Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (6) : 14    https://doi.org/10.1007/s11783-018-1078-z
RESEARCH ARTICLE
Microalgae cultivation and culture medium recycling by a two-stage cultivation system
Xinfeng Wang1,2,3, Lu Lin3, Haifeng Lu1(), Zhidan Liu1, Na Duan1, Taili Dong4, Hua Xiao5, Baoming Li1,2(), Pei Xu3
1. Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
2. Beijing Engineering Research Center for Animal Healthy Environment, Beijing 100083, China
3. Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA
4. Shandong Minhe Biotechnology Limited Company, Yantai 265600, China
5. School of Engineering, Cardiff University, Queen's Building, Cardiff, CF24 3AA, UK
 Download: PDF(447 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A two-stage system was designed for microalgae cultivation and nutrients removal.

Two species of microalgae were cultivated for biomass production.

UF costed less than centrifuge for harvesting microalgae at small scale.

100% NH4+ of the wastewater was removed and met discharge requirement.

Nutrients and water play an important role in microalgae cultivation. Using wastewater as a culture medium is a promising alternative to recycle nutrients and water, and for further developing microalgae-based products. In the present study, two species of microalgae, Chlorella sp. (high ammonia nitrogen tolerance) and Spirulina platensis (S. platensis, high growth rate), were cultured by using poultry wastewater through a two-stage cultivation system for algal biomass production. Ultrafiltration (UF) or centrifuge was used to harvest Chlorella sp. from the first cultivation stage and to recycle culture medium for S. platensis growth in the second cultivation stage. Results showed the two-stage cultivation system produced high microalgae biomass including 0.39 g·L1 Chlorella sp. and 3.45 g·L1 S. platensis in the first-stage and second-stage, respectively. In addition, the removal efficiencies of NH4+ reached 19% and almost 100% in the first and the second stage, respectively. Total phosphorus (TP) removal reached 17% and 83%, and total organic carbon (TOC) removal reached 55% and 72% in the first and the second stage, respectively. UF and centrifuge can recycle 96.8% and 100% water, respectively. This study provides a new method for the combined of pure microalgae cultivation and wastewater treatment with culture medium recycling.

Keywords Microalgae harvest      Ultrafiltration      Poultry wastewater      Nutrient removal      Two stage cultivation     
Corresponding Author(s): Haifeng Lu,Baoming Li   
Issue Date: 06 September 2018
 Cite this article:   
Xinfeng Wang,Lu Lin,Haifeng Lu, et al. Microalgae cultivation and culture medium recycling by a two-stage cultivation system[J]. Front. Environ. Sci. Eng., 2018, 12(6): 14.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1078-z
https://academic.hep.com.cn/fese/EN/Y2018/V12/I6/14
Parameters Concentration (mg·L1)
TP (total phosphorus) 179±3
TN (total nitrogen) 3131±319
NH4+ (ammonia nitrogen) 2990±114
TOC (total organic carbon) 1563±18
IC (inorganic carbon) 3039±20
COD (chemical oxygen demand) 4058±125
Tab.1  Characteristics of the FW
Fig.1  Two-stage microalgae cultivation system with UF membrane. (a) Schematic diagram of microalgal harvesting system with membrane, 1. flask for Chlorella sp. cultivation, 2.8.9. control valve, 3. pump, 4. flow meter, 5. pressure gauge, 6. UF, 7. microalgae retentate, 10. flask for S. platensis cultivation; (b) process of microalgae harvesting.
Tests Algae species Culture medium Harvest method
C-C1 Chlorella sp. BG11 medium Centrifuge
C-C2 Chlorella sp. Carbon source of BG11 medium Centrifuge
C-M1 Chlorella sp. BG11 medium Membrane
C-M2 Chlorella sp. Carbon source of BG11 medium Membrane
S-C1 S. platensis Zarrouk medium Centrifuge
S-C2 S. platensis Carbon source of Zarrouk medium Centrifuge
S-M1 S. platensis Zarrouk Membrane
S-M2 S. platensis Carbon source of Zarrouk medium Membrane
Tab.2  Summary of experiments using recycled wastewater to cultivate microalgae
Fig.2  Nutrients change of culture medium and DCW change of microalgae in the first stage. The error bars represent the standard deviation.
Fig.3  Microalgae harvesting and water recycled with UF. (a) Efficiency of the harvested algae and recycled water; (b) water quality of FW, algae effluent, and membrane backwash water.
Fig.4  Microalgae cultivation using recycled wastewater. (a) pH of the culture medium for Chlorella sp.; (b) DCW of Chlorella sp.; (c) pH of the culture medium for S. platensis; (d) DCW of S. platensis.
Fig.5  Cultivation of S. platensis using in recycled water with different NH4+ concentrations. (a) pH of the culture medium, (b) the DCW of S. platensis. (c) NH4+ removal efficiency and removal quantity. (d) TP removal efficiency and removal quantity. (e) TN removal efficiency and removal quantity.
Algae species Infrastructure investment Energy consumption Operating condition (pressure, flux or flow rate) Volume
(or Scale)
Maximum concentration
(or C)
Reference
UF S. costatum &
H. ostrearia
$500−3500 3−10 kWh·m−3 40 L·h1·m2 4 L (>20) (Rossignol et al., 1999)
UF Chlorella pyrenoidosa n.a. n.a. 130−180 kPa 32 L 7.77 g·L1 (11.4) (Sun et al., 2013)
UF Mixture algae n.a. n.a. 0.16−13.0 L·min1 0.1 L (5−40) (Petrusevski et al., 1995)
MF Chlorella sp. n.a. n.a. 40−60 kPa 2 L n.d. (Hung and Liu, 2006)
MF Scenedesmus sp. n.a. 0.70–2.23 kWh·m−3 72.4 L·m2·h1 (Pilot-scale) (150) (Gerardo et al., 2013)
MF Nannochloropsis sp. n.a. 0.3−0.7 kWh·m−3 103.4−206.8 kPa (Bench-scale) >150 g·L1 (Bhave et al., 2012)
Centrifuge n.a. $275000 74 kWh·m−3 113560 L·h1 8509347841 L (Large-scale) 100 g·L−1 (Richardson et al., 2014)
Centrifuge Chlorella-like wild algae $2506 73 kWh·m−3 2000 r·min1 (Bench-scale) 800 g·L1 (Udom et al., 2013)
Continuous centrifuge n.a. n.a. 62000 kWh·m−3 901 L·h1 3785 L
(Pilot-scale)
342.9 g·L1 (Kovalcik, 2013)
UF Chlorella sp. $79 1.6 kWh·m−3 30 L·h1 4 L (Lab-scale) 1.5 g·L1 (2) this study
Centrifuge Chlorella sp. $9447 404 kWh·m−3 8000 r·min1 4 L (Lab-scale) 750 g·L1 this study
Tab.3  Comparison of harvesting methods using UF, microfiltration (MF), and centrifuge
Stage Microalgae µ (d1) Daily productivity (g·L1·d1) TP removal (%) NH4+ removal (%) TOC removal (%) IC removal (%)
First stage (Section 2.3.1) Chlorella sp. 0.113 0.026 17 19 55 58
Second stage (Section 2.3.4) Chlorella sp. 0.089 0.010–0.011 33–36 4–26 20–46 18–29
Second stage (Section 2.3.4) S. platensis 0 0 2–9 4–39 9–16 7–20
Second stage (Section 2.3.5) S. platensis 0.044–0.132 0.023–0.198 24–83 82–100 7–72 28–48
Tab.4  Evaluation of two-stage microalgae cultivation system performance
1 Abelson P H, Hoering T C (1961). Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. Proceedings of the National Academy of Sciences of the United States of America, 47(5): 623–632
https://doi.org/10.1073/pnas.47.5.623 pmid: 13681011
2 Bhave R, Kuritz T, Powell L, Adcock D (2012). Membrane-based energy efficient dewatering of microalgae in biofuels production and recovery of value added co-products. Environmental Science & Technology, 46(10): 5599–5606
https://doi.org/10.1021/es204107d pmid: 22510094
3 Bilad M R, Arafat H A, Vankelecom I F J (2014). Membrane technology in microalgae cultivation and harvesting: A review. Biotechnology Advances, 32(7): 1283–1300
https://doi.org/10.1016/j.biotechadv.2014.07.008 pmid: 25109678
4 Bilad M R, Discart V, Vandamme D, Foubert I, Muylaert K, Vankelecom I F (2014a). Coupled cultivation and pre-harvesting of microalgae in a membrane photobioreactor (MPBR). Bioresource Technology, 155: 410–417
https://doi.org/10.1016/j.biortech.2013.05.026 pmid: 24559585
5 Canizares R O, Dominguez A R (1993). Growth of Spirulina maxima on swine waste. Bioresource Technology, 45(1): 73–75
https://doi.org/10.1016/0960-8524(93)90148-5
6 Chang Y, Wu Z, Bian L, Feng D, Leung Y C D (2013). Cultivation of Spirulina platensis for biomass production and nutrient removal from synthetic human urine. Applied Energy, 102: 427–431
https://doi.org/10.1016/j.apenergy.2012.07.024
7 Cheryan M (1998). Ultrafiltration and Microfiltration Handbook. CRC Press: Boca Raton, FL.
8 Dassey A J, Theegala C S (2013). Harvesting economics and strategies using centrifugation for cost effective separation of microalgae cells for biodiesel applications. Bioresource Technology, 128: 241–245
https://doi.org/10.1016/j.biortech.2012.10.061 pmid: 23196245
9 Farooq W, Lee Y C, Ryu B G, Kim B H, Kim H S, Choi Y E, Yang J W (2013). Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresource Technology, 132: 230–238
https://doi.org/10.1016/j.biortech.2013.01.034 pmid: 23411453
10 Fon Sing S, Isdepsky A, Borowitzka M A, Lewis D M (2014). Pilot-scale continuous recycling of growth medium for the mass culture of a halotolerant Tetraselmis sp. in raceway ponds under increasing salinity: A novel protocol for commercial microalgal biomass production. Bioresource Technology, 161: 47–54
https://doi.org/10.1016/j.biortech.2014.03.010 pmid: 24681683
11 Fret J, Roef L, Blust R, Diels L, Tavernier S, Vyverman W, Michiels M (2017). Reuse of rejuvenated media during laboratory and pilot scale cultivation of Nannochloropsis sp. Algal Research, 27: 265–273
https://doi.org/10.1016/j.algal.2017.09.018
12 GAQSIQ(General Administration of Quality Supervision, Inspection and Quarantine of P.R. China) (2005). Standards for Irrigation Water Quality (in Chinese)
13 Gerardo M L, Oatley-Radcliffe D L, Lovitt R W (2014). Minimizing the energy requirement of dewatering scenedesmus sp. by microfiltration: Performance, costs, and feasibility. Environmental Science & Technology, 48(1): 845–853
https://doi.org/10.1021/es4051567 pmid: 24341825
14 Gudin C, Thepenier C (1986). Bioconversion of solar energy into organic chemicals by microalgae. Advances in biotechnological processes, Alan R. Liss, USA, (6): 73–110
15 Hadj-Romdhane F, Jaouen P, Pruvost J, Grizeau D, Van Vooren G, Bourseau P (2012). Development and validation of a minimal growth medium for recycling Chlorella vulgaris culture. Bioresource Technology, 123: 366–374
https://doi.org/10.1016/j.biortech.2012.07.085 pmid: 22940343
16 Hadj-Romdhane F, Zheng X, Jaouen P, Pruvost J, Grizeau D, Croué J P, Bourseau P (2013). The culture of Chlorella vulgaris in a recycled supernatant: Effects on biomass production and medium quality. Bioresource Technology, 132: 285–292
https://doi.org/10.1016/j.biortech.2013.01.025 pmid: 23411460
17 Huang C, Chen X, Liu T, Yang Z, Xiao Y, Zeng G, Sun X (2012). Harvesting of Chlorella sp. using hollow fiber ultrafiltration. Environmental Science and Pollution Research International, 19(5): 1416–1421
https://doi.org/10.1007/s11356-012-0812-5 pmid: 22354358
18 Huang Y, Sun Y, Liao Q, Fu Q, Xia A, Zhu X (2016). Improvement on light penetrability and microalgae biomass production by periodically pre-harvesting Chlorella vulgaris cells with culture medium recycling. Bioresource Technology, 216: 669–676
https://doi.org/10.1016/j.biortech.2016.06.011 pmid: 27289058
19 Hung M T, Liu J C (2006). Microfiltration for separation of green algae from water. Colloids and Surfaces. B, Biointerfaces, 51(2): 157–164
https://doi.org/10.1016/j.colsurfb.2006.07.003 pmid: 16914295
20 Hwang T, Park S J, Oh Y K, Rashid N, Han J I (2013). Harvesting of Chlorella sp. KR-1 using a cross-flow membrane filtration system equipped with an anti-fouling membrane. Bioresource Technology, 139: 379–382
https://doi.org/10.1016/j.biortech.2013.03.149 pmid: 23659758
21 Kim D G, La H J, Ahn C Y, Park Y H, Oh H M (2011). Harvest of Scenedesmus sp. with bioflocculant and reuse of culture medium for subsequent high-density cultures. Bioresource Technology, 102(3): 3163–3168
https://doi.org/10.1016/j.biortech.2010.10.108 pmid: 21094603
22 Konig A, Pearson H W, Silva S A (1987). Ammonia toxicity to algal growth in waste stabilization ponds. Water Science and Technology, 19(12): 115–122
https://doi.org/10.2166/wst.1987.0135
23 Kovalcik D J (2013). Algal Harvesting for Biodiesel Production: Comparing Centrifugation and Electrocoagulation. Dissertation for the Doctoral Degree. College Station: Texas A&M University.
24 Lee Y K (2004). Algal Nutrition‒Heterotrophic Carbon Nutrition. Handbook of Microalgal Culture: Biotechnology and Applied Phycology,116–124
25 Loftus S E, Johnson Z I (2017). Cross-study analysis of factors affecting algae cultivation in recycled medium for biofuel production. Algal Research, 24: 154–166
https://doi.org/10.1016/j.algal.2017.03.007
26 Mackay D, Salusbury T (1988). Choosing between centrifugation and crossflow microfiltration. Chemical Engineering (Albany, N.Y.), 477: 45–50
27 Milledge J J, Heaven S (2013). A review of the harvesting of micro-algae for biofuel production. Reviews in Environmental Science and Biotechnology, 12(2): 165–178
https://doi.org/10.1007/s11157-012-9301-z
28 Mo W, Soh L, Werber J R, Elimelech M, Zimmerman J B (2015). Application of membrane dewatering for algal biofuel. Algal Research, 11: 1–12
https://doi.org/10.1016/j.algal.2015.05.018
29 Monte J, Sá M, Galinha C F, Costa L, Hoekstra H, Brazinha C, Crespo J G (2018). Harvesting of Dunaliella salina by membrane filtration at pilot scale. Separation and Purification Technology, 190: 252–260
https://doi.org/10.1016/j.seppur.2017.08.019
30 Norsker N H, Barbosa M J, Vermuë M H, Wijffels R H (2011). Microalgal production−A close look at the economics. Biotechnology Advances, 29(1): 24–27
https://doi.org/10.1016/j.biotechadv.2010.08.005 pmid: 20728528
31 Park J B K, Craggs R J, Shilton A N (2013). Investigating why recycling gravity harvested algae increases harvestability and productivity in high rate algal ponds. Water Research, 47(14): 4904–4917
https://doi.org/10.1016/j.watres.2013.05.027 pmid: 23866138
32 Petrusevski B, Bolier G, Van Breemen A N, Alaerts G J (1995). Tangential flow filtration: a method to concentrate freshwater algae. Water Research, 29(5): 1419–1424
https://doi.org/10.1016/0043-1354(94)00269-D
33 Pires J C M, Alvim-Ferraz M C M, Martins F G, Simões M (2012). Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renewable & Sustainable Energy Reviews, 16(5): 3043–3053
https://doi.org/10.1016/j.rser.2012.02.055
34 Richardson J W, Johnson M D, Lacey R, Oyler J, Capareda S (2014). Harvesting and extraction technology contributions to algae biofuels economic viability. Algal Research, 5: 70–78
https://doi.org/10.1016/j.algal.2014.05.007
35 Rippka R, Deruelles J, Waterbury J B, Herdman M, Stanier R Y (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 111(1): 1–61
36 Rossignol N, Vandanjon L, Jaouen P, Quemeneur F (1999). Membrane technology for the continuous separation microalgae/culture medium: Compared performances of cross-flow microfiltration and ultra-filtration. Aquacultural Engineering, 20(3): 191–208
https://doi.org/10.1016/S0144-8609(99)00018-7
37 SEPA (State Environmental Protection Administration of China) (2002). Methods for Monitoring and Analysis of Water and Wastewater (4th ed). Beijing: China Environmental Science Press (in Chinese)
38 Sun X, Wang C, Tong Y, Wang W, Wei J (2013). A comparative study of microfiltration and ultrafiltration for algae harvesting. Algal Research, 2(4): 437–444
https://doi.org/10.1016/j.algal.2013.08.004
39 Udom I, Zaribaf B H, Halfhide T, Gillie B, Dalrymple O, Zhang Q, Ergas S J (2013). Harvesting microalgae grown on wastewater. Bioresource Technology, 139: 101–106
https://doi.org/10.1016/j.biortech.2013.04.002 pmid: 23648758
40 Wang T, Yabar H, Higano Y (2013). Perspective assessment of algae-based biofuel production using recycled nutrient sources: the case of Japan. Bioresource Technology, 128: 688–696
https://doi.org/10.1016/j.biortech.2012.10.102 pmid: 23228517
41 Wang X F, Lu H F, Zhang L, Wang M Z, Zhao Y, Li B M (2015). Combination of Electrolysis and Microalgae cultivation to treat effluent from anaerobic digestion of poultry manure. In: Proceedings of the International Symposium on Animal Environment and Welfare 2015, Chongqing. Beijing: China Agriculture Press, 179–186
42 Watanabe Y, Hall D O (1995). Photosynthetic CO2 fixation technologies using a helical tubular bioreactor incorporating the filamentous cyanobacterium Spirulina platensis. Energy Conversion and Management, 36(6): 721–724
https://doi.org/10.1016/0196-8904(95)00106-N
43 Xia A, Murphy J D (2016). Microalgal cultivation in treating liquid digestate from biogas systems. Trends in Biotechnology, 34(4): 264–275
https://doi.org/10.1016/j.tibtech.2015.12.010 pmid: 26776247
44 Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011). Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance. Bioresource Technology, 102(1): 159–165
https://doi.org/10.1016/j.biortech.2010.07.017 pmid: 20675125
45 Yuan X, Kumar A, Sahu A K, Ergas S J (2011). Impact of ammonia concentration on Spirulina platensis growth in an airlift photobioreactor. Bioresource Technology, 102(3): 3234–3239
https://doi.org/10.1016/j.biortech.2010.11.019 pmid: 21112776
46 Zhang X, Hu Q, Sommerfeld M, Puruhito E, Chen Y (2010). Harvesting algal biomass for biofuels using ultrafiltration membranes. Bioresource Technology, 101(14): 5297–5304
https://doi.org/10.1016/j.biortech.2010.02.007 pmid: 20206502
47 Zhu L (2015). Microalgal culture strategies for biofuel production: A review. Biofuels, Bioproducts & Biorefining, 9(6): 801–814
https://doi.org/10.1002/bbb.1576
48 Zhu L D, Takala J, Hiltunen E, Wang Z M (2013). Recycling harvest water to cultivate Chlorella zofingiensis under nutrient limitation for biodiesel production. Bioresource Technology, 144: 14–20
https://doi.org/10.1016/j.biortech.2013.06.061 pmid: 23850821
[1] Shuo Wei, Lei Du, Shuo Chen, Hongtao Yu, Xie Quan. Electro-assisted CNTs/ceramic flat sheet ultrafiltration membrane for enhanced antifouling and separation performance[J]. Front. Environ. Sci. Eng., 2021, 15(1): 11-.
[2] Min Li, Shuai Liang, Yang Wu, Meiyue Yang, Xia Huang. Cross-stacked super-aligned carbon nanotube/activated carbon composite electrodes for efficient water purification via capacitive deionization enhanced ultrafiltration[J]. Front. Environ. Sci. Eng., 2020, 14(6): 107-.
[3] An Ding, Yingxue Zhao, Zhongsen Yan, Langming Bai, Haiyang Yang, Heng Liang, Guibai Li, Nanqi Ren. Co-application of energy uncoupling and ultrafiltration in sludge treatment: Evaluations of sludge reduction, supernatant recovery and membrane fouling control[J]. Front. Environ. Sci. Eng., 2020, 14(4): 59-.
[4] Lu Ao, Wenjun Liu, Yang Qiao, Cuiping Li, Xiaomao Wang. Comparison of membrane fouling in ultrafiltration of down-flow and up-flow biological activated carbon effluents[J]. Front. Environ. Sci. Eng., 2018, 12(6): 9-.
[5] Weihua Zhao, Meixiang Wang, Jianwei Li, Yu Huang, Baikun Li, Cong Pan, Xiyao Li, Yongzhen Peng. Optimization of denitrifying phosphorus removal in a pre-denitrification anaerobic/anoxic/post-aeration+ nitrification sequence batch reactor (pre-A2NSBR) system: Nitrate recycling, carbon/nitrogen ratio and carbon source type[J]. Front. Environ. Sci. Eng., 2018, 12(5): 8-.
[6] Shuai Wang, Tong Li, Chen Chen, Baicang Liu, John C. Crittenden. PVDF ultrafiltration membranes of controlled performance via blending PVDF-g-PEGMA copolymer synthesized under different reaction times[J]. Front. Environ. Sci. Eng., 2018, 12(2): 3-.
[7] Jingjing ZHAN,Qiao ZHANG,Momei QIN,Yu HONG. Selection and characterization of eight freshwater green algae strains for synchronous water purification and lipid production[J]. Front. Environ. Sci. Eng., 2016, 10(3): 548-558.
[8] Zheng LI,Rong QI,Wei AN,Takashi MINO,Tadashi SHOJI,Willy VERSTRAETE,Jian GU,Shengtao LI,Shiwei XU,Min YANG. Simulation of long-term nutrient removal in a full-scale closed-loop bioreactor for sewage treatment: an example of Bayesian inference[J]. Front. Environ. Sci. Eng., 2015, 9(3): 534-544.
[9] Xiaojiang FAN,Yi TAO,Dequan WEI,Xihui ZHANG,Ying LEI,Hiroshi NOGUCHI. Removal of organic matter and disinfection by-products precursors in a hybrid process combining ozonation with ceramic membrane ultrafiltration[J]. Front. Environ. Sci. Eng., 2015, 9(1): 112-120.
[10] Lei SHEN,Yuntao GUAN,Guangxue WU,Xinmin ZHAN. N2O emission from a sequencing batch reactor for biological N and P removal from wastewater[J]. Front.Environ.Sci.Eng., 2014, 8(5): 776-783.
[11] Shijian GE, Yongzhen PENG, Congcong LU, Shuying WANG. Practical consideration for design and optimization of the step feed process[J]. Front Envir Sci Eng, 2013, 7(1): 135-142.
[12] Boksoon KWON, Noeon PARK, Jaeweon CHO, . Effects of a dynamic membrane formed with polyethylene glycol on the ultrafiltration of natural organic matter[J]. Front.Environ.Sci.Eng., 2010, 4(2): 172-182.
[13] Changyong WU, Xiaoling LI, Zhiqiang CHEN, Yongzhen PENG, . Effect of short-term atrazine addition on the performance of an anaerobic/anoxic/oxic process[J]. Front.Environ.Sci.Eng., 2010, 4(2): 150-156.
[14] YUAN Linjiang, HAN Wei, WANG Lei, YANG Yongzhe, WANG Zhiying. Simultaneous denitrifying phosphorus accumulation in a sequencing batch reactor[J]. Front.Environ.Sci.Eng., 2007, 1(1): 23-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed