Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (5) : 13    https://doi.org/10.1007/s11783-018-1069-0
RESEARCH ARTICLE
Feasibility assessment of up-flow anaerobic sludge blanket treatment of sulfamethoxazole pharmaceutical wastewater
Yi Chen1, Shilong He1(), Mengmeng Zhou1, Tingting Pan1, Yujia Xu1, Yingxin Gao2,3(), Hengkang Wang4
1. School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, China
2. State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
3. University of the Chinese Academy of Sciences, Beijing 100019, China
4. Shanxi Research Center for Eco-Environmental Sciences, Taiyuan 030000, China
 Download: PDF(1205 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The UASB system successfully treated sulfamethoxazole pharmaceutical wastewater.

High concentration sulfate of this wastewater was the main refractory factor.

UASB recovery performance after a few days of inflow arrest was studied.

The optimal UASB operating conditions for practical application were determined.

Treatment of sulfamethoxazole pharmaceutical wastewater is a big challenge. In this study, a series of anaerobic evaluation tests on pharmaceutical wastewater from different operating units was conducted to evaluate the feasibility of using anaerobic digestion, and the results indicated that the key refractory factor for anaerobic treatment of this wastewater was the high sulfate concentration. A laboratory-scale up-flow anaerobic sludge blanket (UASB) reactor was operated for 195 days to investigate the effects of the influent chemical oxygen demand (COD), organic loading rate (OLR), and COD/SO42? ratio on the biodegradation of sulfamethoxazole in pharmaceutical wastewater and the process performance. The electron flow indicated that methanogenesis was still the dominant reaction although sulfidogenesis was enhanced with a stepwise decrease in the influent COD/SO42? ratio. For the treated sulfamethoxazole pharmaceutical wastewater, a COD of 4983 mg/L (diluted by 50%), OLR of 2.5 kg COD/(m3·d), and COD/SO42? ratio of more than 5 were suitable for practical applications. The recovery performance indicated that the system could resume operation quickly even if production was halted for a few days.

Keywords Up-flow anaerobic sludge blanket (UASB)      Methane production      Sulfate reduction      Sulfamethoxazole pharmaceutical wastewater      Electron flow      Recovery     
Corresponding Author(s): Shilong He,Yingxin Gao   
Issue Date: 31 August 2018
 Cite this article:   
Yi Chen,Shilong He,Mengmeng Zhou, et al. Feasibility assessment of up-flow anaerobic sludge blanket treatment of sulfamethoxazole pharmaceutical wastewater[J]. Front. Environ. Sci. Eng., 2018, 12(5): 13.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1069-0
https://academic.hep.com.cn/fese/EN/Y2018/V12/I5/13
Wastewater Flow rate
(m3/d)
Major ingredients pH COD
(mg/L)
Sulfate
(mg/L)
COD/SO42?
Amide wastewater 80 Na2SO4, (NH4)2SO4, Na2C2O4, (NH4)2C2O4, C2H4Cl2, amide 6.2 42000–46000 3000–5000 9.2–14
Acetylsulfanilyl Chloride (ASC) wastewater 30 Na2SO4, NaCl, sodium sulfanilate, ASC 1.5 15000 2000–2200 6.8–7.5
Dimethyl oxalate wastewater 80 (NH4)2C2O4, (NH4)2SO4, C2H4Cl2, CH3OH 5 20000–24000 5000–8000 3–4
Refined wastewater 100 Na2SO4, NaCl, sulfamethoxazole 4.8 4400–5000 18000–20000 0.24–0.25
Amino content wastewater 60 CHCl3, NaOH, NaCl, Na2CO3, amino compounds 14 20000–22000 200–1000 22–100
Condensation wastewater 130 Na2SO4, CH3COOH, sulfamethoxazole,
ammonia nitrobenzene, condensation compounds
6.2 27000–30000 16000–20000 1.5–1.7
Tab.1  Characteristics of wastewaters originating from different units in the sulfamethoxazole production process
Number Wastewater Raw water volume
(mL)
Sludge volume
(mL)
1 Amide wastewater 220 30
2 ASC wastewater 220 30
3 Dimethyl oxalate wastewater 220 30
4 Refined wastewater 220 30
5 Amino content wastewater 220 30
6 Condensation wastewater 220 30
7 Condensation wastewater after desulfuration 220 30
8 Refined wastewater after desulfuration 220 30
9 (blank control) Tap water 220 30
Tab.2  Sulfamethoxazole pharmaceutical wastewaters from different units in the vials
Number Raw water volume (mL) Tap water volume (mL) Sludge volume (mL) Dilution ratio (%) COD concentration (mg/L)
1 220 0 30 0 9850
2 176 44 30 20 7165
3 110 110 30 50 4983
4 66 154 30 70 2920
5 44 176 30 80 2012
6 22 198 30 90 1122
7 (blank control) 0 220 30 100 256
Tab.3  Different dilution ratios of raw water in the vials
Period Operating time (d) HRT
(h)
COD (mg/L) Dilution ratio (%) OLR
(kg COD/(m3·d))
COD/SO42?
I 1?20 96 2012 80 0.5 10
21?28 96 2920 70 0.7 10
29?37 96 4983 50 1.2 10
38?49 96 7165 20 1.8 10
II 50?57 72 4983 50 1.7 10
58?66 48 4983 50 2.5 10
67?79 36 4983 50 3.3 10
80?96 24 4983 50 5.0 10
III 97?110 48 4983 50 2.5 7
111?124 48 4983 50 2.5 5
125?141 48 4983 50 2.5 4
142?160 48 4983 50 2.5 3
IV 161?165 ? ? ?
V 166?195 48 4983 50 2.5 10
Tab.4  Operational conditions of the UASB reactor
Fig.1  Schematic diagram of the UASB system setup
Fig.2  Methane production (a) yield and (b) rate (deduction of blank) of wastewaters of different process units
Fig.3  Effect of different dilutions on (a) methane production yield and (b) methane production and COD per unit volume of raw water
Fig.4  Overall performance of the UASB system during continuous operation: (a) OLR, (b) influent and effluent COD concentrations, (c) methane production, (d) influent and effluent sulfate concentrations, (e) effluent dissolved sulfide concentration, and (f) effluent VFA concentration
Fig.5  Effects of (a) COD concentration and (b) OLR on COD removal efficiency and methane production and the effects of COD/SO42? ratio on (c) COD removal efficiency, sulfate removal efficiency, methane production and (d) H2S concentration; **, P<0.01 indicates extremely significant difference whereas *, P<0.05 indicates significant difference
Reactor Carbon resource Antibiotic type and concentration
(mg/L)
COD concentration (mg/L) OLR
(kg COD
/(m3·d))
COD removal efficiency
(%)
Methane production
(mL/d)
Reference
ASBRa Starch, glucose, sodium acetate, sodium butyrate, sodium propionate / 2200 2.3 97.8 1004 (Cetecioglu et al., 2016)
Sulfamethoxazole, 45 2200 2.3 25 96
AFBRb Glucose, acetate / 3000 3 93 12740 (Li et al., 2017)
Benzothiazole, 40 3000 3 80.9 11220
SBRc Starch, glucose, sodium acetate, sodium butyrate, sodium propionate Erythromycin, 25; tetracycline, 2.5; sulfamethoxazole, 2.5 2500 1 65 600 (Aydin et al., 2015)
Sulfamethoxazole, 2.5; tetracycline, 2.5 2500 1 10 100
UASB+ CSTRd Glucose Sulfamerazine, 90 3000 3.6–3.8 68 2850 (Sponza and Demirden, 2007)
UASB Acetate, dicarboxyl, trichloromethane, methanol, sulfamethoxazole, etc. Sulfamethoxazole, sodium sulfanilate, etc. 4983 1.2 58 312 This research
Tab.5  Summary of relevant literature regarding the effects of antibiotics on COD removal efficiency and methane production
Fig.6  Effects of COD/SO42? ratio on (a) COD conversion, (b) sulfate conversion, and (c) electron flow
Reactor Substance HRT
(h)
OLR
(kg COD /(m3·d))
COD/SO42?
/
MPA
(%)
SRB
(%)
Reference
UASB Acetate, ethanol 4 11.9 3 82 18 (Hu et al., 2015)
UASB Starch 6 4 3 81 19 (Lu et al., 2016)
UASB Acetate, ethanol 4 18 1 70 30 (Jing et al., 2013)
UASB Ethanol 5 1.6 2 21 79 (Hoa et al., 2007)
Bioreactor Waste sewage sludge 240 1 2 4 96 (Jeong et al., 2009)
UASB Acetate, dicarboxyl, trichloromethane, methanol, sulfamethoxazole, etc. 48 2.5 3 63 37 This research
Tab.6  Summary of relevant literature on electron flow
1 APHA (2005). Standard methods for the examination of water and wastewater. American Water Works Association/American Public Works Association/Water Environment Federation, 21st ed. American Public Health Association, Washington DC, USA
2 Aydin S, Ince B, Cetecioglu Z, Arikan O, Ozbayram E G, Shahi A, Ince O (2015). Combined effect of erythromycin, tetracycline and sulfamethoxazole on performance of anaerobic sequencing batch reactors. Bioresource Technology, 186(3): 207–214
https://doi.org/10.1016/j.biortech.2015.03.043 pmid: 25817031
3 Cetecioglu Z, Ince B, Gros M, Rodriguez-Mozaz S, Barceló D, Ince O, Orhon D (2015). Biodegradation and reversible inhibitory impact of sulfamethoxazole on the utilization of volatile fatty acids during anaerobic treatment of pharmaceutical industry wastewater. Science of the Total Environment, 536(7): 667–674
https://doi.org/10.1016/j.scitotenv.2015.07.139 pmid: 26254068
4 Cetecioglu Z, Ince B, Orhon D, Ince O (2016). Anaerobic sulfamethoxazole degradation is driven by homoacetogenesis coupled with hydrogenotrophic methanogenesis. Water Research, 90(12): 79–89
https://doi.org/10.1016/j.watres.2015.12.013 pmid: 26724442
5 Chen Q Q, Wu W D, Zhang Z Z, Xu J J, Jin R C (2017). Inhibitory effects of sulfamethoxazole on denitrifying granule properties: Short- and long-term tests. Bioresource Technology, 233(2): 391–398
https://doi.org/10.1016/j.biortech.2017.02.102 pmid: 28288432
6 Chen Z, Wang H, Chen Z, Ren N, Wang A, Shi Y, Li X (2011). Performance and model of a full-scale up-flow anaerobic sludge blanket (UASB) to treat the pharmaceutical wastewater containing 6-APA and amoxicillin. Journal of Hazardous Materials, 185(2-3): 905–913
https://doi.org/10.1016/j.jhazmat.2010.09.106 pmid: 20970923
7 Das B K, Roy S, Dev S, Das D, Bhattacharya J (2015). Improvement of the degradation of sulfate rich wastewater using sweetmeat waste (SMW) as nutrient supplement. Journal of Hazardous Materials, 300(8): 796–807
https://doi.org/10.1016/j.jhazmat.2015.08.013 pmid: 26322967
8 Hoa T T H, Liamleam W, Annachhatre A P (2007). Lead removal through biological sulfate reduction process. Bioresource Technology, 98(13): 2538–2548
https://doi.org/10.1016/j.biortech.2006.09.060 pmid: 17174088
9 Hu Y, Jing Z, Sudo Y, Niu Q, Du J, Wu J, Li Y Y (2015). Effect of influent COD/SO42‒ratios on UASB treatment of a synthetic sulfate-containing wastewater. Chemosphere, 130(2): 24–33
https://doi.org/10.1016/j.chemosphere.2015.02.019 pmid: 25747303
10 Isa Z, Grusenmeyer S, Verstraete W (1986). Sulfate reduction relative to methane production in high-rate anaerobic digestion: microbiological aspects. Applied and Environmental Microbiology, 51(3): 580–587
pmid: 16347019
11 Jeong T Y, Chung H K, Yeom S H, Choi S S (2009). Analysis of methane production inhibition for treatment of sewage sludge containing sulfate using an anaerobic continuous degradation process. Korean Journal of Chemical Engineering, 26(5): 1319–1322
https://doi.org/10.1007/s11814-009-0229-0
12 Jia Y, Khanal S K, Zhang H, Chen G H, Lu H (2017). Sulfamethoxazole degradation in anaerobic sulfate-reducing bacteria sludge system. Water Research, 119(4): 12–20
https://doi.org/10.1016/j.watres.2017.04.040 pmid: 28433879
13 Jing Z, Hu Y, Niu Q, Liu Y, Li Y Y, Wang X C (2013). UASB performance and electron competition between methane-producing archaea and sulfate-reducing bacteria in treating sulfate-rich wastewater containing ethanol and acetate. Bioresource Technology, 137(11): 349–357
https://doi.org/10.1016/j.biortech.2013.03.137 pmid: 23597763
14 Kaksonen A H, Puhakka J A (2007). Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals. Engineering in Life Sciences, 7(6): 541–564
https://doi.org/10.1002/elsc.200720216
15 Kiyuna L S M, Fuess L T, Zaiat M (2017). Unraveling the influence of the COD/sulfate ratio on organic matter removal and methane production from the biodigestion of sugarcane vinasse. Bioresource Technology, 232(2): 103–112
https://doi.org/10.1016/j.biortech.2017.02.028 pmid: 28214696
16 Li W, Niu Q, Hong Z, Zhe T, Yu Z, Gao Y, Li Y Y, Nishimura O, Min Y (2015). UASB treatment of chemical synthesis-based pharmaceutical wastewater containing rich organic sulfur compounds and sulfate and associated microbial characteristics. Chemical Engineering Journal, 260(8): 55–63
17 Li Y, Hu Q, Chen C H, Wang X L, Gao D W (2017). Performance and microbial community structure in an integrated anaerobic fluidized-bed membrane bioreactor treating synthetic benzothiazole contaminated wastewater. Bioresource Technology, 236(3): 1–10
pmid: 28390271
18 Liu Z H, Maszenan A M, Liu Y, Ng W J (2015). A brief review on possible approaches towards controlling sulfate-reducing bacteria (SRB) in wastewater treatment systems. Desalination and Water Treatment, 53(10): 2799–2807
https://doi.org/10.1080/19443994.2014.943023
19 Lu X, Zhen G, Ni J, Hojo T, Kubota K, Li Y Y (2016). Effect of influent COD/SO42‒ ratios on biodegradation behaviors of starch wastewater in an upflow anaerobic sludge blanket (UASB) reactor. Bioresource Technology, 214(4): 175–183
https://doi.org/10.1016/j.biortech.2016.04.100 pmid: 27132225
20 Mizuno O, Li Y Y, Noike T (1994). Effects of sulfate concentration and sludge retention time on the interaction between methane production and sulfate reduction for butyrate. Water Science and Technology, 30(8): 45–54
https://doi.org/10.2166/wst.1994.0378
21 Sabumon P C (2008). Development of enhanced sulphidogenesis process for the treatment of wastewater having low COD/SO42‒ ratio. Journal of Hazardous Materials, 159(2-3): 616–625
https://doi.org/10.1016/j.jhazmat.2008.02.097 pmid: 18400386
22 Shin H S, Oh S E, Lee C Y (1997). Influence of sulfur compounds and heavy metals on the methanization of tannery wastewater. Water Science and Technology, 35(8): 239–245
https://doi.org/10.2166/wst.1997.0319
23 Sponza D T, Demirden P (2007). Treatability of sulfamerazine in sequential upflow anaerobic sludge blanket reactor (UASB)/completely stirred tank reactor (CSTR) processes. Separation and Purification Technology, 56(1): 108–117
https://doi.org/10.1016/j.seppur.2006.07.013
24 Svojitka J, Dvořák L, Studer M, Straub J O, Frömelt H, Wintgens T (2017). Performance of an anaerobic membrane bioreactor for pharmaceutical wastewater treatment. Bioresource Technology, 229(1): 180–189
https://doi.org/10.1016/j.biortech.2017.01.022 pmid: 28113077
25 Tursman J F, Cork D (1989). Influence of sulfate and sulfate-reducing bacteria on anaerobic digestion technology. Advances in Biotechnological Processes, 12(1): 273–285
26 Vallero M V G, Lettinga G, Lens P N L (2005). High rate sulfate reduction in a submerged anaerobic membrane bioreactor (SAMBaR) at high salinity. Journal of Membrane Science, 253(1-2): 217–232
https://doi.org/10.1016/j.memsci.2004.12.032
27 Weijma J, Stams A J, Hulshoff Pol L W, Lettinga G (2000). Thermophilic sulfate reduction and methanogenesis with methanol in a high rate anaerobic reactor. Biotechnology and Bioengineering, 67(3): 354–363
https://doi.org/10.1002/(SICI)1097-0290(20000205)67:3<354::AID-BIT12>3.0.CO;2-X pmid: 10620266
[1] Ying Xu, Hui Gong, Xiaohu Dai. High-solid anaerobic digestion of sewage sludge: achievements and perspectives[J]. Front. Environ. Sci. Eng., 2021, 15(4): 71-.
[2] Guoliang Zhang, Liang Zhang, Xiaoyu Han, Shujun Zhang, Yongzhen Peng. Start-up of PN-anammox system under low inoculation quantity and its restoration after low-loading rate shock[J]. Front. Environ. Sci. Eng., 2021, 15(2): 32-.
[3] Kuo Fang, Fei Peng, Hui Gong, Huanzhen Zhang, Kaijun Wang. Ammonia removal from low-strength municipal wastewater by powdered resin combined with simultaneous recovery as struvite[J]. Front. Environ. Sci. Eng., 2021, 15(1): 8-.
[4] Xiling Li, Tianwei Hao, Yuxin Tang, Guanghao Chen. A “Seawater-in-Sludge” approach for capacitive biochar production via the alkaline and alkaline earth metals activation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 3-.
[5] Mona Akbar, Muhammad Farooq Saleem Khan, Ling Qian, Hui Wang. Degradation of polyacrylamide (PAM) and methane production by mesophilic and thermophilic anaerobic digestion: Effect of temperature and concentration[J]. Front. Environ. Sci. Eng., 2020, 14(6): 98-.
[6] Lingchen Kong, Xitong Liu. Emerging electrochemical processes for materials recovery from wastewater: Mechanisms and prospects[J]. Front. Environ. Sci. Eng., 2020, 14(5): 90-.
[7] Linlin Cai, Xiangyang Sun, Dan Hao, Suyan Li, Xiaoqiang Gong, Hao Ding, Kefei Yu. Sugarcane bagasse amendment improves the quality of green waste vermicompost and the growth of Eisenia fetida[J]. Front. Environ. Sci. Eng., 2020, 14(4): 61-.
[8] Wenchao Xue, May Zaw, Xiaochan An, Yunxia Hu, Allan Sriratana Tabucanon. Sea salt bittern-driven forward osmosis for nutrient recovery from black water: A dual waste-to-resource innovation via the osmotic membrane process[J]. Front. Environ. Sci. Eng., 2020, 14(2): 32-.
[9] Bin Liang, Deyong Kong, Mengyuan Qi, Hui Yun, Zhiling Li, Ke Shi, E Chen, Alisa S. Vangnai, Aijie Wang. Anaerobic biodegradation of trimethoprim with sulfate as an electron acceptor[J]. Front. Environ. Sci. Eng., 2019, 13(6): 84-.
[10] Jun Li, Wentao Li, Gan Luo, Yan Li, Aimin Li. Effect of nitrobenzene on the performance and bacterial community in an expanded granular sludge bed reactor treating high-sulfate organic wastewater[J]. Front. Environ. Sci. Eng., 2019, 13(1): 6-.
[11] Biswajit Debnath, Ranjana Chowdhury, Sadhan Kumar Ghosh. Sustainability of metal recovery from E-waste[J]. Front. Environ. Sci. Eng., 2018, 12(6): 2-.
[12] Zechong Guo, Lei Gao, Ling Wang, Wenzong Liu, Aijie Wang. Enhanced methane recovery and exoelectrogen-methanogen evolution from low-strength wastewater in an up-flow biofilm reactor with conductive granular graphite fillers[J]. Front. Environ. Sci. Eng., 2018, 12(4): 13-.
[13] Lin Lin, Ying-yu Li, Xiao-yan Li. Acidogenic sludge fermentation to recover soluble organics as the carbon source for denitrification in wastewater treatment: Comparison of sludge types[J]. Front. Environ. Sci. Eng., 2018, 12(4): 3-.
[14] Akshay Jain, Zhen He. “NEW” resource recovery from wastewater using bioelectrochemical systems: Moving forward with functions[J]. Front. Environ. Sci. Eng., 2018, 12(4): 1-.
[15] Zhi-Long Ye, Yujun Deng, Yaoyin Lou, Xin Ye, Shaohua Chen. Occurrence of veterinary antibiotics in struvite recovery from swine wastewater by using a fluidized bed[J]. Front. Environ. Sci. Eng., 2018, 12(3): 7-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed