Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (6) : 8    https://doi.org/10.1007/s11783-018-1054-7
RESEARCH ARTICLE
The temporal changes of the concentration level of typical toxic organics in the river sediments around Beijing
Qiang Li1,2, Xiong Xu1,2, Yaoyao Fang3, Ruiyang Xiao4, Donghong Wang1(), Wenjue Zhong5()
1. Key Laboratory of Drinking Water Science and Technology, Research Center for Eco?Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China
4. Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
5. Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
 Download: PDF(380 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The current situation of typical organics in the sediments around Beijing was unclear.

56 kinds of typical toxic organics were detected in this article.

Historical data was compared with the data in this study.

The change of different organics in the sediments around Beijing was concluded.

In this study, the current situation of five types of toxic organics and endocrine disrupters in the sediments of rivers around Beijing, i.e., polycyclic aromatic hydrocarbons (PAHs), phthalic acid esters (PAEs), organic chlorinated pesticides (OCPs), estrogens (Es), and bisphenol A (BPA), which included 56 contaminants, was analyzed and compared with that registered by the historical literatures. The ecological risks were also assessed. The total concentration of PAHs, PAEs, OCPs, Es, and BPA ranged from 232.5 ng·g1 to 5429.7 ng·g1, 2047.2 ng·g1 to 18051.5 ng·g1, 4.5 ng·g1 to 11.7 ng·g1, 18.1 ng·g1 to 105.2 ng·g1, and 36.3 ng·g1 to 69.6 ng·g1, respectively. Among these five types of organic compounds, the concentration levels of PAHs and OCPs have decreased significantly in the last ten years, while those of PAEs and Es had an upward trend compared with the previous studies. BPA still remained at a moderately high level, as it was ten years ago. The risks of the PAEs in all of the sample sites, and fluoranthene, benzo[a]anthrene, and benzo[a]pyrene in the Wenyu River sediment, were relatively high. These results supplemented the database of toxic organics’ concentration levels in the sediments of Beijing rivers.

Keywords Organic compounds      Endocrine disrupters      Sediments      Concentration      Temporal changes     
Corresponding Author(s): Donghong Wang,Wenjue Zhong   
Issue Date: 19 August 2018
 Cite this article:   
Qiang Li,Xiong Xu,Yaoyao Fang, et al. The temporal changes of the concentration level of typical toxic organics in the river sediments around Beijing[J]. Front. Environ. Sci. Eng., 2018, 12(6): 8.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1054-7
https://academic.hep.com.cn/fese/EN/Y2018/V12/I6/8
River Compounds 2000s 2010s This study
Yongding River
(site A)
PAHs 2159.26a 535
PAEs 1053.34b 920.2c 2047.2
DDE 6.1d; 6.4e 4.5
Es 74.7
BPA 36.3
Wenyu River
(site B)
PAHs 657.6f 232.2
PAEs 461.3–780.4h 2383.1
DDE 8.9–35.3i nd
Es 10.2j 96.3
BPA 59.6j 59.3
Ju River
(site C)
PAHs 515.7
PAEs 2331.7
DDE 5.4
Es 18.1
BPA 30.6
Beiyun River
(site D)
PAHs 4810g 495.26–5538.59k 5429
PAEs 18051.5
DDE 11.7
Es 95.5
BPA 69.6
Dashi River
(site E)
PAHs 1123.9
PAEs 3980.5
DDE 5.5
Es 105.2
BPA 49.4
Tab.1  The total concentration of different organics in different years (ng·g1, dry weight)
Compounds Yongding River
(Site A)
Wenyu River
(Site B)
Ju River
(Site C)
Beiyun River
(Site D)
Dashi River
(Site E)
PAHs
FLUOAN 48.6 15.4 49.2 778.7 128.1
BbF 66.6 18.6 63.4 561 126.4
CHRY 42.9 12.5 54.1 645 104.9
PY 33.2 13.8 38.4 606.2 91.8
INPY 51.9 30.7 52.4 430.8 108.6
BPER 47 23.7 48.3 334.5 79.6
BaAN 52 14.1 28.6 384 65
BaPY 31 14 30.4 398.6 48.9
PHE 45.4 19.8 48.2 230.8 123.8
AN 10.2 10.2 14.9 280.4 55.1
DiBAN 32.2 27.9 31.1 162.1 46.3
BkF 21.6 11.2 19.8 202.7 30.1
FLUO 12.3 7.7 11.9 146.2 55
NAP 35.4 8.8 19 81.6 19.2
ACE 4.7 4.1 6 94.5 12.5
ACEY nd nd nd 92.4 28.7
∑ PAHs 535 232.5 515.7 5429.7 1123.9
PAEs
DMP 43.2 31.5 27 80.7 67.5
DEP 566.9 776.8 643 661.3 844.5
DIBP 685.4 714.4 751.9 824.9 935.3
DNBP 197.1 213.5 198.3 434.5 289.7
DEHP 554.8 647 711.5 16050.1 1843.5
∑ PAEs 2047.2 2383.1 2331.7 18051.5 3980.5
OCP
p,p'-DDE 4.5 nd 5.4 11.7 5.5
Estrogens and BPA
DES 20.7 27.3 16.8 35.6 25.1
E1 3.6 11.4 1.3 6.2 nd
E2 nd nd nd nd 14.6
EE2 nd nd nd nd nd
E3 50.4 57.6 nd 53.8 63.4
EV nd nd nd nd nd
∑Es 74.7 96.3 18.1 95.5 105.2
BPA 36.3 59.3 30.6 69.6 49.4
Tab.2  Concentrations of detected compounds in different sample sites (ng·g1, dry weight)
Fig.1  The temporal change of concentration of 5 different organics in this study (ng·g1)
Compounds  Yongding River
(Site A)
Wenyu River
(Site B)
Ju River
(Site C)
Beiyun River
(Site D)
Dashi River
(Site E)
PAHs
FLUOAN 7.0E-02 2.0E-02 7.0E-02 1.0E+ 00 2.0E-01
BbF 7.0E-02 2.0E-02 7.0E-02 6.0E-01 1.0E-01
CHRY 5.0E-01 1.0E-01 6.0E-01 7.0E+ 00 1.0E+ 00
PY 5.0E-02 2.0E-02 5.0E-02 8.0E-01 1.0E-01
INPY 7.0E-02 4.0E-02 7.0E-02 6.0E-01 1.0E-01
BPER 4.0E-02 2.0E-02 5.0E-02 3.0E-01 7.0E-02
BaA 6.0E-01 2.0E-01 3.0E-01 4.0E+ 00 7.0E-01
BaPY 1.0E-01 5.0E-02 1.0E-01 1.0E+ 00 2.0E-01
PHE 8.0E-02 3.0E-02 8.0E-02 4.0E-01 2.0E-01
AN 2.0E-02 2.0E-02 3.0E-02 5.0E-01 1.0E-01
DiBAN 3.0E-02 3.0E-02 3.0E-02 2.0E-01 4.0E-02
BkF 2.0E-02 1.0E-02 2.0E-02 2.0E-01 3.0E-02
FlUO 2.0E-02 1.0E-02 2.0E-02 2.0E-01 9.0E-02
NAP 9.0E-02 2.0E-02 5.0E-02 2.0E-01 5.0E-02
ACE 2.0E-02 2.0E-02 3.0E-02 4.0E-01 5.0E-02
ACEY - - - 3.0E-01 8.0E-02
OCP(1)
p,p'-DDE 5.0E-01 - 6.0E-01 1.0E+ 00 6.0E-01
PAEs(4)
DMP 2.0E-01 1.0E-01 9.0E-02 3.0E-01 2.0E-01
DEP 4.0E+ 00 5.0E+ 00 4.0E+ 00 5.0E+ 00 6.0E+ 00
DIBP 1.0E+ 01 1.0E+ 01 1.0E+ 01 1.0E+ 01 1.0E+ 01
DNBP 2.0E+ 00 3.0E+ 00 2.0E+ 00 5.0E+ 00 4.0E+ 00
Estrogens(4) and Phenol(1)
BPA 9.0E-03 1.0E-02 7.0E-03 2.0E-02 1.0E-02
DES 2.0E-02 3.0E-02 2.0E-02 4.0E-02 3.0E-02
E1 2.0E-03 5.0E-03 6.0E-04 3.0E-03 -
E2 - - - - 2.0E-02
E3 1.0E-01 1.0E-01 - 2.0E-01 1.0E-01
Tab.3  RQ value of detected compounds
1 Beijing Municipal Bureau of Statistics (2018). Survey Office of the National Bureau of statistics in Beijing. Beijing 2017 National Economic and Social Development Statistical Bulletin. 2018. Available online at (accessed in February 28, 2018)
2 Beijing Municipal Environmental Protection Bureau (2018). Water and Ecological Management. Environmental Functional District Planning. 2018. Available online at (accessed in February 28, 2018)
3 Bu Q, Luo Q, Wang D, Rao K, Wang Z, Yu G (2015). Screening for over 1000 organic micropollutants in surface water and sediments in the Liaohe River watershed. Chemosphere, 138: 519–525
https://doi.org/10.1016/j.chemosphere.2015.07.013 pmid: 26203867
4 Bu Q, Wang D, Liu X, Wang Z (2014). A high throughout semi-quantification method for screening organic contaminants in river sediments. Journal of Environmental Management, 143: 135–139
https://doi.org/10.1016/j.jenvman.2014.05.009 pmid: 24905643
5 Colborn T, vom Saal F S, Soto A M (1993). Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environmental Health Perspectives, 101(5): 378–384
https://doi.org/10.1289/ehp.93101378 pmid: 8080506
6 Ding W H, Fann J C H (2000). Application of pressurized liquid extraction followed by gas chromatography-mass spectrometry to determine 4-nonylphenols in sediments. Journal of Chromatography. A, 866(1): 79–85
https://doi.org/10.1016/S0021-9673(99)01059-6 pmid: 10681011
7 Ene A, Bogdevich O, Sion A (2012). Levels and distribution of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in topsoils from SE Romania. Science of the Total Environment, 439: 76–86
https://doi.org/10.1016/j.scitotenv.2012.09.004 pmid: 23063641
8 Gao S, Cheng S, Zhang A (2007). Chapter 5 Pollution of Polycyclic Aromatic Hydrocarbons in China, 7: 237–287.
9 Grung M, Lin Y, Zhang H, Steen A O, Huang J, Zhang G, Larssen T (2015). Pesticide levels and environmental risk in aquatic environments in China: A review. Environment International, 81: 87–97
https://doi.org/10.1016/j.envint.2015.04.013 pmid: 25968893
10 Huang S B, Wang Z J, Xu Y P, Ma M (2005). Distribution, sources and potential toxicological significance of polycyclic aromatic hydrocarbons(PAHs) in Guanting Reservoir sediments, China. Journal of Environmental Sciences (China), 17(1): 48–53
pmid: 15900756
11 Lei B, Huang S, Zhou Y, Wang D, Wang Z (2009). Levels of six estrogens in water and sediment from three rivers in Tianjin area, China. Chemosphere, 76(1): 36–42
https://doi.org/10.1016/j.chemosphere.2009.02.035 pmid: 19303134
12 Lei B L, Huang S B, Wang D H, Luo J P, Wang Z J, Liu C (2008). Present state of six estrogens in the sediment of Wenyuhe River. Environmental Science, 29(9): 2419–2424
pmid: 19068620
13 Liu X M, Xu X R, Zhang X T, Zhang G GH, Li, Zhou C G (2001). Organchlorine pesticides and PCBs in Dalian Bay. Marine Environmental Science. Dalian, 20 (4): 40–44.
14 Luo J, Lei B, Ma M, Zha J, Wang Z (2011). Identification of estrogen receptor agonists in sediments from Wenyu River, Beijing, China. Water Research, 45(13): 3908–3914
https://doi.org/10.1016/j.watres.2011.04.045 pmid: 21621810
15 Luo J, Ma M, Zha J, Wang Z (2009). Characterization of aryl hydrocarbon receptor agonists in sediments of Wenyu River, Beijing, China. Water Research, 43(9): 2441–2448
https://doi.org/10.1016/j.watres.2009.03.015 pmid: 19344927
16 Luo X J, Chen S J, Mai B X, Sheng G Y, Fu J M, Zeng E Y (2008). Distribution, source apportionment, and transport of PAHs in sediments from the Pearl River Delta and the Northern South China Sea. Archives of Environmental Contamination and Toxicology, 55(1): 11–20
https://doi.org/10.1007/s00244-007-9105-2 pmid: 18172566
17 Ma M W Z (2001). Contamination of PCBs and Organio chlorinated Pesticides in the sediment samples of Guanting Reservoir and Yongding River. Environmental Chemistry, 20(3): 238–243
18 Manoli E, Samara C (1999). Polycyclic aromatic hydrocarbons in natural waters: sources, occurrence and analysis. TrAC Trends in Analytical Chemistry, 18(6): 417–428
https://doi.org/10.1016/S0165-9936(99)00111-9
19 Marion G, Thomas W, Ernst L (2003). Multi-residue Analysis of 66 Biocides in River Water, River Sediment and Suspended Solids Samples by Gas Chromatography-Mass Spectrometry. International Journal of Environmental Analytical Chemistry, 83(2): 111–125
https://doi.org/10.1080/0306731021000049608
20 Pei J, Yao H, Wang H, Li H, Lu S, Zhang X, Xiang X (2018). Polybrominated diphenyl ethers (PBDEs) in water, surface sediment, and suspended particulate matter from the Yellow River, China: Levels, spatial and seasonal distribution, and source contribution. Marine Pollution Bulletin, 129(1): 106–113
https://doi.org/10.1016/j.marpolbul.2018.02.017 pmid: 29680527
21 Polidoro B A, Comeros-Raynal M T, Cahill T, Clement C (2017). Land-based sources of marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa. Marine Pollution Bulletin, 116(1-2): 501–507
https://doi.org/10.1016/j.marpolbul.2016.12.058 pmid: 28063697
22 Shen Q, Wang K Y, Zhang W, Zhang S C, Wang X J (2009). Characterization and sources of PAHs in an urban river system in Beijing, China. Environmental Geochemistry and Health, 31(4): 453–462
https://doi.org/10.1007/s10653-008-9198-1 pmid: 18648991
23 Sui M M (2008). Study on Phthalate Esters Pollution Level in Beiyun and Chaobai Rivers. Dissertation for Master Degree. Dalian: Dalian University of Techology
24 Wang X, Han J, Bi C, Xing H, Jia J, Chen Z (2017). Distribution, sources, and risk assessment of polychlorinated biphenyls in surface waters and sediments of rivers in Shanghai, China. Frontiers of Earth Science, 11(2): 283–296 doi:10.1007/s11707-016-0590-3
25 Wang X T, Ma L L, Sun Y Z, Xu X B (2006). Phthalate esters in sediments from guanting reservoir and the Yongding River, Beijing, People’s Republic of China. Bulletin of Environmental Contamination and Toxicology, 76(5): 799–806
https://doi.org/10.1007/s00128-006-0990-2 pmid: 16786450
26 Warren N, Allan I J, Carter J E, House W A, Parker A (2003). Pesticides and other micro-organic contaminants in freshwater sedimentary environments—A review. Applied Geochemistry, 18(2): 159–194
https://doi.org/10.1016/S0883-2927(02)00159-2
27 Witt G (1995). Selected Papers from the International Conference on Marine Pollution and Ecotoxicology Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea. Marine Pollution Bulletin, 31(4): 237–248
https://doi.org/10.1016/0025-326X(95)00174-L
28 Xu X, Wang D, Li C, Feng H, Wang Z (2017). Characterization of the reactivity and chlorinated products of carbazole during aqueous chlorination. Environ Pollut, 225: 412–418
https://doi.org/10.1016/j.envpol.2017.03.002 pmid: 28284551
29 Xue N, Xu X, Jin Z (2005). Screening 31 endocrine-disrupting pesticides in water and surface sediment samples from Beijing Guanting reservoir. Chemosphere, 61(11): 1594–1606
https://doi.org/10.1016/j.chemosphere.2005.04.091 pmid: 15982717
30 Xue N, Zhang D, Xu X (2006). Organochlorinated pesticide multiresidues in surface sediments from Beijing Guanting reservoir. Water Research, 40(2): 183–194
https://doi.org/10.1016/j.watres.2005.07.044 pmid: 16364399
31 Yuan X (2015). Spatial Distribution And Multimedia Fugacity Environment Behavior of PAHs in Beiyun River Basin of Beijing. Dissertation for the Master Degree. Shandong: Shangdong Agriculture Universirty
32 Zhang L, Liu J, Liu H, Wan G, Zhang S (2015). The occurrence and ecological risk assessment of phthalate esters (PAEs) in urban aquatic environments of China. Ecotoxicology (London, England), 24(5): 967–984
https://doi.org/10.1007/s10646-015-1446-4 pmid: 25847103
33 Zhang P, Zhou H, Kun L, Zhao X, Liu Q, Li D, Zhao G, Liang W (2018). Occurrence of pharmaceuticals and personal care products, and their associated environmental risks in Guanting Reservoir and its upstream rivers in north China. RSC Advances, 8(9): 4703–4712
https://doi.org/10.1039/C7RA12945A
34 Zhang S, Wei Z, Shen Y, Wang K, Hu L, Wang X (2008). Dry deposition of atmospheric polycyclic aromatic hydrocarbons (PAHs) in the southeast suburb of Beijing, China. Atmospheric Research, 89(1): 138–148
https://doi.org/10.1016/j.atmosres.2008.01.003
35 Zhang Z, Huang J, Yu G, Hong H (2004). Occurrence of PAHs, PCBs and organochlorine pesticides in the Tonghui River of Beijing, China. Environ Pollut, 130(2): 249–261
https://doi.org/10.1016/j.envpol.2003.12.002 pmid: 15158038
36 Zhang Z, Ren N, Kannan K, Nan J, Liu L, Ma W, Qi H, Li Y (2014). Occurrence of endocrine-disrupting phenols and estrogens in water and sediment of the Songhua River, northeastern China. Archives of Environmental Contamination and Toxicology, 66(3): 361–369
https://doi.org/10.1007/s00244-014-9998-5 pmid: 24468970
37 Zheng X, Zhang B T, Teng Y (2014). Distribution of phthalate acid esters in lakes of Beijing and its relationship with anthropogenic activities. Science of the Total Environment, 476– 477: 107–113
https://doi.org/10.1016/j.scitotenv.2013.12.111 pmid: 24463031
[1] FSE-18023-OF-LQ_suppl_1 Download
[1] Miao Li, Jian Li, Yuchen Lu, Cenyang Han, Xiaoxuan Wei, Guangcai Ma, Haiying Yu. Developing the QSPR model for predicting the storage lipid/water distribution coefficient of organic compounds[J]. Front. Environ. Sci. Eng., 2021, 15(2): 24-.
[2] Qingkun Ji, Caihong Zhang, Dan Li. Influences and mechanisms of nanofullerene on the horizontal transfer of plasmid-encoded antibiotic resistance genes between E. coli strains[J]. Front. Environ. Sci. Eng., 2020, 14(6): 108-.
[3] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[4] Kun Zhang, Jialuo Xu, Qing Huang, Lei Zhou, Qingyan Fu, Yusen Duan, Guangli Xiu. Precursors and potential sources of ground-level ozone in suburban Shanghai[J]. Front. Environ. Sci. Eng., 2020, 14(6): 92-.
[5] Xuying Ma, Ian Longley, Jennifer Salmond, Jay Gao. PyLUR: Efficient software for land use regression modeling the spatial distribution of air pollutants using GDAL/OGR library in Python[J]. Front. Environ. Sci. Eng., 2020, 14(3): 44-.
[6] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[7] Wenjing Lu, Yawar Abbas, Muhammad Farooq Mustafa, Chao Pan, Hongtao Wang. A review on application of dielectric barrier discharge plasma technology on the abatement of volatile organic compounds[J]. Front. Environ. Sci. Eng., 2019, 13(2): 30-.
[8] Yang-ying Zhao, Fan-xin Kong, Zhi Wang, Hong-wei Yang, Xiao-mao Wang, Yuefeng F. Xie, T. David Waite. Role of membrane and compound properties in affecting the rejection of pharmaceuticals by different RO/NF membranes[J]. Front. Environ. Sci. Eng., 2017, 11(6): 20-.
[9] Shiting Ren, Mengchen Li, Jianyu Sun, Yanhong Bian, Kuichang Zuo, Xiaoyuan Zhang, Peng Liang, Xia Huang. A Novel Electrochemical Reactor for Nitrogen and Phosphorus Recovery from Domestic Wastewater[J]. Front. Environ. Sci. Eng., 2017, 11(4): 17-.
[10] Kajetan Kalus, Sebastian Opaliński, Devin Maurer, Somchai Rice, Jacek A. Koziel, Mariusz Korczyński, Zbigniew Dobrzański, Roman Kołacz, Beata Gutarowska. Odour reducing microbial-mineral additive for poultry manure treatment[J]. Front. Environ. Sci. Eng., 2017, 11(3): 7-.
[11] Pu ZHAO,Lizhong ZHU. Optimized porous clay heterostructure for removal of acetaldehyde and toluene from indoor air[J]. Front. Environ. Sci. Eng., 2016, 10(2): 219-228.
[12] Shou ZHAO,Dongxin WANG,Chenghong FENG,Ying WANG,Zhenyao SHEN. Sequence of the main geochemical controls on the Cu and Zn fractions in the Yangtze River estuarine sediments[J]. Front. Environ. Sci. Eng., 2016, 10(1): 19-27.
[13] Hengyi DUAN,Xiaotu LIU,Meilin YAN,Yatao WU,Zhaorong LIU. Characteristics of carbonyls and volatile organic compounds (VOCs) in residences in Beijing, China[J]. Front. Environ. Sci. Eng., 2016, 10(1): 73-84.
[14] Xiaolong WANG,Shiming DING,Qi ZHANG,Weiping HU. Assessment on contaminations in sediments of an intake and the inflow canals in Taihu Lake, China[J]. Front. Environ. Sci. Eng., 2015, 9(4): 665-674.
[15] Jinying XI,Insun KANG,Hongying HU,Xian ZHANG. A biofilter model for simultaneous simulation of toluene removal and bed pressure drop under varied inlet loadings[J]. Front. Environ. Sci. Eng., 2015, 9(3): 554-562.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed