Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (4) : 9    https://doi.org/10.1007/s11783-018-1066-3
RESEARCH ARTICLE
Immobilization of NZVI in polydopamine surface-modified biochar for adsorption and degradation of tetracycline in aqueous solution
Xiangyu Wang1, Weitao Lian1, Xin Sun1, Jun Ma2, Ping Ning1()
1. Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
2. School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China
 Download: PDF(505 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Novel method for polydopamine (PDA) modified biochar (BC) with immobilized NZVI.

PDA/NZVI@BC exhibits significantly enhanced activity for tetracycline (TC) removal.

TC removal efficiency was increased by 55.9% compared with that of pristine NZVI.

The mechanism of tetracycline removal by PDA/NZVI@BC was proposed.

Polydopamine/NZVI@biochar composite (PDA/NZVI@BC) with high removal efficiency of tetracycline (TC) in aqueous solutions was successfully synthesized. The resultant composite demonstrated high reactivity, excellent stability and reusability over the reaction course. Such excellent performance can be attributed to the presence of the huge surface area on biochar (BC), which could enhance NZVI dispersion and prolong its longevity. The carbonyl group contained on the surface of biochar could combine with the amino group on polydopamine(PDA). The hydroxyl groups in PDA is able to enhance the dispersion and loading of NZVI on BC. Being modified by PDA, the hydrophilicity of biochar was improved. Among BC, pristine NZVI and PDA/NZVI@BC, PDA/NZVI@BC exhibited the highest activity for removal of TC. Compared with NZVI, the removal efficiency of TC could be increased by 55.9% by using PDA/NZVI@BC under the same conditions. The optimal modification time of PDA was 8h, and the ratio of NZVI to BC was 1:2. In addition, the possible degradation mechanism of TC was proposed, which was based on the analysis of degraded products by LC-MS. Different important factors impacting on TC removal (including mass ratio of NZVI to BC/PDA, initial concentration, pH value and the initial temperature of the solution) were investigated as well. Overall, this study provides a promising alternative material and environmental pollution management option for antibiotic wastewater treatment.

Keywords Biochar      Polydopamine      NZVI      Modification      Tetracycline     
Corresponding Author(s): Ping Ning   
Issue Date: 03 August 2018
 Cite this article:   
Xiangyu Wang,Weitao Lian,Xin Sun, et al. Immobilization of NZVI in polydopamine surface-modified biochar for adsorption and degradation of tetracycline in aqueous solution[J]. Front. Environ. Sci. Eng., 2018, 12(4): 9.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1066-3
https://academic.hep.com.cn/fese/EN/Y2018/V12/I4/9
Fig.1  (a) Comparison of removal efficiency of TC by BC, BC/NZVI, NZVI, and PDA/NZVI@BC (C0 = 20 mg/L; BC dosage= 0.76 g/L, NZVI dosage= 0.24 g/L and PDA/NZVI@BC dosage= 1 g/L (NZVI: BC= 0.24: 0.76); t = 298 K); (b) Comparison of removal efficiency of TC by BC/NZVI with different mass ratio (C0 = 20 mg/L; t = 298 K)
Fig.2  SEM images of BC (a and b), BC/PDA (c), and PDA/NZVI@BC (d)
Fig.3  FTIR spectra of BC and PDA/NZVI@BC
Fig.4  XRD patterns of BC, BC/PDA, PDA/NZVI@BC, and NZVI
Fig.5  Full-range XPS spectra of PDA/NZVI@BC (a); the XPS spectra of C 1s from the surfaces of BC/PDA (b); BC (c); the XPS spectra of O 1s from the surfaces of BC (d); BC/PDA (e)
Fig.6  Parameters affecting the degradation of TC: (a) initial TC concentration (PDA/NZVI@BC dosage= 1.0 g/L; pH= 5.58; t = 298 K); (b) pH value (C0 = 20 mg/L; PDA/NZVI@BC dosage= 1.0 g/L; t = 298 K); (c) temperature (C0 = 20 mg/L; PDA/NZVI@BC dosage= 1.0 g/L; pH= 5.58)
C0
(mg/L)
Dosage
(g)
Initial (pH) T
(K)
Removal (%) Cultimate
(mg/L)
k
(min1)
R2
20 0.2 5.58 298 97.19 0.265 0.1483 0.9989
25 0.2 5.58 298 96.13 5.066 0.0487 0.9962
30 0.2 5.58 298 84.32 15.430 0.0442 0.9948
35 0.2 5.58 298 81.20 32.216 0.0267 0.9861
20 0.2 2.53 298 80.23 13.256 0.0281 0.9960
20 0.2 4.16 298 92.60 12.230 0.0470 0.9763
20 0.2 7.33 298 99.02 0.082 0.0480 0.9988
20 0.2 8.45 298 82.80 31.828 0.0259 0.9895
20 0.2 5.58 288 30.30 132.956 0.0065 0.9847
20 0.2 5.58 308 96.40 4.494 0.0490 0.9937
20 0.1 5.58 298 89.96 10.634 0.0472 0.9909
20 0.3 5.58 298 97.70 0.174 0.0510 0.9978
Tab.1  Fitted data for removal of TC by PDA/NZVI@BC using a two-parameter pseudo-first order decay kinetics model
Fig.7  Conceptual model for possible degradation pathways of TC by PDA/NZVI@BC
1 An B, Liang Q, Zhao D (2011). Removal of arsenic(V) from spent ion exchange brine using a new class of starch-bridged magnetite nanoparticles. Water Research, 45(5): 1961–1972
https://doi.org/10.1016/j.watres.2011.01.004 pmid: 21288549
2 Arshadi M, Abdolmaleki M K, Mousavinia F, Foroughifard S, Karimzadeh A (2017). Nano modification of NZVI with an aquatic plant Azolla filiculoides to remove Pb(II) and Hg(II) from water: Aging time and mechanism study. Journal of Colloid and Interface Science, 486: 296–308
https://doi.org/10.1016/j.jcis.2016.10.002 pmid: 27723483
3 Arshadi M, Soleymanzadeh M, Salvacion J W, SalimiVahid F (2014). Nanoscale Zero-Valent Iron (NZVI) supported on sineguelas waste for Pb(II) removal from aqueous solution: Kinetics, thermodynamic and mechanism. Journal of Colloid and Interface Science, 426: 241–251
https://doi.org/10.1016/j.jcis.2014.04.014 pmid: 24863789
4 Cai Z, Fu J, Du P, Zhao X, Hao X, Liu W, Zhao D (2018). Reduction of nitrobenzene in aqueous and soil phases using carboxymethyl cellulose stabilized zero-valent iron nanoparticles. Chemical Engineering Journal, 332: 227–236
https://doi.org/10.1016/j.cej.2017.09.066
5 Cao M, Wang L, Ai Z, Zhang L (2015). Efficient remediation of pentachlorophenol contaminated soil with tetrapolyphosphate washing and subsequent ZVI/Air treatment. Journal of Hazardous Materials, 292: 27–33
https://doi.org/10.1016/j.jhazmat.2015.03.019 pmid: 25781373
6 Chen S S, Hsu B C, Hung L W (2008). Chromate reduction by waste iron from electroplating wastewater using plug flow reactor. Journal of Hazardous Materials, 152(3): 1092–1097
https://doi.org/10.1016/j.jhazmat.2007.07.086 pmid: 17826895
7 Chen W R, Huang C H (2009). Transformation of tetracyclines mediated by Mn(II) and Cu(II) ions in the presence of oxygen. Environmental Science & Technology, 43(2): 401–407
https://doi.org/10.1021/es802295r pmid: 19238971
8 Daghrir R, Drogui P (2013). Tetracycline antibiotics in the environment: A review. Environmental Chemistry Letters, 11(3): 209–227
https://doi.org/10.1007/s10311-013-0404-8
9 Ding Y H, Floren M, Tan W (2016). Mussel-inspired polydopamine for bio-surface functionalization. Biosurface and Biotribology, 2(4): 121–136
https://doi.org/10.1016/j.bsbt.2016.11.001 pmid: 29888337
10 Dong H, Deng J, Xie Y, Zhang C, Jiang Z, Cheng Y, Hou K, Zeng G (2017). Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution. Journal of Hazardous Materials, 332: 79–86
https://doi.org/10.1016/j.jhazmat.2017.03.002 pmid: 28285109
11 Dong H, Xie Y, Zeng G, Tang L, Liang J, He Q, Zhao F, Zeng Y, Wu Y (2016). The dual effects of carboxymethyl cellulose on the colloidal stability and toxicity of nanoscale zero-valent iron. Chemosphere, 144: 1682–1689
https://doi.org/10.1016/j.chemosphere.2015.10.066 pmid: 26519799
12 Feng J, Zhu B W, Lim T T (2008). Reduction of chlorinated methanes with nano-scale Fe particles: Effects of amphiphiles on the dechlorination reaction and two-parameter regression for kinetic prediction. Chemosphere, 73(11): 1817–1823
https://doi.org/10.1016/j.chemosphere.2008.08.014 pmid: 18809199
13 Ghauch A, Tuqan A, Assi H A (2009). Antibiotic removal from water: elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles. Environmental Pollution, 157(5): 1626–1635
https://doi.org/10.1016/j.envpol.2008.12.024 pmid: 19168269
14 Guan X, Sun Y, Qin H, Li J, Lo I M, He D, Dong H (2015). The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994‒2014). Water Research, 75: 224–248 PMID:25770444
https://doi.org/10.1016/j.watres.2015.02.034
15 He F, Zhao D (2008). Hydrodechlorination of trichloroethene using stabilized Fe-Pd nanoparticles: Reaction mechanism and effects of stabilizers, catalysts and reaction conditions. Applied Catalysis B: Environmental, 84(3-4): 533–540
https://doi.org/10.1016/j.apcatb.2008.05.008
16 Hsieh W P, Pan J R, Huang C, Su Y C, Juang Y J (2010). Enhance the photocatalytic activity for the degradation of organic contaminants in water by incorporating TiO2 with zero-valent iron. Science of the Total Environment, 408(3): 672–679
https://doi.org/10.1016/j.scitotenv.2009.07.038 pmid: 19896167
17 Jeong J, Song W, Cooper W J, Jung J, Greaves J (2010). Degradation of tetracycline antibiotics: Mechanisms and kinetic studies for advanced oxidation/reduction processes. Chemosphere, 78(5): 533–540
https://doi.org/10.1016/j.chemosphere.2009.11.024 pmid: 20022625
18 Jiang J, Zhu L, Zhu L, Zhang H, Zhu B, Xu Y (2013). Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly(N-vinyl pyrrolidone). ACS Applied Materials & Interfaces, 5(24): 12895–12904
https://doi.org/10.1021/am403405c pmid: 24313803
19 Lee H, Dellatore S M, Miller W M, Messersmith P B (2007). Mussel-inspired surface chemistry for multifunctional coatings. Science, 318(5849): 426–430
https://doi.org/10.1126/science.1147241 pmid: 17947576
20 Li J, Bao H, Xiong X, Sun Y, Guan X (2015a). Effective Sb(V) immobilization from water by zero-valent iron with weak magnetic field. Separation and Purification Technology, 151: 276–283
https://doi.org/10.1016/j.seppur.2015.07.056
21 Li R, Jin X, Megharaj M, Naidu R, Chen Z (2015b). Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system. Chemical Engineering Journal, 264: 587–594
https://doi.org/10.1016/j.cej.2014.11.128
22 Li Y, Cheng W, Sheng G, Li J, Dong H, Chen Y, Zhu L (2015c). Synergetic effect of a pillared bentonite support on Se(VI) removal by nanoscale zero valent iron. Applied Catalysis B: Environmental, 174–175: 329–335
https://doi.org/10.1016/j.apcatb.2015.03.025
23 Loget G, Yoo J E, Mazare A, Wang L, Schmuki P (2015). Highly controlled coating of biomimetic polydopamine in TiO2 nanotubes. Electrochemistry Communications, 52: 41–44
https://doi.org/10.1016/j.elecom.2015.01.011
24 Lyu H, Zhao H, Tang J, Gong Y, Huang Y, Wu Q, Gao B (2018). Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite. Chemosphere, 194: 360–369
https://doi.org/10.1016/j.chemosphere.2017.11.182 pmid: 29223115
25 Rodriguez-Mozaz S, Chamorro S, Marti E, Huerta B, Gros M, Sànchez-Melsió A, Borrego C M, Barceló D, Balcázar J L (2015). Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Research, 69: 234–242
https://doi.org/10.1016/j.watres.2014.11.021 pmid: 25482914
26 Sarmah A K, Meyer M T, Boxall A B (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65(5): 725–759
https://doi.org/10.1016/j.chemosphere.2006.03.026 pmid: 16677683
27 Sever M J, Weisser J T, Monahan J, Srinivasan S, Wilker J J (2004). Metal-mediated cross-linking in the generation of a marine-mussel adhesive. Angewandte Chemie, 116: 43(4): 448–450
28 Shao B, Liu L F, Yang F L, Shan D N, Yuan H (2012). Membrane modification using polydopamine and/or PDA coated TiO2 nano particles for wastewater treatment. Procedia Engineering, 44: 1431–1432
https://doi.org/10.1016/j.proeng.2012.08.815
29 Shen W, Mu Y, Wang B, Ai Z H, Zhang L Z (2017). Enhanced aerobic degradation of 4-chlorophenol with iron-nickel nanoparticles. Applied Surface Science, 393: 316–324
https://doi.org/10.1016/j.apsusc.2016.10.020
30 Shi L N, Zhang X, Chen Z L (2011). Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Research, 45(2): 886–892
https://doi.org/10.1016/j.watres.2010.09.025 pmid: 20950833
31 Su H, Fang Z, Tsang P E, Fang J, Zhao D (2016b). Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil. Environmental Pollution, 214: 94–100
https://doi.org/10.1016/j.envpol.2016.03.072 pmid: 27064615
32 Su H, Fang Z, Tsang P E, Zheng L, Cheng W, Fang J, Zhao D (2016a). Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles. Journal of Hazardous Materials, 318: 533–540
https://doi.org/10.1016/j.jhazmat.2016.07.039 pmid: 27469041
33 Su J, Lin S, Chen Z, Megharaj M, Naidu R (2011). Dechlorination of p-chlorophenol from aqueous solution using bentonite supported Fe/Pd nanoparticles: Synthesis, characterization and kinetics. Desalination, 280(1-3): 167–173
https://doi.org/10.1016/j.desal.2011.06.067
34 Wang X, Chen C, Liu H, Ma J (2008). Preparation and characterization of PAA/PVDF membrane-immobilized Pd/Fe nanoparticles for dechlorination of trichloroacetic acid. Water Research, 42(18): 4656–4664
https://doi.org/10.1016/j.watres.2008.08.005 pmid: 18775551
35 Xi Z Y, Xu Y Y, Zhu L P, Wang Y, Zhu B K (2009). A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine). Journal of Membrane Science, 327(1-2): 244–253
https://doi.org/10.1016/j.memsci.2008.11.037
36 Yang K, Yue Q, Han W, Kong J, Gao B, Zhao P, Duan L (2015). Effect of novel sludge and coal cinder ceramic media in combined anaerobic–aerobic bio-filter for tetracycline wastewater treatment at low temperature. Chemical Engineering Journal, 277: 130–139
https://doi.org/10.1016/j.cej.2015.04.114
37 Yang L, Phua S L, Teo J K H, Toh C L, Lau S K, Ma J, Lu X (2011). A biomimetic approach to enhancing interfacial interactions: polydopamine-coated clay as reinforcement for epoxy resin. ACS Applied Materials & Interfaces, 3(8): 3026–3032
https://doi.org/10.1021/am200532j pmid: 21728371
38 Yin W, Wu J, Li P, Lin G, Wang X, Zhu B, Yang B (2012a). Reductive transformation of pentachloronitrobenzene by zero-valent iron and mixed anaerobic culture. Chemical Engineering Journal, 210: 309–315
https://doi.org/10.1016/j.cej.2012.09.003
39 Yin W, Wu J, Li P, Wang X, Zhu N, Wu P, Yang B (2012b). Experimental study of zero-valent iron induced nitrobenzene reduction in groundwater: The effects of pH, iron dosage, oxygen and common dissolved anions. Chemical Engineering Journal, 184: 198–204
https://doi.org/10.1016/j.cej.2012.01.030
40 Yu J, Kan Y, Rapp M, Danner E, Wei W, Das S, Miller D R, Chen Y, Waite J H, Israelachvili J N (2013). Adaptive hydrophobic and hydrophilic interactions of mussel foot proteins with organic thin films. Proceedings of the National Academy of Sciences of the United States of America, 110(39): 15680–15685
https://doi.org/10.1073/pnas.1315015110 pmid: 24014592
41 Zabihi Z, Araghi H (2016a). Effect of functional groups on thermal conductivity of graphene/paraffin nanocomposite. Physics Letters, 380(45): 3828–3831
https://doi.org/10.1016/j.physleta.2016.09.028
42 Zabihi Z, Araghi H (2016b). Monte Carlo simulations of effective electrical conductivity of graphene/poly(methyl methacrylate) nanocomposite: Landauer-Buttiker approach. Synthetic Metals, 217: 87–93
https://doi.org/10.1016/j.synthmet.2016.03.024
43 Zhu H, Jia Y, Wu X, Wang H (2009). Removal of arsenic from water by supported nano zero-valent iron on activated carbon. Journal of Hazardous Materials, 172(2-3): 1591–1596
https://doi.org/10.1016/j.jhazmat.2009.08.031 pmid: 19733972
[1] FSE-18034-OF-WXY_suppl_1 Download
[1] Chengjie Xue, Juan Wu, Kuang Wang, Yunqiang Yi, Zhanqiang Fang, Wen Cheng, Jianzhang Fang. Effects of different types of biochar on the properties and reactivity of nano zero-valent iron in soil remediation[J]. Front. Environ. Sci. Eng., 2021, 15(5): 101-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Zhifei Ma, Huali Cao, Fengchun Lv, Yu Yang, Chen Chen, Tianxue Yang, Haixin Zheng, Daishe Wu. Preparation of nZVI embedded modified mesoporous carbon for catalytic persulfate to degradation of reactive black 5[J]. Front. Environ. Sci. Eng., 2021, 15(5): 98-.
[4] Xiling Li, Tianwei Hao, Yuxin Tang, Guanghao Chen. A “Seawater-in-Sludge” approach for capacitive biochar production via the alkaline and alkaline earth metals activation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 3-.
[5] Lu Song, Can Wang, Yizhu Wang. Optimized determination of airborne tetracycline resistance genes in laboratory atmosphere[J]. Front. Environ. Sci. Eng., 2020, 14(6): 95-.
[6] Wenqing Xu, Mark L. Segall, Zhao Li. Reactivity of Pyrogenic Carbonaceous Matter (PCM) in mediating environmental reactions: Current knowledge and future trends[J]. Front. Environ. Sci. Eng., 2020, 14(5): 86-.
[7] Haiyan Yang, Shangping Xu, Derek E. Chitwood, Yin Wang. Ceramic water filter for point-of-use water treatment in developing countries: Principles, challenges and opportunities[J]. Front. Environ. Sci. Eng., 2020, 14(5): 79-.
[8] Nima Kamali, Abdollah Rashidi Mehrabadi, Maryam Mirabi, Mohammad Ali Zahed. Synthesis of vinasse-dolomite nanocomposite biochar via a novel developed functionalization method to recover phosphate as a potential fertilizer substitute[J]. Front. Environ. Sci. Eng., 2020, 14(4): 70-.
[9] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[10] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[11] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[12] Jiaxue Yu, Junqing Xu, Zhenchen Li, Wenzhi He, Juwen Huang, Junshi Xu, Guangming Li. Upgrading pyrolytic carbon-blacks (CBp) from end-of-life tires: Characteristics and modification methodologies[J]. Front. Environ. Sci. Eng., 2020, 14(2): 19-.
[13] Kubra Ulucan-Altuntas, Eyup Debik. Dechlorination of dichlorodiphenyltrichloroethane (DDT) by Fe/Pd bimetallic nanoparticles: Comparison with nZVI, degradation mechanism, and pathways[J]. Front. Environ. Sci. Eng., 2020, 14(1): 17-.
[14] Ravikumar KVG, Debayan Ghosh, Mrudula Pulimi, Chandrasekaran Natarajan, Amitava Mukherjee. In situ formation of bimetallic FeNi nanoparticles on sand through green technology: Application for tetracycline removal[J]. Front. Environ. Sci. Eng., 2020, 14(1): 16-.
[15] Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang. Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene[J]. Front. Environ. Sci. Eng., 2019, 13(4): 61-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed