Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (6) : 15    https://doi.org/10.1007/s11783-018-1082-3
RESEARCH ARTICLE
Investigation of phosphate adsorption from an aqueous solution using spent fluid catalytic cracking catalyst containing lanthanum
Zhen Li, Zhaofu Qiu(), Ji Yang, Benteng Ma, Shuguang Lu, Chuanhui Qin
State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
 Download: PDF(518 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Spent FCC catalyst with lanthanum is proposed as a novel P-removal adsorbent.

The spent FCC catalyst exhibits 99% adsorption efficiency for low P-concentration wastewater (C0 <5.0 mg/L).

High affinity, endothermic reaction and fast sorption kinetics are achieved.

The phosphate is adsorbed in the form of LaPO4 and KH2PO4.

A spent fluid catalytic cracking (FCC) catalyst containing lanthanum (La) was used as a novel adsorbent for phosphorus (P) in simulated wastewater. The experiments were conducted in a batch system to optimize the operation variables, including pH, calcination temperature, shaking time, solid-liquid ratio, and reaction temperature under three initial P-concentrations (C0 = 0.5, 1.0, and 5.0 mg/L). Orthogonal analysis was used to determine that the initial P-concentration was the most important parameter for P removal. The P-removal rate exceeded 99% and the spent FCC catalyst was more suitable for use in low P-concentration wastewater (C0 <5.0 mg/L). Isotherms, thermodynamics and dynamics of adsorption are used to analyze the mechanism of phosphorus removal. The results show that the adsorption is an endothermic reaction with high affinity and poor reversibility, which indicates a low risk of second releasing of phosphate. Moreover, chemical and physical adsorption coexist in this adsorption process with LaPO4 and KH2PO4 formed on the spent FCC catalyst as the adsorption product. These results demonstrate that the spent FCC catalyst containing La is a potential adsorbent for P-removal from wastewater, which allows recycling of the spent FCC catalyst to improve the quality of water body.

Keywords Spent FCC catalyst      Phosphate removal      Adsorption      Lanthanum     
Corresponding Author(s): Zhaofu Qiu   
Issue Date: 09 November 2018
 Cite this article:   
Zhen Li,Zhaofu Qiu,Ji Yang, et al. Investigation of phosphate adsorption from an aqueous solution using spent fluid catalytic cracking catalyst containing lanthanum[J]. Front. Environ. Sci. Eng., 2018, 12(6): 15.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1082-3
https://academic.hep.com.cn/fese/EN/Y2018/V12/I6/15
Elements Zn Cu Pb As Ni Cr Se
Standard limit (mg/L) 100 100 5 5 5 5 1
Leaching value (mg/L) 0.26 <0.010 <0.050 <0.050 0.85 0.035 <0.050
Tab.1  Leaching toxicity results of the spent FCC catalyst sample
Elements Al Si Ce La Fe Ti K Ni
Wt (%) 29.310 17.810 2.080 1.010 0.361 0.164 0.202 0.122
Tab.2  The main metal elements contained in the spent FCC catalyst sample*
BET Surface Area (m2/g) Pore volume (cm3/g) Pore size (nm) D(0.5) ** (µm)
211.918 0.158 2.991 68.649
Tab.3  Structural properties of spent FCC catalyst sample
Fig.1  The SEM picture of spent FCC catalysts sample.
Fig.2  The XRD patterns of spent FCC catalyst sample.
Fig.3  Effects of (a) pH, (b) calcination temperature, (c) shaking time, (d) solid-liquid ratio and (e) reaction temperature on P adsorption (the legends of (b) (c) (d) (e) are same with (a)).
Fig.4  Adsorption isotherm for adsorption of phosphate on spent FCC catalyst ((a) Langmuir, (b) Freundlich, (c) D-R and (d) Temkin).
Model Equation Parameters obtained from linearization
10oC 20oC 30oC 40oC
Langmuir qe= Q0 bCe1 + bCe Q0(mg-P/g) 3.419 4.633 4.345 5.796
b(L/g) 4.311 3.262 6.367 6.597
Freundlich lnqe= kf+1nlnCe kf(L/g) 1.766 2.134 2.274 2.708
n 4.382 4.062 4.285 4.527
D-R lnqe=ln qm kε2 qm(mg-P/g) 3.501 4.693 4.554 5.447
k( mol2/ kJ2) 0.213 0.323 0.164 0.137
E(kJ/mol) 1.532 1.244 1.746 1.910
Temkin qe=B1 lnk t+ B1ln Ce B1 0.523 0.668 0.627 0.977
kt(L/mg) 4.038 3.986 4.557 5.292
Tab.4  Adsorption isotherm model equations, corresponding linear forms and parameters obtained from linearization
C0 (mg/L) ΔH0 (kJ/mol) ΔS0 (J/mol) ΔG0(kJ/mol)
283K 293K 303K 313K 333K
0.5 61.982 273.722 ?15.481 ?18.219 ?20.956 ?23.693 ?29.167
1.0 33.289 184.917 ?19.042 ?20.891 ?22.741 ?24.590 ?28.288
5.0 31.898 188.604 ?21.477 ?23.363 ?25.249 ?27.135 ?30.907
Tab.5  Thermodynamic parameters of P adsorption by spent FCC
Fig.5  Adsorption kinetic for adsorption of phosphate on spent FCC catalyst ((a) Bangham, (b) Pseudo-first-order equation and (c) Pseudo-second-order equation).
Model Equation Parameters obtained from linearization
0.5mg/L 1.0mg/L 5.0mg/L
Bangham dqdt=K qe qtn n 0.321 0.279 0.582
K 0.750 0.887 0.173
Pseudo-first-order dqdt= k1( qeq) k1(min1) 0.009 0.008 0.012
t1/2(min) 327.505 411.802 344.452
Pseudo-second-order ln(lnqeq eqt)=lnk1+nlnt k1(g/mg·min) 2.880 3.874 0.098
ΔG0(min/L) 3.472 1.337 11.121
qe 0.100 0.193 0.942
Tab.6  Adsorption kinetics model equations, corresponding linear forms and parameters obtained from linearization
Fig.6  Intra-particle diffusion model.
Fig.7  XRD patterns of spent FCC catalyst before and after adsorption.
1 Al-Khattaf S (2002). The influence of Y-zeolite unit cell size on the performance of FCC catalysts during gas oil catalytic cracking. Applied Catalysis A, General, 231(1): 293–306
https://doi.org/10.1016/S0926-860X(02)00071-6
2 Babatunde A O, Zhao Y Q (2010). Equilibrium and kinetic analysis of phosphorus adsorption from aqueous solution using waste alum sludge. Journal of Hazardous Materials, 184(1-3): 746–752
https://doi.org/10.1016/j.jhazmat.2010.08.102 pmid: 20846787
3 Bauer D, Diamond D, Li J, Sandalow D, Telleen P, Wanner B (2010). U.S. Department of Energy Critical Materials Strategy, U. S.
4 Bekçi Z, Seki Y, Kadir Yurdakoç M (2007). A study of equilibrium and FTIR, SEM/EDS analysis of trimethoprim adsorption onto K10. Journal of Molecular Structure, 827(1): 67–74
https://doi.org/10.1016/j.molstruc.2006.04.054
5 Binnemans K, Jones P T, Blanpain B, Van Gerven T, Yang Y, Walton A, Buchert M (2013). Recycling of rare earths: A critical review. Journal of Cleaner Production, 51: 1–22
https://doi.org/10.1016/j.jclepro.2012.12.037
6 Brigante M, Schulz P C (2012). Adsorption of the antibiotic minocycline on cerium(IV) oxide: Effect of pH, ionic strength and temperature. Microporous and Mesoporous Materials, 156: 138–144
https://doi.org/10.1016/j.micromeso.2012.02.033
7 Cho S, Luong T T, Lee D, Oh Y K, Lee T (2011). Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production. Bioresource Technology, 102(18): 8639–8645
https://doi.org/10.1016/j.biortech.2011.03.037 pmid: 21474308
8 Ding W, Huang X (2002). Progress of studies on phosphorus removal from wastewater by adsorbents. Technigues and Equipment for Enviro. poll. 3(10): 23–27
9 Guaya D, Valderrama C, Farran A, Armijos C, Cortina J L (2015). Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite. Chemical Engineering Journal, 271: 204–213
https://doi.org/10.1016/j.cej.2015.03.003
10 Horsfall M Jr, Abia A A, Spiff A I (2006). Kinetic studies on the adsorption of Cd2+, Cu2+ and Zn2+ ions from aqueous solutions by cassava (Manihot sculenta Cranz) tuber bark waste. Bioresource Technology, 97(2): 283–291
https://doi.org/10.1016/j.biortech.2005.02.016 pmid: 16171685
11 Hrenovic J, Rozic M, Sekovanic L, Anic-Vucinic A (2008). Interaction of surfactant-modified zeolites and phosphate accumulating bacteria. Journal of Hazardous Materials, 156(1-3): 576–582
https://doi.org/10.1016/j.jhazmat.2007.12.060 pmid: 18249067
12 Huang H, Xiao D, Pang R, Han C, Ding L (2014). Simultaneous removal of nutrients from simulated swine wastewater by adsorption of modified zeolite combined with struvite crystallization. Chemical Engineering Journal, 256: 431–438
https://doi.org/10.1016/j.cej.2014.07.023
13 Huo H, Lin H, Dong Y, Cheng H, Wang H, Cao L (2012). Ammonia-nitrogen and phosphates sorption from simulated reclaimed waters by modified clinoptilolite. Journal of Hazardous Materials, 229-230: 292–297
https://doi.org/10.1016/j.jhazmat.2012.06.001 pmid: 22727487
14 Ihm S K, Chung M J, Park K Y (1988). Activity difference between the internal and external sulfonic groups of macroreticular ion-exchange resin catalysts in isobutylene hydration. Industrial & Engineering Chemistry Research, 27(1): 41–45
https://doi.org/10.1021/ie00073a009
15 Jaycock M J, Parfitt G D (1981). Chemistry of Interfaces. Halstead Press, John Wiley and Sons, 718
16 Jiang L, Lin H, Jia X, Guo L (2010). Preparation of compounded adsorption of phosphorus removal with zeolite and its performance. Metal Mine, 10: 154–158
17 Johan E, Shukla E A, Matsue N, Henmi T (2013). Fe-treated artificial zeolite as an adsorbent for anionic and cationic pollutants. Procedia Environmental Sciences, 17: 285–290
https://doi.org/10.1016/j.proenv.2013.02.040
18 Karczmarczyk A, Bus A (2014). Testing of reactive materials for phosphorus removal from water and waste water- comparative study. Annals of Warsaw University of Life Sciences- SGGW Land Reclamation, 46(1): 57–67
41 Li X, Hu H Y, Yang J (2010). Lipid accumulation and nutrient removal properties of a newly isolated freshwater microalga, Scenedesmus sp. LX1, growing in secondary effluent. New Biotechnology, 27(1): 59–63
https://doi.org/10.1016/j.nbt.2009.11.006 pmid: 19969113
19 Lorenc-Grabowska E, Gryglewicz G (2007). Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon. Dyes and Pigments, 74(1): 34–40
https://doi.org/10.1016/j.dyepig.2006.01.027
20 McKay G (1983). The adsorption of dyestuffs from aqueous solution using activated carbon: Analytical solution for batch adsorption based on external mass transfer and pore diffusion. Chemical Engineering Journal, 27(3): 187–196
https://doi.org/10.1016/0300-9467(83)80075-6
21 McKay G, Blair H S, Gardner J R (1982). Adsorption of dyes on chitin. I. Equilibrium studies. Journal of Applied Polymer Science, 27(8): 3043–3057
https://doi.org/10.1002/app.1982.070270827
22 Ministry of Environmental Protection of the People's Republic of China (2007a). Identification standards for hazardous waste- identification for extraction toxicity. GB5085.3-2007
23 Ministry of Environmental Protection of the People's Republic of China (2007b). Solid waste-extraction procedure for leaching toxicity- sulphuric acid & nitric acid method. HJ/T299-2007
24 Ning P, Bart H J, Li B, Lu X, Zhang Y (2008). Phosphate removal from wastewater by model-La(III) zeolite adsorbents. Journal of Environmental Sciences (China), 20(6): 670–674
https://doi.org/10.1016/S1001-0742(08)62111-7 pmid: 18763560
25 Pavan F A, Dias S L P, Lima E C, Benvenutti E V (2008). Removal of Congo Red from aqueous solution by anilinepropylsilica xerogel. Dyes and Pigments, 76(1): 64–69
https://doi.org/10.1016/j.dyepig.2006.08.027
26 Ramli N A S, Amin N A S (2016). Kinetic study of glucose conversion to levulinic acid over Fe/HY zeolite catalyst. Chemical Engineering Journal, 283: 150–159
https://doi.org/10.1016/j.cej.2015.07.044
27 Rashidi Nodeh H, Sereshti H, Zamiri Afsharian E, Nouri N (2017). Enhanced removal of phosphate and nitrate ions from aqueous media using nanosized lanthanum hydrous doped on magnetic graphene nanocomposite. Journal of Environmental Management, 197: 265–274
https://doi.org/10.1016/j.jenvman.2017.04.004 pmid: 28395235
28 Sanga S, Nishimura Y (1976). Sewer waste water treating agent produced from waste cracking catalyst. U. S. Patent No. 3, 960, 760
29 Shi W, He B, Cao Y, Li J, Yan F, Cui Z, Zou Z, Guo S, Qian X (2013). Continuous esterification to produce biodiesel by SPES/PES/NWF composite catalytic membrane in flow-through membrane reactor: Experimental and kinetic studies. Bioresource Technology, 129: 100–107
https://doi.org/10.1016/j.biortech.2012.10.039 pmid: 23232226
30 Singh D (2000). Studies of the adsorption thermodynamics of oxamyl on fly ash. Adsorption Science and Technology, 18(8): 741–748
https://doi.org/10.1260/0263617001493783
31 Song Q, Fang Y, Liu Z, Li L, Wang Y, Liang J, Huang Y, Lin J, Hu L, Zhang J, Tang C (2017). The performance of porous hexagonal BN in high adsorption capacity towards antibiotics pollutants from aqueous solution. Chemical Engineering Journal, 325: 71–79
https://doi.org/10.1016/j.cej.2017.05.057
32 Streat M, Hellgardt K, Newton N L R (2008). Hydrous ferric oxide as an adsorbent in water treatment: Part 3: Batch and mini-column adsorption of arsenic, phosphorus, fluorine and cadmium ions. Process Safety and Environmental Protection, 86(1): 21–30
https://doi.org/10.1016/j.psep.2007.10.009
33 Tang Y, Chen F, Zhang H (1998). Adsorption of Pb2+, Cu2+ and Zn2+ ions on to waste fluidized catalytic cracking (FCC) catalyst. Adsorption Science and Technology, 16(8): 595–606
https://doi.org/10.1177/026361749801600802
34 Vimonses V, Lei S, Jin B, Chow C W K, Saint C (2009). Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials. Chemical Engineering Journal, 148(2): 354–364
https://doi.org/10.1016/j.cej.2008.09.009
35 Wallenstein D, Kanz B, Haas A (2000). Influence of coke deactivation and vanadium and nickel contamination on the performance of low ZSM-5 levels in FCC catalysts. Applied Catalysis A, General, 192(1): 105–123
https://doi.org/10.1016/S0926-860X(99)00334-8
36 Weber W J, Morris J C (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(2): 31–60
37 Weisz P B, Hicks J S (1962). The behaviour of porous catalyst particles in view of internal mass and heat diffusion effects. Chemical Engineering Science, 17(4): 265–275
https://doi.org/10.1016/0009-2509(62)85005-2
38 Weng C H, Lin Y T, Tzeng T W (2009). Removal of methylene blue from aqueous solution by adsorption onto pineapple leaf powder. Journal of Hazardous Materials, 170(1): 417–424
https://doi.org/10.1016/j.jhazmat.2009.04.080 pmid: 19447547
39 Wu B, Fang L, Fortner J D, Guan X, Lo I M C (2017). Highly efficient and selective phosphate removal from wastewater by magnetically recoverable La(OH)3/Fe3O4 nanocomposites. Water Research, 126: 179–188
https://doi.org/10.1016/j.watres.2017.09.034 pmid: 28950228
40 Xie J, Wang Z, Fang D, Li C, Wu D (2014). Green synthesis of a novel hybrid sorbent of zeolite/lanthanum hydroxide and its application in the removal and recovery of phosphate from water. Journal of Colloid and Interface Science, 423: 13–19
https://doi.org/10.1016/j.jcis.2014.02.020 pmid: 24703662
42 Yoo J S (1998). Metal recovery and rejuvenation of metal-loaded spent catalysts. Catalysis Today, 44(1): 27–46
https://doi.org/10.1016/S0920-5861(98)00171-0
43 Zhang D, Niu H, Zhang X, Meng Z, Cai Y (2011). Strong adsorption of chlorotetracycline on magnetite nanoparticles. Journal of Hazardous Materials, 192(3): 1088–1093
https://doi.org/10.1016/j.jhazmat.2011.06.015 pmid: 21724321
44 Zhang H, Xiao R, Wang D, Zhong Z, Song M, Pan Q, He G (2009). Catalytic fast pyrolysis of biomass in a fluidized bed with fresh and spent fluidized catalytic cracking (FCC). Catalysts. Energy & Fuels, 23(12): 6199–6206
https://doi.org/10.1021/ef900720m
45 Zhao Z, Qiu Z, Yang J, Lu S, Cao L, Zhang W, Xu Y (2017). Recovery of rare earth elements from spent fluid catalytic cracking catalysts using leaching and solvent extraction techniques. Hydrometallurgy, 167: 183–188
https://doi.org/10.1016/j.hydromet.2016.11.013
46 Zheng S, Huang S, Qian D, Tang K, Yi J (2010). Modification of FCC waste catalyst and its adsorption performance for heavy metal ions. Acta Petrolei Sinica, 26(4): 612–616
[1] FSE-18059-OF-LZ_suppl_1 Download
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Sanjena Narayanasamydamodaran, Jian’e Zuo, Haiteng Ren, Nawnit Kumar. Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture[J]. Front. Environ. Sci. Eng., 2021, 15(4): 66-.
[4] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[5] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[6] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[7] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[8] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[9] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[10] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[11] Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34-.
[12] Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha. Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(1): 15-.
[13] Hongqi Wang, Ruhan Jiang, Dekang Kong, Zili Liu, Xiaoxiong Wu, Jie Xu, Yi Li. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins[J]. Front. Environ. Sci. Eng., 2020, 14(1): 9-.
[14] Shicheng Wei, Cuiping Zeng, Yaobin Lu, Guangli Liu, Haiping Luo, Renduo Zhang. Degradation of antipyrine in the Fenton-like process with a La-doped heterogeneous catalyst[J]. Front. Environ. Sci. Eng., 2019, 13(5): 66-.
[15] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed