Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (5) : 3    https://doi.org/10.1007/s11783-018-1064-5
RESEARCH ARTICLE
Impacts of n-alkane concentration on soil bacterial community structure and alkane monooxygenase genes abundance during bioremediation processes
Yueqiao Liu1,3, Aizhong Ding1(), Yujiao Sun1, Xuefeng Xia1, Dayi Zhang2,3()
1. College of Water Sciences, Beijing Normal University, Beijing 100875, China
2. School of Environment, Tsinghua University, Beijing 100084, China
3. Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
 Download: PDF(480 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Soil microbial community is not significantly shaped by alkane concentrations

Alkane concentrations alter dominant alkane degraders in soils

Different alkanes are preferentially degraded at different contamination level

Different types of alkane monooxygenase genes responsible for alkane degradation

Petroleum hydrocarbons, mainly consisting of n-alkanes and polycyclic aromatic hydrocarbons (PAHs), are considered as priority pollutants and biohazards in the environment, eventually affecting the ecosystem and human health. Though many previous studies have investigated the change of bacterial community and alkane degraders during the degradation of petroleum hydrocarbons, there is still lack of understanding on the impacts of soil alkane contamination level. In the present study, microcosms with different n-alkane contamination (1%, 3% and 5%) were set up and our results indicated a complete alkane degradation after 30 and 50 days in 1%- and 3%-alkane treatments, respectively. In all the treatments, alkanes with medium-chain length (C11-C14) were preferentially degraded by soil microbes, followed by C27-alkane in 3% and 5% treatments. Alkane contamination level slightly altered soil bacterial community, and the main change was the presence and abundance of dominant alkane degraders. Thermogemmatisporaceae, Gemmataceae and Thermodesulfovibrionaceae were highly related to the degradation of C14- and C27-alkanes in 5% treatment, but linked to alkanes with medium-chain (C11-C18) in 1% treatment and C21-alkane in 3% treatment, respectively. Additionally, we compared the abundance of three alkane-monooxygenase genes, e.g., alk_A, alk_P and alk_R. The abundance of alk_R gene was highest in soils, and alk_P gene was more correlated with alkane degradation efficiency, especially in 5% treatment. Our results suggested that alkane contamination level showed non-negligible effects on soil bacterial communities to some extents, and particularly shaped alkane degraders and degrading genes significantly. This study provides a better understanding on the response of alkane degraders and bacterial communities to soil alkane concentrations, which affects their biodegradation process.

Keywords Petroleum hydrocarbon contaminated site      n-alkane contamination level      n-alkane biodegradation      Soil bacterial community      Alkane degraders      Alkane-monooxygenase genes     
Corresponding Author(s): Aizhong Ding,Dayi Zhang   
Issue Date: 18 August 2018
 Cite this article:   
Yueqiao Liu,Aizhong Ding,Yujiao Sun, et al. Impacts of n-alkane concentration on soil bacterial community structure and alkane monooxygenase genes abundance during bioremediation processes[J]. Front. Environ. Sci. Eng., 2018, 12(5): 3.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1064-5
https://academic.hep.com.cn/fese/EN/Y2018/V12/I5/3
Target Name 5′-3′ Heating Amplification Reference
Cycle Denaturation Annealing Extension
16S rRNA 341F/805R CCTACGGGNGGCWGCAG/GACTACHVGGGTATCTAATCC 95°C, 240 s 30 95°C, 45 s 40°C, 60 s 72°C, 300 s (Herlemann et al., 2011)
Alkane-monooxygenase
gene
alk_PF/ alk_PR ATCTGGGCGCGTTGGGATTTGAGCG/CGCATGGTGATCGCTGTGCCGCTGC 94°C, 240 s 30 95°C, 45 s 43°C, 60 s 72°C, 300 s (Powell et al., 2010)
alk_AF/ alk_AR GCICAIARITIRKICAYAA/GCITGITGITCISWRTGICGYTG 94°C, 180 s 35 94°C, 60 s 45°C, 60 s 72°C, 60 s (Wang et al., 2016)
alk_RF/ alk_RR GGTACGGSCAYTTCTACRTCGA/CGGRTTCGCGTGRTGRT 94°C, 180 s 30 94°C, 60 s 58.5°C, 30 s 72°C, 30 s (Amouric et al., 2010)
Tab.1  Primers and amplification programs for 16S rRNA and alkane-monooxygenase genes
Fig.1  Alkane degradation in treatments of different alkane contamination levels. (a) So_1% and SS_1% (1% n-alkane in soils). (b) So_3% and SS_3% (3% n-alkane in soils). (c) So_5% and SS_5% (5% n-alkane in soils)
Fig.2  The relative abundance of n-alkanes with different carbon chain lengths in treatments of different alkane contamination levels during the microbial degradation processes. (a) So_1%, (b) So_3%, (c) So_5%
Fig.3  The relative abundance of microbial taxonomic information at family level (a). PCoA (b) and Bray-Curtis cluster (c) analysis for treatments of different alkane contamination levels at different time points. Taxonomic assignment was carried out with the Greengenes 16S rRNA data base
Alkanes Rhodocyclaceae Gemmataceae Thermogemmatisporaceae Alteromonadaceae Thermodesulfovibrionaceae Rhodospirillaceae
So_1% 0.9463 0.9359 0.8906 0.4993 0.9024 0.0077
C14 0.9958** 0.9898* 0.9721* 0.6484 0.9755* 0.0642
C16 0.9958** 0.9898* 0.9721* 0.6484 0.9755* 0.0642
C18 0.9958** 0.9898* 0.9721* 0.6484 0.9755* 0.0642
So_3% 0.8839 0.8786 0.864 0.8631 0.9247 0.0042
C14 0.2229 0.2138 0.2506 0.247 0.1668 0.9921*
C21 0.8916 0.853 0.9148 0.9306 0.9541* 0.0541
So_5% 0.8407 0.9187 0.9106 0.9481 0.9497 0.0102
C14 0.9274 0.9816* 0.9759* 0.9947** 0.9945** 0.0666
C17 0.8664 0.9448 0.9351 0.975 0.9694* 0.0303
C27 0.9238 0.9794* 0.9736* 0.9935** 0.9933** 0.0624
Tab.2  Correlations between the abundance of key bacterial families and the alkanes of different chain lengths in treatments of different alkane contamination levels
Fig.4  The relative abundance of 16S rRNA gene in treatments of different alkane contamination levels during degradation process. (a) So_0% and Ss_0% treatments; (b) So_1% and Ss_1% treatments; (c) So_3% and Ss_3% treatments; (d) So_5% and Ss_5% treatments
Fig.5  The relative abundance of alkane-monooxygenase genes in treatments of different alkane contamination levels during degradation process. (a) alk_A alkane-monooxygenase gene; (b) alk_P alkane-monooxygenase gene; (c) alk_R alkane-monooxygenase gene
1 Acer O, Guven K, Bekler F M, Gul-Guven R (2016). Isolation and characterization of long-chain alkane-degrading Acinetobacter sp. BT1A from oil-contaminated soil in Diyarbakir, in the Southeast of Turkey. Bioremediation Journal, 20(1): 80–87
https://doi.org/10.1080/10889868.2015.1096898
2 Alonso-Gutiérrez J, Figueras A, Albaigés J, Jiménez N, Viñas M, Solanas A M, Novoa B (2009). Bacterial communities from shoreline environments (costa da morte, northwestern Spain) affected by the prestige oil spill. Applied and Environmental Microbiology, 75(11): 3407–3418
https://doi.org/10.1128/AEM.01776-08 pmid: 19376924
3 Amouric A, Quéméneur M, Grossi V, Liebgott P P, Auria R, Casalot L (2010). Identification of different alkane hydroxylase systems in Rhodococcus ruber strain SP2B, an hexane-degrading actinomycete. Journal of Applied Microbiology, 108(6): 1903–1916
https://doi.org/10.1111/j.1365-2672.2009.04592.x pmid: 19912429
4 Baek K H, Yoon B D, Cho D H, Kim B H, Oh H M, Kim H S (2009). Monitoring bacterial population dynamics using real-time PCR during the bioremediation of crude-oil-contaminated soil. Journal of Microbiology and Biotechnology, 19(4): 339–345
https://doi.org/10.4014/jmb.0807.423 pmid: 19420987
5 Bamforth S M, Singleton I (2005). Bioremediation of polycyclic aromatic hydrocarbons: Current knowledge and future directions. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 80(7): 723–736
https://doi.org/10.1002/jctb.1276
6 Binazadeh M, Karimi I A, Li Z (2009). Fast biodegradation of long chain n-alkanes and crude oil at high concentrations with Rhodococcus sp. Moj-3449. Enzyme and Microbial Technology, 45(3): 195–202
https://doi.org/10.1016/j.enzmictec.2009.06.001
7 Callaghan A V, Davidova I A, Savage-Ashlock K, Parisi V A, Gieg L M, Suflita J M, Kukor J J, Wawrik B (2010). Diversity of benzyl- and alkylsuccinate synthase genes in hydrocarbon-impacted environments and enrichment cultures. Environmental Science & Technology, 44(19): 7287–7294
https://doi.org/10.1021/es1002023 pmid: 20504044
8 Campeão M E, Reis L, Leomil L, de Oliveira L, Otsuki K, Gardinali P, Pelz O, Valle R, Thompson F L, Thompson C C (2017). The deep-sea microbial community from the Amazonian Basin associated with oil degradation. Frontiers in Microbiology, 8: 1019
https://doi.org/10.3389/fmicb.2017.01019 pmid: 28659874
9 Carls M G, Thedinga J F (2010). Exposure of pink salmon embryos to dissolved polynuclear aromatic hydrocarbons delays development, prolonging vulnerability to mechanical damage. Marine Environmental Research, 69(5): 318–325
https://doi.org/10.1016/j.marenvres.2009.12.006 pmid: 20089299
10 Chandra S, Sharma R, Singh K, Sharma A (2013). Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon. Annals of Microbiology, 63(2): 417–431
https://doi.org/10.1007/s13213-012-0543-3
11 Cheng L, Shi S, Li Q, Chen J, Zhang H, Lu Y (2014). Progressive degradation of crude oil n-alkanes coupled to methane production under mesophilic and thermophilic conditions. PLoS One, 9(11): e113253
https://doi.org/10.1371/journal.pone.0113253 pmid: 25409013
12 Coleman N V, Yau S, Wilson N L, Nolan L M, Migocki M D, Ly M A, Crossett B, Holmes A J (2011). Untangling the multiple monooxygenases of Mycobacterium chubuense strain NBB4, a versatile hydrocarbon degrader. Environmental Microbiology Reports, 3(3): 297–307
https://doi.org/10.1111/j.1758-2229.2010.00225.x pmid: 23761275
13 Das N, Chandran P (2011). Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnology Research International, 2011: 941810
https://doi.org/10.4061/2011/941810 pmid: 21350672
14 Deng S, Ke T, Li L, Cai S, Zhou Y, Liu Y, Guo L, Chen L, Zhang D (2018). Impacts of environmental factors on the whole microbial communities in the rhizosphere of a metal-tolerant plant: Elsholtzia haichowensis Sun. Environmental Pollution, 237: 1088–1097
https://doi.org/10.1016/j.envpol.2017.11.037 pmid: 29153474
15 Ehrlich H L, Newman D K, Kappler A (2015) Ehrlich’s Geomicrobiology. Boca Raton: CRC Press
16 Ekperusi O A,Aigbodion, F I (2015) Bioremediation of petroleum hydrocarbons from crude oil-contaminated soil with the earthworm: Hyperiodrilus africanus. 3 Biotech, 5(6), 957–965
17 Elumalai P, Parthipan P, Karthikeyan O P,Rajasekar A (2017) Enzyme-mediated biodegradation of long-chain n-alkanes (C32 and C40) by thermophilic bacteria. 3 Biotech, 7, 116–126
18 Feng K, Zhang Z, Cai W, Liu W, Xu M, Yin H, Wang A, He Z, Deng Y (2017). Biodiversity and species competition regulate the resilience of microbial biofilm community. Molecular Ecology, 26(21): 6170–6182
https://doi.org/10.1111/mec.14356 pmid: 28926148
19 Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X, Liu R, Wang L (2007). Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proceedings of the National Academy of Sciences of the United States of America, 104(13): 5602–5607
https://doi.org/10.1073/pnas.0609650104 pmid: 17372208
20 Genovese M, Crisafi F, Denaro R, Cappello S, Russo D, Calogero R, Santisi S, Catalfamo M, Modica A, Smedile F, Genovese L, Golyshin P N, Giuliano L, Yakimov M M (2014). Effective bioremediation strategy for rapid in situ cleanup of anoxic marine sediments in mesocosm oil spill simulation. Frontiers in Microbiology, 5: 162
https://doi.org/10.3389/fmicb.2014.00162 pmid: 24782850
21 Haritash A K, Kaushik C P (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. Journal of Hazardous Materials, 169(1-3): 1–15
https://doi.org/10.1016/j.jhazmat.2009.03.137 pmid: 19442441
22 Hasanuzzaman M, Ueno A, Ito H, Ito Y, Yamamoto Y, Yumoto I, Okuyama H (2007). Degradation of long-chain n-alkanes (C-36 and C-40) by Pseudomonas aeruginosa strain WatG. International Biodeterioration & Biodegradation, 59(1): 40–43
https://doi.org/10.1016/j.ibiod.2006.07.010
23 Hasinger M, Scherr K E, Lundaa T, Bräuer L, Zach C, Loibner A P (2012). Changes in iso- and n-alkane distribution during biodegradation of crude oil under nitrate and sulphate reducing conditions. Journal of Biotechnology, 157(4): 490–498
https://doi.org/10.1016/j.jbiotec.2011.09.027 pmid: 22001845
24 Hassanshahian M, Ahmadinejad M, Tebyanian H, Kariminik A (2013). Isolation and characterization of alkane degrading bacteria from petroleum reservoir waste water in Iran (Kerman and Tehran provenances). Marine Pollution Bulletin, 73(1): 300–305
https://doi.org/10.1016/j.marpolbul.2013.05.002 pmid: 23790464
25 Hassanshahian M, Zeynalipour M S, Musa F H (2014). Isolation and characterization of crude oil degrading bacteria from the Persian Gulf (Khorramshahr provenance). Marine Pollution Bulletin, 82(1-2): 39–44
https://doi.org/10.1016/j.marpolbul.2014.03.027 pmid: 24703768
26 Herlemann D P R, Labrenz M, Jürgens K, Bertilsson S, Waniek J J, Andersson A F (2011). Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME Journal, 5(10): 1571–1579
https://doi.org/10.1038/ismej.2011.41 pmid: 21472016
27 Jia J L, Zong S, Hu L, Shi S H, Zhai X B, Wang B B, Li G H, Zhang D Y (2017). The dynamic change of microbial communities in crude oil-contaminated soils from oil fields in China. Soil & Sediment Contamination, 26(2): 171–183
https://doi.org/10.1080/15320383.2017.1264923
28 Jiang B, Li G, Xing Y, Zhang D, Jia J, Cui Z, Luan X, Tang H (2017). A whole-cell bioreporter assay for quantitative genotoxicity evaluation of environmental samples. Chemosphere, 184: 384–392
https://doi.org/10.1016/j.chemosphere.2017.05.159 pmid: 28609744
29 Jiménez N, Viñas M, Bayona J M, Albaiges J, Solanas A M (2007). The Prestige oil spill: Bacterial community dynamics during a field biostimulation assay. Applied Microbiology and Biotechnology, 77(4): 935–945
https://doi.org/10.1007/s00253-007-1229-9 pmid: 17943279
30 Jiménez N, Viñas M, Guiu-Aragonés C, Bayona J M, Albaigés J, Solanas A M (2011). Polyphasic approach for assessing changes in an autochthonous marine bacterial community in the presence of Prestige fuel oil and its biodegradation potential. Applied Microbiology and Biotechnology, 91(3): 823–834
https://doi.org/10.1007/s00253-011-3321-4 pmid: 21562979
31 Jurelevicius D, Alvarez V M, Peixoto R, Rosado A S, Seldin L (2013). The use of a combination of alkB primers to better characterize the distribution of alkane-degrading bacteria. PLoS One, 8(6): e66565
https://doi.org/10.1371/journal.pone.0066565 pmid: 23825163
32 Kilbane J J 2nd (2006). Microbial biocatalyst developments to upgrade fossil fuels. Current Opinion in Biotechnology, 17(3): 305–314
https://doi.org/10.1016/j.copbio.2006.04.005 pmid: 16678400
33 King C E, King G M (2014). Description of Thermogemmatispora carboxidivorans sp. nov., a carbon-monoxide-oxidizing member of the class Ktedonobacteria isolated from a geothermally heated biofilm, and analysis of carbon monoxide oxidation by members of the class Ktedonobacteria. International Journal of Systematic and Evolutionary Microbiology, 64(Pt 4): 1244–1251
https://doi.org/10.1099/ijs.0.059675-0 pmid: 24425739
34 Kulichevskaya I S, Ivanova A A, Baulina O I, Rijpstra W I C, Sinninghe Damsté J S, Dedysh S N (2017). Fimbriiglobus ruber gen. nov., sp. nov., a Gemmata-like planctomycete from Sphagnum peat bog and the proposal of Gemmataceae fam. nov. International Journal of Systematic and Evolutionary Microbiology, 67(2): 218–224
https://doi.org/10.1099/ijsem.0.001598 pmid: 27902209
35 Li H, Boufadel M C (2010). Long-term persistence of oil from the Exxon Valdez spill in two-layer beaches. Nature Geoscience, 3(2): 96–99
https://doi.org/10.1038/ngeo749
36 Liu C, Wang W, Wu Y, Zhou Z, Lai Q, Shao Z (2011). Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5. Environmental Microbiology, 13(5): 1168–1178
https://doi.org/10.1111/j.1462-2920.2010.02416.x pmid: 21261799
37 Liu Q, Tang J, Liu X, Song B, Zhen M, Ashbolt N J (2017). Response of microbial community and catabolic genes to simulated petroleum hydrocarbon spills in soils/sediments from different geographic locations. Journal of Applied Microbiology, 123(4): 875–885
https://doi.org/10.1111/jam.13549 pmid: 28763134
38 Liu X, Chen Y, Zhang X, Jiang X, Wu S, Shen J, Sun X, Li J, Lu L, Wang L (2015). Aerobic granulation strategy for bioaugmentation of a sequencing batch reactor (SBR) treating high strength pyridine wastewater. Journal of Hazardous Materials, 295: 153–160
https://doi.org/10.1016/j.jhazmat.2015.04.025 pmid: 25897697
39 Lo Piccolo L, De Pasquale C, Fodale R, Puglia A M, Quatrini P (2011). Involvement of an alkane hydroxylase system of Gordonia sp. strain SoCg in degradation of solid n-alkanes. Applied and Environmental Microbiology, 77(4): 1204–1213
https://doi.org/10.1128/AEM.02180-10 pmid: 21183636
40 Lu Z, Zeng F, Xue N, Li F (2012). Occurrence and distribution of polycyclic aromatic hydrocarbons in organo-mineral particles of alluvial sandy soil profiles at a petroleum-contaminated site. Science of the Total Environment, 433: 50–57
https://doi.org/10.1016/j.scitotenv.2012.06.036 pmid: 22766427
41 Lueders T (2017). The ecology of anaerobic degraders of BTEX hydrocarbons in aquifers. FEMS Microbiology Ecology, 93(1): 1–13
https://doi.org/10.1093/femsec/fiw220 pmid: 27810873
42 Magoč T, Salzberg S L (2011). FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics (Oxford, England), 27(21): 2957–2963
https://doi.org/10.1093/bioinformatics/btr507 pmid: 21903629
43 Masy T, Demaneche S, Tromme O, Thonart P, Jacques P, Hiligsmann S, Vogel T M (2016). Hydrocarbon biostimulation and bioaugmentation in organic carbon and clay-rich soils. Soil Biology & Biochemistry, 99: 66–74
https://doi.org/10.1016/j.soilbio.2016.04.016
44 Mehdi H, Giti E (2008). Investigation of alkane biodegradation using the microtiter plate method and correlation between biofilm formation, biosurfactant production and crude oil biodegradation. International Biodeterioration & Biodegradation, 62(2): 170–178
https://doi.org/10.1016/j.ibiod.2008.01.004
45 Ni N, Song Y, Shi R, Liu Z, Bian Y, Wang F, Yang X, Gu C, Jiang X (2017). Biochar reduces the bioaccumulation of PAHs from soil to carrot (Daucus carota L.) in the rhizosphere: A mechanism study. Science of the Total Environment, 601-602: 1015–1023
https://doi.org/10.1016/j.scitotenv.2017.05.256 pmid: 28586746
46 Pacwa-Plociniczak M, Plaza G A, Piotrowska-Seget Z (2016). Monitoring the changes in a bacterial community in petroleum-polluted soil bioaugmented with hydrocarbon-degrading strains. Applied Soil Ecology, 105: 76–85
https://doi.org/10.1016/j.apsoil.2016.04.005
47 Pagé A P, Yergeau É, Greer C W (2015). Salix purpurea stimulates the expression of specific bacterial xenobiotic degradation genes in a soil contaminated with hydrocarbons. PLoS One, 10(7): e0132062
https://doi.org/10.1371/journal.pone.0132062 pmid: 26161539
48 Powell S M, Bowman J P, Ferguson S H, Snape I (2010). The importance of soil characteristics to the structure of alkane-degrading bacterial communities on sub-Antarctic Macquarie Island. Soil Biology & Biochemistry, 42(11): 2012–2021
https://doi.org/10.1016/j.soilbio.2010.07.027
49 Powell S M, Ferguson S H, Bowman J P, Snape I (2006). Using real-time PCR to assess changes in the hydrocarbon-degrading microbial community in Antarctic soil during bioremediation. Microbial Ecology, 52(3): 523–532
https://doi.org/10.1007/s00248-006-9131-z pmid: 16944337
50 Ravin, N V, Rakitin A L, Ivanova A A, Beletsky A V, Kulichevskaya I S, Mardanov A V,Dedysh S N (2018) Genome analysis of Fimbriiglobus ruber SP5T, a planctomycete with confirmed chitinolytic capability. Applied and Environmental Microbiology, 84(7): e02645-17
https://doi.org/10.1128/AEM.02645-17
51 Ribeiro H, Mucha A P, Almeida C M R, Bordalo A A (2013). Bacterial community response to petroleum contamination and nutrient addition in sediments from a temperate salt marsh. Science of the Total Environment, 458-460: 568–576
https://doi.org/10.1016/j.scitotenv.2013.04.015 pmid: 23707865
52 Sangwan P, Chen X, Hugenholtz P, Janssen P H (2004).Chthoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, Spartobacteria classis nov., of the phylum Verrucomicrobia. Applied and Environmental Microbiology, 70(10): 5875–5881
https://doi.org/10.1128/AEM.70.10.5875-5881.2004 pmid: 15466527
53 Scherr K E, Lundaa T, Klose V, Bochmann G, Loibner A P (2012). Changes in bacterial communities from anaerobic digesters during petroleum hydrocarbon degradation. Journal of Biotechnology, 157(4): 564–572
https://doi.org/10.1016/j.jbiotec.2011.09.003 pmid: 21939698
54 Setti L, Lanzarini G, Pifferi P G, Spagna G (1993). Further research into the aerobic degradation of N-Alkanes in a heavy oil by a pure culture of a Pseudomonas sp. Chemosphere, 26(6): 1151–1157
https://doi.org/10.1016/0045-6535(93)90202-G
55 Silva E J, Rocha e Silva N M, Rufino R D, Luna J M, Silva R O, Sarubbo L A (2014). Characterization of a biosurfactant produced by Pseudomonas cepacia CCT6659 in the presence of industrial wastes and its application in the biodegradation of hydrophobic compounds in soil. Colloids and Surfaces. B, Biointerfaces, 117: 36–41
https://doi.org/10.1016/j.colsurfb.2014.02.012 pmid: 24613853
56 Smits T H M, Witholt B, van Beilen J B (2003). Functional characterization of genes involved in alkane oxidation by Pseudomonas aeruginosa. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 84(3): 193–200
https://doi.org/10.1023/A:1026000622765 pmid: 14574114
57 Soman C, Li D, Wander M M, Kent A D (2017). Long-term fertilizer and crop-rotation treatments differentially affect soil bacterial community structure. Plant and Soil, 413(1–2): 145–159
https://doi.org/10.1007/s11104-016-3083-y
58 Sun Y, Lu S, Zhao X, Ding A, Wang L (2017). Long-term oil pollution and in situ microbial response of groundwater in Northwest China. Archives of Environmental Contamination and Toxicology, 72(4): 519–529
https://doi.org/10.1007/s00244-017-0405-x pmid: 28466253
59 Throne-Holst M, Markussen S, Winnberg A, Ellingsen T E, Kotlar H K, Zotchev S B (2006). Utilization of n-alkanes by a newly isolated strain of Acinetobacter venetianus: The role of two alkB-type alkane hydroxylases. Applied Microbiology and Biotechnology, 72(2): 353–360
https://doi.org/10.1007/s00253-005-0262-9 pmid: 16520925
60 Tomasek A, Staley C, Wang P, Kaiser T, Lurndahl N, Kozarek J L, Hondzo M, Sadowsky M J (2017). Increased denitrification rates associated with shifts in prokaryotic community composition caused by varying hydrologic connectivity. Frontiers in Microbiology, 8: 2304
https://doi.org/10.3389/fmicb.2017.02304 pmid: 29213260
61 Tourova T P, Sokolova D S, Semenova E M, Shumkova E S, Korshunova A V, Babich T L, Poltaraus A B, Nazina T N (2016). Detection of n-alkane biodegradation genes alkB and ladA in thermophilic hydrocarbon-oxidizing bacteria of the genera Aeribacillus and Geobacillus. Microbiology, 85(6): 693–707
https://doi.org/10.1134/S0026261716060199
62 Trevathan-Tackett S M, Seymour J R, Nielsen D A, Macreadie P I, Jeffries T C, Sanderman J, Baldock J, Howes J M, Steven A D L, Ralph P J (2017). Sediment anoxia limits microbial-driven seagrass carbon remineralization under warming conditions. FEMS Microbiology Ecology, 93(6): fix033
https://doi.org/10.1093/femsec/fix033 pmid: 28334391
63 Vasileiadis S, Puglisi E, Arena M, Cappa F, Cocconcelli P S, Trevisan M (2012). Soil bacterial diversity screening using single 16S rRNA gene V regions coupled with multi-million read generating sequencing technologies. PLoS One, 7(8): e42671
https://doi.org/10.1371/journal.pone.0042671 pmid: 22880076
64 Wang X, Zhao X, Li H, Jia J, Liu Y, Ejenavi O, Ding A, Sun Y, Zhang D (2016). Separating and characterizing functional alkane degraders from crude-oil-contaminated sites via magnetic nanoparticle-mediated isolation. Research in Microbiology, 167(9-10): 731–744
https://doi.org/10.1016/j.resmic.2016.07.004 pmid: 27475037
65 Wang Y, Nie M, Wan Y, Tian X, Nie H, Zi J, Ma X (2017). Functional characterization of two alkane hydroxylases in a versatile Pseudomonas aeruginosa strain NY3. Annals of Microbiology, 67(7): 459–468
https://doi.org/10.1007/s13213-017-1271-5
66 Wentzel A, Ellingsen T E, Kotlar H K, Zotchev S B, Throne-Holst M (2007). Bacterial metabolism of long-chain n-alkanes. Applied Microbiology and Biotechnology, 76(6): 1209–1221
https://doi.org/10.1007/s00253-007-1119-1 pmid: 17673997
67 Wu R R, Dang Z, Yi X Y, Yang C, Lu G N, Guo C L, Liu C Q (2011). The effects of nutrient amendment on biodegradation and cytochrome P450 activity of an n-alkane degrading strain of Burkholderia sp. GS3C. Journal of Hazardous Materials, 186(2-3): 978–983
https://doi.org/10.1016/j.jhazmat.2010.11.095 pmid: 21167642
68 Zengler K, Heider J, Rossello-Mora R, Widdel F (1999). Phototrophic utilization of toluene under anoxic conditions by a new strain of Blastochloris sulfoviridis. Archives of Microbiology, 172(4): 204–212
https://doi.org/10.1007/s002030050761 pmid: 10525736
69 Zhang D, Berry J P, Zhu D, Wang Y, Chen Y, Jiang B, Huang S, Langford H, Li G, Davison P A, Xu J, Aries E, Huang W E (2015). Magnetic nanoparticle-mediated isolation of functional bacteria in a complex microbial community. ISME Journal, 9(3): 603–614
https://doi.org/10.1038/ismej.2014.161 pmid: 25191996
70 Zhang D, Ding A, Cui S, Hu C, Thornton S F, Dou J, Sun Y, Huang W E (2013). Whole cell bioreporter application for rapid detection and evaluation of crude oil spill in seawater caused by Dalian oil tank explosion. Water Research, 47(3): 1191–1200
https://doi.org/10.1016/j.watres.2012.11.038 pmid: 23269319
71 Zhang S, Yao H, Lu Y, Yu X, Wang J, Sun S, Liu M, Li D, Li Y F, Zhang D (2017). Uptake and translocation of polycyclic aromatic hydrocarbons (PAHs) and heavy metals by maize from soil irrigated with wastewater. Scientific Reports, 7(1): 12165
https://doi.org/10.1038/s41598-017-12437-w pmid: 28939846
72 Zhao Q, Li R, Ji M, Ren Z J (2016). Organic content influences sediment microbial fuel cell performance and community structure. Bioresource Technology, 220: 549–556
https://doi.org/10.1016/j.biortech.2016.09.005 pmid: 27619708
73 Zhu L, Wang Y, Jiang L, Lai L, Ding J, Liu N, Li J, Xiao N, Zheng Y, Rimmington G M (2015). Effects of residual hydrocarbons on the reed community after 10 years of oil extraction and the effectiveness of different biological indicators for the long-term risk assessments. Ecological Indicators, 48: 235–243
https://doi.org/10.1016/j.ecolind.2014.08.017
[1] FSE-18032-OF-LYQ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed