Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (4) : 13    https://doi.org/10.1007/s11783-018-1074-3
RESEARCH ARTICLE
Enhanced methane recovery and exoelectrogen-methanogen evolution from low-strength wastewater in an up-flow biofilm reactor with conductive granular graphite fillers
Zechong Guo1, Lei Gao1, Ling Wang1, Wenzong Liu2(), Aijie Wang1,2
1. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150001, China
2. Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
 Download: PDF(513 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Methane yield increased 22 times from low-strength wastewater by applying conductive fillers.

Conductive fillers accelerated the start-up stage of anaerobic biofilm reactor.

Conductive fillers altered methanogens structure.

Methane production from low-strength wastewater (LSWW) is generally difficult because of the low metabolism rate of methanogens. Here, an up-flow biofilm reactor equipped with conductive granular graphite (GG) as fillers was developed to enhance direct interspecies electron transfer (DIET) between syntrophic electroactive bacteria and methanogens to stimulate methanogenesis process. Compared to quartz sand fillers, using conductive fillers significantly enhanced methane production and accelerated the start-up stage of biofilm reactor. At HRT of 6 h, the average methane production rate and methane yield of reactor with GG were 0.106 m3/(m3.d) and 74.5 L/kg COD, which increased by 34.3 times and 22.4 times respectively compared with the reactor with common quartz sand fillers. The microbial community analysis revealed that methanogens structure was significantly altered and the archaea that are involved in DIET (such as Methanobacterium) were enriched in GG filler. The beneficial effects of conductive fillers on methane production implied a practical strategy for efficient methane recovery from LSWW.

Keywords Low-strength wastewater      Methane production      Conductive filler      Microbial community structure     
Corresponding Author(s): Wenzong Liu   
Issue Date: 17 August 2018
 Cite this article:   
Zechong Guo,Lei Gao,Ling Wang, et al. Enhanced methane recovery and exoelectrogen-methanogen evolution from low-strength wastewater in an up-flow biofilm reactor with conductive granular graphite fillers[J]. Front. Environ. Sci. Eng., 2018, 12(4): 13.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1074-3
https://academic.hep.com.cn/fese/EN/Y2018/V12/I4/13
Fig.1  Schematic diagram of reactor configuration
Fig.2  Organic load and methane production rate (a); COD removal and methane yield (b) in QS and GG under different HRT conditions
Fig.3  COD balance analysis in QS and GG
Fig.4  Rarefaction curves of bacterial and archaeal communities in QS and GG (a); OTU overlaps bacterial communities and archaeal communities between QS and GG (b).
Group OTU number Shannon index ACE index Chao1 index Simpson index
Bacteria QS 435 2.509 535.029 511.514 0.288
GG 428 2.802 563.453 562.200 0.186
Archaea QS 120 2.017 212.261 163.000 0.197
GG 114 1.524 240.965 161.714 0.397
Tab.1  Alpha diversity indexes of microbial communities
Fig.5  Bacterial community structure at genus level and potential electroactive bacteria abundance (a); Archaeal community structure at genus level (b) in QS and GG
Fig.6  Schematic diagram of methanogenesis pathways in GG
1 Barua S, Dhar B R (2017). Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion. Bioresource Technology, 244(Pt 1): 698–707
https://doi.org/10.1016/j.biortech.2017.08.023 pmid: 28818798
2 Batstone D J, Virdis B (2014). The role of anaerobic digestion in the emerging energy economy. Current Opinion in Biotechnology, 27: 142–149
https://doi.org/10.1016/j.copbio.2014.01.013 pmid: 24534620
3 Brito A G, Rodrigues A C, Melo L F (1997). Granulation during the start-up of a UASB reactor used in the treatment of low strength wastewaters. Biotechnology Letters, 19(4): 363–368
https://doi.org/10.1023/A:1018359102949
4 Cai W W, Liu W Z, Yang C X, Wang L, Liang B, Thangavel S, Guo Z C, Wang A J (2016). Biocathodic methanogenic community in an integrated anaerobic digestion and microbial electrolysis system for enhancement of methane production from waste sludge. ACS Sustainable Chemistry & Engineering, 4(9): 4913–4921
https://doi.org/10.1021/acssuschemeng.6b01221
5 Chan Y J, Chong M F, Law C L, Hassell D G (2009). A review on anaerobic-aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal, 155(1–2): 1–18
https://doi.org/10.1016/j.cej.2009.06.041
6 Chen S, Rotaru A E, Liu F, Philips J, Woodard T L, Nevin K P, Lovley D R (2014a). Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures. Bioresource Technology, 173: 82–86
https://doi.org/10.1016/j.biortech.2014.09.009 pmid: 25285763
7 Chen S, Rotaru A E, Shrestha P M, Malvankar N S, Liu F, Fan W, Nevin K P, Lovley D R (2014b). Promoting interspecies electron transfer with biochar. Scientific Reports, 4(1): 5019
https://doi.org/10.1038/srep05019 pmid: 24846283
8 Cheng Q, Call D F (2016). Hardwiring microbes via direct interspecies electron transfer: Mechanisms and applications. Environmental Science. Processes & Impacts, 18(8): 968–980
https://doi.org/10.1039/C6EM00219F pmid: 27349520
9 Cheng S, Xing D, Call D F, Logan B E (2009). Direct biological conversion of electrical current into methane by electromethanogenesis. Environmental Science & Technology, 43(10): 3953–3958
https://doi.org/10.1021/es803531g pmid: 19544913
10 Cui M H, Cui D, Gao L, Cheng H Y, Wang A J (2016a). Efficient azo dye decolorization in a continuous stirred tank reactor (CSTR) with built-in bioelectrochemical system. Bioresource Technology, 218: 1307–1311
https://doi.org/10.1016/j.biortech.2016.07.135 pmid: 27497830
11 Cui M H, Cui D, Gao L, Wang A J, Cheng H Y (2016b). Azo dye decolorization in an up-flow bioelectrochemical reactor with domestic wastewater as a cost-effective yet highly efficient electron donor source. Water Research, 105: 520–526
https://doi.org/10.1016/j.watres.2016.09.027 pmid: 27668996
12 Escudié R, Cresson R, Delgenès J P, Bernet N (2011). Control of start-up and operation of anaerobic biofilm reactors: An overview of 15 years of research. Water Research, 45(1): 1–10
https://doi.org/10.1016/j.watres.2010.07.081 pmid: 20713296
13 Finster K, Coates J D, Liesack W, Pfennig N (1997). Desulfuromonas thiophila sp. nov., a new obligately sulfur-reducing bacterium from anoxic freshwater sediment. International Journal of Systematic Bacteriology, 47(3): 754–758
https://doi.org/10.1099/00207713-47-3-754 pmid: 9226908
14 Gu Y, Dong Y, Wang H, Keller A, Xu J, Chiramba T, Li F (2016). Quantification of the water, energy and carbon footprints of wastewater treatment plants in China considering a water–energy nexus perspective. Ecological Indicators, 60: 402–409
https://doi.org/10.1016/j.ecolind.2015.07.012
15 Lettinga G, Rebac S, Zeeman G (2001). Challenge of psychrophilic anaerobic wastewater treatment. Trends in Biotechnology, 19(9): 363–370
https://doi.org/10.1016/S0167-7799(01)01701-2 pmid: 11514000
16 Lin R, Cheng J, Zhang J, Zhou J, Cen K, Murphy J D (2017). Boosting biomethane yield and production rate with graphene: The potential of direct interspecies electron transfer in anaerobic digestion. Bioresource Technology, 239: 345–352
https://doi.org/10.1016/j.biortech.2017.05.017 pmid: 28531860
17 Li N, He L, Lu Y Z, Zeng R, Sheng G P (2017a). Robust performance of a novel anaerobic biofilm membrane bioreactor with mesh filter and carbon fiber (ABMBR) for low to high strength wastewater treatment. The Chemical Engineering Journal,313: 56–64
18 Li Y, Zhang Y, Yang Y, Quan X, Zhao Z (2017b). Potentially direct interspecies electron transfer of methanogenesis for syntrophic metabolism under sulfate reducing conditions with stainless steel. Bioresource Technology, 234: 303–309
https://doi.org/10.1016/j.biortech.2017.03.054 pmid: 28340434
19 Liu F, Rotaru A E, Shrestha P M, Malvankar N S, Nevin K P, Lovley D R (2012). Promoting direct interspecies electron transfer with activated carbon. Energy & Environmental Science, 5(10): 8982
https://doi.org/10.1039/c2ee22459c
20 Liu W, He Z, Yang C, Zhou A, Guo Z, Liang B, Varrone C, Wang A J (2016). Microbial network for waste activated sludge cascade utilization in an integrated system of microbial electrolysis and anaerobic fermentation. Biotechnology for Biofuels, 9(1): 83
https://doi.org/10.1186/s13068-016-0493-2 pmid: 27042212
21 Lovley D R (2011). Live wires: Direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy & Environmental Science, 4(12): 4896
https://doi.org/10.1039/c1ee02229f
22 Luo C, Lü F, Shao L, He P (2015). Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes. Water Research, 68: 710–718
https://doi.org/10.1016/j.watres.2014.10.052 pmid: 25462775
23 Martinez-Sosa D, Helmreich B, Netter T, Paris S, Bischof F, Horn H (2011). Anaerobic submerged membrane bioreactor (AnSMBR) for municipal wastewater treatment under mesophilic and psychrophilic temperature conditions. Bioresource Technology, 102(22): 10377–10385
https://doi.org/10.1016/j.biortech.2011.09.012 pmid: 21962536
24 McCarty P L, Bae J, Kim J (2011). Domestic wastewater treatment as a net energy producer—Can this be achieved? Environmental Science & Technology, 45(17): 7100–7106
https://doi.org/10.1021/es2014264 pmid: 21749111
25 Miyazaki M, Sakai S, Ritalahti K M, Saito Y, Yamanaka Y, Saito Y, Tame A, Uematsu K, Löffler F E, Takai K, Imachi H (2014). Sphaerochaeta multiformis sp. nov., an anaerobic, psychrophilic bacterium isolated from subseafloor sediment, and emended description of the genus Sphaerochaeta. International Journal of Systematic and Evolutionary Microbiology, 64(Pt 12): 4147–4154
https://doi.org/10.1099/ijs.0.068148-0 pmid: 25249566
26 Morita M, Malvankar N S, Franks A E, Summers Z M, Giloteaux L, Rotaru A E, Rotaru C, Lovley D R (2011). Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. Mbio, 2(4): e00159–e11
https://doi.org/10.1128/mBio.00159-11 pmid: 21862629
27 Rotaru A E, Shrestha P M, Liu F, Markovaite B, Chen S, Nevin K P, Lovley D R (2014b). Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Applied and Environmental Microbiology, 80(15): 4599–4605
https://doi.org/10.1128/AEM.00895-14 pmid: 24837373
28 Rotaru A E, Shrestha P M, Liu F, Shrestha M, Shrestha D, Embree M, Zengler K, Wardman C, Nevin K P, Lovley D R (2014a). A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy & Environmental Science, 7(1): 408–415
https://doi.org/10.1039/C3EE42189A
29 Sangeetha T, Guo Z, Liu W, Gao L, Wang L, Cui M, Chen C, Wang A (2017). Energy recovery evaluation in an up flow microbial electrolysis coupled anaerobic digestion (ME-AD) reactor: Role of electrode positions and hydraulic retention times. Applied Energy, 206: 1214–1224
https://doi.org/10.1016/j.apenergy.2017.10.026
30 Sass H, Ramamoorthy S, Yarwood C, Langner H, Schumann P, Kroppenstedt R M, Spring S, Rosenzweig R F (2009). Desulfovibrio idahonensis sp. nov., sulfate-reducing bacteria isolated from a metal(loid)-contaminated freshwater sediment. International Journal of Systematic and Evolutionary Microbiology, 59(Pt 9): 2208–2214
https://doi.org/10.1099/ijs.0.016709-0 pmid: 19605721
31 Shen L, Zhao Q, Wu X, Li X, Li Q, Wang Y (2016). Interspecies electron transfer in syntrophic methanogenic consortia: From cultures to bioreactors. Renewable & Sustainable Energy Reviews, 54: 1358–1367
https://doi.org/10.1016/j.rser.2015.10.102
32 Shimada T, Zilles J, Raskin L, Morgenroth E (2007). Carbohydrate storage in anaerobic sequencing batch reactors. Water Research, 41(20): 4721–4729
https://doi.org/10.1016/j.watres.2007.06.052 pmid: 17640700
33 Smith A L, Stadler L B, Cao L, Love N G, Raskin L, Skerlos S J (2014). Navigating wastewater energy recovery strategies: A life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion. Environmental Science & Technology, 48(10): 5972–5981
https://doi.org/10.1021/es5006169 pmid: 24742289
34 Speece R E (1996). Anaerobic Biotechnology for Industrial Wastewaters. Nashville: Archae Press
35 Storck T, Virdis B, Batstone D J (2016). Modelling extracellular limitations for mediated versus direct interspecies electron transfer. ISME Journal, 10(3): 621–631
https://doi.org/10.1038/ismej.2015.139 pmid: 26545286
36 Strömpl C, Tindall B J, Jarvis G N, Lünsdorf H, Moore E R B, Hippe H (1999). A re-evaluation of the taxonomy of the genus Anaerovibrio, with the reclassification of Anaerovibrio glycerini as Anaerosinus glycerini gen. nov., comb. nov., and Anaerovibrio burkinabensis as Anaeroarcus burkinensis [corrig.] gen. nov., comb. nov. International Journal of Systematic Bacteriology, 49(Pt 4): 1861–1872
https://doi.org/10.1099/00207713-49-4-1861 pmid: 10555370
37 Summers Z M, Fogarty H E, Leang C, Franks A E, Malvankar N S, Lovley D R (2010). Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science, 330(6009): 1413–1415
https://doi.org/10.1126/science.1196526 pmid: 21127257
38 Summers Z M, Fogarty H E, Leang C, Franks A E, Malvankar N S, Lovley D R (2010). Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science, 330(6009): 1413–1415
https://doi.org/10.1126/science.1196526 pmid: 21127257
39 Verstraete W, Van de Caveye P, Diamantis V (2009). Maximum use of resources present in domestic “used water”. Bioresource Technology, 100(23): 5537–5545
https://doi.org/10.1016/j.biortech.2009.05.047 pmid: 19577923
40 Wang H, Yang Y, Keller A A, Li X, Feng S, Dong Y, Li F (2016). Comparative analysis of energy intensity and carbon emissions in wastewater treatment in USA, Germany, China and South Africa. Applied Energy, 184: 873–881
https://doi.org/10.1016/j.apenergy.2016.07.061
41 Wang L, Liu W, He Z, Guo Z, Zhou A, Wang A (2017). Cathodic hydrogen recovery and methane conversion using Pt coating 3D nickel foam instead of Pt-carbon cloth in microbial electrolysis cells. International Journal of Hydrogen Energy, 42(31): 19604–19610
https://doi.org/10.1016/j.ijhydene.2017.06.019
42 YangS Y, Zheng Y, Huang Z, WangX M, Yang H (2016). Lactococcus nasutitermitis sp. nov. isolated from a termite gut. International Journal of Systematic and Evolutionary Microbiology, 66(1): 518–522
https://doi.org/10.1099/ijsem.0.000743 pmid: 26546382
43 Zhao Z, Zhang Y, Li Y, Dang Y, Zhu T, Quan X (2017). Potentially shifting from interspecies hydrogen transfer to direct interspecies electron transfer for syntrophic metabolism to resist acidic impact with conductive carbon cloth. Chemical Engineering Journal, 313: 10–18
https://doi.org/10.1016/j.cej.2016.11.149
44 Zhao Z, Zhang Y, Woodard T L, Nevin K P, Lovley D R (2015). Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials. Bioresource Technology, 191: 140–145
https://doi.org/10.1016/j.biortech.2015.05.007 pmid: 25989089
45 Zhilina T N, Appel R, Probian C, Brossa E L, Harder J, Widdel F, Zavarzin G A (2004). Alkaliflexus imshenetskii gen. nov. sp. nov., a new alkaliphilic gliding carbohydrate-fermenting bacterium with propionate formation from a soda lake. Archives of Microbiology, 182(2-3): 244–253
https://doi.org/10.1007/s00203-004-0722-0 pmid: 15340778
[1] FSE-18043-OF-GZC_suppl_1 Download
[1] Ying Xu, Hui Gong, Xiaohu Dai. High-solid anaerobic digestion of sewage sludge: achievements and perspectives[J]. Front. Environ. Sci. Eng., 2021, 15(4): 71-.
[2] Mona Akbar, Muhammad Farooq Saleem Khan, Ling Qian, Hui Wang. Degradation of polyacrylamide (PAM) and methane production by mesophilic and thermophilic anaerobic digestion: Effect of temperature and concentration[J]. Front. Environ. Sci. Eng., 2020, 14(6): 98-.
[3] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[4] Xiaohui Wang, Shuai Du, Tao Ya, Zhiqiang Shen, Jing Dong, Xiaobiao Zhu. Removal of tetrachlorobisphenol A and the effects on bacterial communities in a hybrid sequencing biofilm batch reactor-constructed wetland system[J]. Front. Environ. Sci. Eng., 2019, 13(1): 14-.
[5] Yi Chen, Shilong He, Mengmeng Zhou, Tingting Pan, Yujia Xu, Yingxin Gao, Hengkang Wang. Feasibility assessment of up-flow anaerobic sludge blanket treatment of sulfamethoxazole pharmaceutical wastewater[J]. Front. Environ. Sci. Eng., 2018, 12(5): 13-.
[6] Liguo Zhang, Qiaoying Ban, Jianzheng Li. Microbial community dynamics at high organic loading rates revealed by pyrosequencing during sugar refinery wastewater treatment in a UASB reactor[J]. Front. Environ. Sci. Eng., 2018, 12(4): 4-.
[7] Bai-Hang Zhao, Jie Chen, Han-Qing Yu, Zhen-Hu Hu, Zheng-Bo Yue, Jun Li. Optimization of microwave pretreatment of lignocellulosic waste for enhancing methane production: Hyacinth as an example[J]. Front. Environ. Sci. Eng., 2017, 11(6): 17-.
[8] Yulun Nie, Xike Tian, Zhaoxin Zhou, Yu-You Li. Impact of food to microorganism ratio and alcohol ethoxylate dosage on methane production in treatment of low-strength wastewater by a submerged anaerobic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2017, 11(6): 6-.
[9] Chong Liu, Jianzheng Li, Shuo Wang, Loring Nies. A syntrophic propionate-oxidizing microflora and its bioaugmentation on anaerobic wastewater treatment for enhancing methane production and COD removal[J]. Front. Environ. Sci. Eng., 2016, 10(4): 13-.
[10] Jiaxuan YANG, Jun MA, Dan SONG, Xuedong ZHAI, Xiujuan KONG. Impact of preozonation on the bioactivity and biodiversity of subsequent biofilters under low temperature conditions—A pilot study[J]. Front. Environ. Sci. Eng., 2016, 10(4): 5-.
[11] Guangxue WU , Zhenhu HU , Mark G. HEALY , Xinmin ZHAN , . Thermochemical pretreatment of meat and bone meal and its effect on methane production[J]. Front.Environ.Sci.Eng., 2009, 3(3): 300-306.
[12] ZHAO Yangguo, WANG Aijie, REN Nanqi, ZHAO Yan. Microbial community structure in different wastewater treatment processes characterized by single-strand conformation polymorphism (SSCP) technique[J]. Front.Environ.Sci.Eng., 2008, 2(1): 116-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed