite membrane in osmotic microbial fuel cells. Water Research, 105: 583–590
https://doi.org/10.1016/j.watres.2016.09.028 pmid: 27693970
51 Qin M, He Z (2014). Self-supplied ammonium bicarbonate draw solute for achieving wastewater treatment and recovery in a microbial electrolysis cell-forward osmosis-coupled system. Environmental Science & Technology Letters, 1(10): 437–441
https://doi.org/10.1021/ez500280c
52 Qin M, He Z (2017). Resource recovery by osmotic bioelectrochemical systems towards sustainable wastewater treatment. Environmental Science. Water Research & Technology, 3(4): 583–592
https://doi.org/10.1039/C7EW00110J
53 Qin M, Liu Y, Luo S, Qiao R, He Z (2017). Integrated experimental and modeling evaluation of energy consumption for ammonia recovery in bioelectrochemical systems. Chemical Engineering Journal, 327: 924–931
https://doi.org/10.1016/j.cej.2017.06.182
54 Qin M, White C, Zou S, He Z (2018). Passive separation of recovered ammonia from catholyte for reduced energy consumption in microbial electrolysis cells. Chemical Engineering Journal, 334: 2303–2307
https://doi.org/10.1016/j.cej.2017.11.190
55 Rabaey K, Verstraete W (2005). Microbial fuel cells: Novel biotechnology for energy generation. Trends in Biotechnology, 23(6): 291–298
https://doi.org/10.1016/j.tibtech.2005.04.008 pmid: 15922081
56 Ren S, Li M, Sun J, Bian Y, Zuo K, Zhang X, Liang P, Huang X (2017). A novel electrochemical reactor for nitrogen and phosphorus recovery from domestic wastewater. Frontiers of Environmental Science & Engineering, 11(4): 17
https://doi.org/doi.org/10.1007/s11783-017-0983-x
57 Rodriguez Arredondo M, Kuntke P, Jeremiasse A W, Sleutels T H J A, Buisman C J N, ter Heijne A (2015). Bioelectrochemical systems for nitrogen removal and recovery from wastewater. Environmental Science. Water Research & Technology, 1(1): 22–33
https://doi.org/10.1039/C4EW00066H
58 Ronteltap M, Maurer M, Gujer W (2007). The behaviour of pharmaceuticals and heavy metals during struvite precipitation in urine. Water Research, 41(9): 1859–1868
https://doi.org/10.1016/j.watres.2007.01.026 pmid: 17368503
59 Rozendal R A, Hamelers H V M, Euverink G J W, Metz S J, Buisman C J N (2006). Principle and perspectives of hydrogen production through biocatalyzed electrolysis. International Journal of Hydrogen Energy, 31(12): 1632–1640
https://doi.org/10.1016/j.ijhydene.2005.12.006
60 Rozendal R A, Hamelers H V M, Molenkamp R J, Buisman C J N (2007). Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Research, 41(9): 1984–1994
https://doi.org/10.1016/j.watres.2007.01.019 pmid: 17343894
61 Siegert M, Li X F, Yates M D, Logan B E (2015). The presence of hydrogenotrophic methanogens in the inoculum improves methane gas production in microbial electrolysis cells. Frontiers in Microbiology, 5: 778
https://doi.org/10.3389/fmicb.2014.00778 pmid: 25642216
62 Sun M, Sheng G P, Zhang L, Xia C R, Mu Z X, Liu X W, Wang H L, Yu H Q, Qi R, Yu T, Yang M (2008). An MEC-MFC-coupled system for biohydrogen production from acetate. Environmental Science & Technology, 42(21): 8095–8100
https://doi.org/10.1021/es801513c pmid: 19031908
63 Sun M, Zhai L F, Li W W, Yu H Q (2016). Harvest and utilization of chemical energy in wastes by microbial fuel cells. Chemical Society Reviews, 45(10): 2847–2870
https://doi.org/10.1039/C5CS00903K pmid: 26936021
64 Tchobanoglous G, Burton F L, Stensel H D (2002). Wastewater Engineering: Treatment and Reuse. Boston: McGraw-Hill
65 Thompson Brewster E, Jermakka J, Freguia S, Batstone D J (2017). Modelling recovery of ammonium from urine by electro-concentration in a 3-chamber cell. Water Research, 124: 210–218
https://doi.org/10.1016/j.watres.2017.07.043 pmid: 28759793
66 Valentino F, Morgan-Sagastume F, Campanari S, Villano M, Werker A, Majone M (2017). Carbon recovery from wastewater through bioconversion into biodegradable polymers. New Biotechnology, 37(Pt A): 9–23
https://doi.org/10.1016/j.nbt.2016.05.007 pmid: 27288751
67 Villano M, Scardala S, Aulenta F, Majone M (2013). Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell. Bioresource Technology, 130: 366–371
https://doi.org/10.1016/j.biortech.2012.11.080 pmid: 23313682
68 Wagner R C, Regan J M, Oh S E, Zuo Y, Logan B E (2009). Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Research, 43(5): 1480–1488
https://doi.org/10.1016/j.watres.2008.12.037 pmid: 19138783
69 Wang H, Park J D, Ren Z J (2015). Practical energy harvesting for microbial fuel cells: A review. Environmental Science & Technology, 49(6): 3267–3277
https://doi.org/10.1021/es5047765 pmid: 25670167
70 Wang H, Ren Z J (2013). A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnology Advances, 31(8): 1796–1807
https://doi.org/10.1016/j.biotechadv.2013.10.001 pmid: 24113213
71 Wang Y K, Sheng G P, Shi B J, Li W W, Yu H Q (2013). A novel electrochemical membrane bioreactor as a potential net energy producer for sustainable wastewater treatment. Scientific Reports, 3(1): 1864
https://doi.org/10.1038/srep01864 pmid: 23689529
72 Xiao Y, Zheng Y, Wu S, Yang Z H, Zhao F (2016). Nitrogen recovery from wastewater using microbial fuel cells. Frontiers of Environmental Science & Engineering, 10(1): 185–191
https://doi.org/10.1007/s11783-014-0730-5
73 Yang Y, Qin M, Yang X, He Z (2017). Sustainable operation of osmotic microbial fuel cells through effective reproduction of polyelectrolyte draw solutes facilitated by cathodic pH increase. Journal of Cleaner Production, 168: 1143–1149
https://doi.org/10.1016/j.jclepro.2017.09.107
74 Yang Y, Xiang Y, Xia C, Wu W M, Sun G, Xu M (2014). Physiological and electrochemical effects of different electron acceptors on bacterial anode respiration in bioelectrochemical systems. Bioresource Technology, 164: 270–275
https://doi.org/10.1016/j.biortech.2014.04.098 pmid: 24862003
75 Yuan H, He Z (2015). Integrating membrane filtration into bioelectrochemical systems as next generation energy-efficient wastewater treatment technologies for water reclamation: A review. Bioresource Technology, 195: 202–209
https://doi.org/10.1016/j.biortech.2015.05.058 pmid: 26026232
76 Yuan Z, Pratt S, Batstone D J (2012). Phosphorus recovery from wastewater through microbial processes. Current Opinion in Biotechnology, 23(6): 878–883
https://doi.org/10.1016/j.copbio.2012.08.001 pmid: 22922003
77 Zamora P, Georgieva T, Ter Heijne A, Sleutels T H J A, Jeremiasse A W, Saakes M, Buisman C J N, Kuntke P (2017). Ammonia recovery from urine in a scaled-up Microbial Electrolysis Cell. Journal of Power Sources, 356: 491–499
https://doi.org/10.1016/j.jpowsour.2017.02.089
78 Zhang B, He Z (2012). Energy production, use and saving in a bioelectrochemical desalination system. RSC Advances, 2(28): 10673–10679
https://doi.org/10.1039/c2ra21779a
79 Zhang F, Brastad K S, He Z (2011). Integrating forward osmosis into microbial fuel cells for wastewater treatment, water extraction and bioelectricity generation. Environmental Science & Technology, 45(15): 6690–6696
https://doi.org/10.1021/es201505t pmid: 21751820
80 Zhou M, Chi M, Luo J, He H, Jin T (2011). An overview of electrode materials in microbial fuel cells. Journal of Power Sources, 196(10): 4427–4435
https://doi.org/10.1016/j.jpowsour.2011.01.012
81 Zou S, He Z (2018). Efficiently “pumping out” value-added resources from wastewater by bioelectrochemical systems: A review from energy perspectives. Water Research, 131: 62–73
https://doi.org/10.1016/j.watres.2017.12.026 pmid: 29274548
82 Zou S, Qin M, Moreau Y, He Z (2017). Nutrient-energy-water recovery from synthetic sidestream centrate using a microbial electrolysis cell- forward osmosis hybrid system. Journal of Cleaner Production, 154: 16–25
https://doi.org/10.1016/j.jclepro.2017.03.199
[1] Yanxiao Si, Fang Zhang, Hong Chen, Guanghe Li, Haichuan Zhang, Dun Liu. Effect of current density on groundwater arsenite removal performance using air cathode electrocoagulation[J]. Front. Environ. Sci. Eng., 2021, 15(6): 112-.
[2] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[3] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[4] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[5] Yingdan Zhang, Na Liu, Wei Wang, Jianteng Sun, Lizhong Zhu. Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(6): 103-.
[6] Wenyue Li, Min Chen, Zhaoxiang Zhong, Ming Zhou, Weihong Xing. Hydroxyl radical intensified Cu2O NPs/H2O2 process in ceramic membrane reactor for degradation on DMAc wastewater from polymeric membrane manufacturer[J]. Front. Environ. Sci. Eng., 2020, 14(6): 102-.
[7] Kehui Liu, Xiaolu Liang, Chunming Li, Fangming Yu, Yi Li. Nutrient status and pollution levels in five areas around a manganese mine in southern China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 100-.
[8] An Ding, Yingxue Zhao, Huu Hao Ngo, Langming Bai, Guibai Li, Heng Liang, Nanqi Ren, Jun Nan. Metabolic uncoupler, 3,3′,4′,5-tetrachlorosalicylanilide addition for sludge reduction and fouling control in a gravity-driven membrane bioreactor[J]. Front. Environ. Sci. Eng., 2020, 14(6): 96-.
[9] An Ding, Yingxue Zhao, Zhongsen Yan, Langming Bai, Haiyang Yang, Heng Liang, Guibai Li, Nanqi Ren. Co-application of energy uncoupling and ultrafiltration in sludge treatment: Evaluations of sludge reduction, supernatant recovery and membrane fouling control[J]. Front. Environ. Sci. Eng., 2020, 14(4): 59-.
[10] Songwei Lin, Yaobin Lu, Bo Ye, Cuiping Zeng, Guangli Liu, Jieling Li, Haiping Luo, Renduo Zhang. Pesticide wastewater treatment using the combination of the microbial electrolysis desalination and chemical-production cell and Fenton process[J]. Front. Environ. Sci. Eng., 2020, 14(1): 12-.
[11] Luxi Zou, Huaibo Li, Shuo Wang, Kaikai Zheng, Yan Wang, Guocheng Du, Ji Li. Characteristic and correlation analysis of influent and energy consumption of wastewater treatment plants in Taihu Basin[J]. Front. Environ. Sci. Eng., 2019, 13(6): 83-.
[12] Jiuhui Qu, Hongchen Wang, Kaijun Wang, Gang Yu, Bing Ke, Han-Qing Yu, Hongqiang Ren, Xingcan Zheng, Ji Li, Wen-Wei Li, Song Gao, Hui Gong. Municipal wastewater treatment in China: Development history and future perspectives[J]. Front. Environ. Sci. Eng., 2019, 13(6): 88-.
[13] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[14] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
[15] Tiezheng Tong, Kenneth H. Carlson, Cristian A. Robbins, Zuoyou Zhang, Xuewei Du. Membrane-based treatment of shale oil and gas wastewater: The current state of knowledge[J]. Front. Environ. Sci. Eng., 2019, 13(4): 63-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed