Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2019, Vol. 13 Issue (1) : 5    https://doi.org/10.1007/s11783-019-1089-4
FEATURE ARTICLE
Relations between indoor and outdoor PM2.5 and constituent concentrations
Cong Liu1, Yinping Zhang2,3()
1. School of Energy and Environment, Southeast University, Nanjing 210096, China
2. Department of Building Science, Tsinghua University, Beijing 100084, China
3. Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
 Download: PDF(762 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Factors impacting indoor-outdoor relations are introduced.

Sulfate seems a fine tracer for other non-volatile species.

Particulate nitrate and ammonium desorb during outdoor-to-indoor transport.

OC load increases during the transport due to sorption of indoor SVOCs.

Outdoor PM2.5 influences both the concentration and composition of indoor PM2.5. People spend over 80% of their time indoors. Therefore, to assess possible health effects of PM2.5 it is important to accurately characterize indoor PM2.5 concentrations and composition. Controlling indoor PM2.5 concentration is presently more feasible and economic than decreasing outdoor PM2.5 concentration. This study reviews modeling and measurements that address relationships between indoor and outdoor PM2.5 and the corresponding constituent concentrations. The key factors in the models are indoor-outdoor air exchange rate, particle penetration, and deposition. We compiled studies that report I/O ratios of PM2.5 and typical constituents (sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), elemental carbon (EC), and organic carbon (OC), iron (Fe), copper (Cu), and manganese (Mn)). From these studies we conclude that: 1) sulfate might be a reasonable tracer of non-volatile species (EC, Fe, Cu, and Mn) and PM2.5 itself; 2) particulate nitrate and ammonium generally desorb to gaseous HNO3 and NH3 when they enter indoors, unless, as seldom happens, they have strong indoor sources; 3) indoor-originating semi-volatile organic compounds sorb on indoor PM2.5, thereby increasing the PM2.5 OC load. We suggest further studies on indoor-outdoor relationships of PM2.5 and constituents so as to help develop standards for healthy buildings.

Keywords Indoor air quality      Exposure      SVOC      Reactive oxidative species      Oxidative potential      Chemical transport model     
Corresponding Author(s): Yinping Zhang   
Issue Date: 03 December 2018
 Cite this article:   
Cong Liu,Yinping Zhang. Relations between indoor and outdoor PM2.5 and constituent concentrations[J]. Front. Environ. Sci. Eng., 2019, 13(1): 5.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-019-1089-4
https://academic.hep.com.cn/fese/EN/Y2019/V13/I1/5
PM2.5 compositions Main ambient sources Key property for indoor fate
Sulfate (SO42-) Coal combustion in power plants Non-volatility
Nitrate (NO3-) Power plants, mobile, industry Semi-volatility
Ammonium (NH4+) Agriculture Semi-volatility
Elemental carbon (EC) Mobile, industry, biomass burning Non-volatility
Organic carbon (OC) Mobile, industry, biomass burning, secondary organic products Semi-volatility
Iron (Fe) Dust, brake and tire wear Non-volatility, solubility and dissolution kinetics
Copper (Cu) Brake and tire wear Non-volatility, solubility and dissolution kinetics
Manganese (Mn) Dust, brake and tire wear Non-volatility, solubility and dissolution kinetics
Tab.1  Sources of outdoor PM2.5 and key properties for their indoor fate
Fig.1  Schematic for indoor fate of PM2.5 and compositions. The gray part of the solid circles represents non-volatile species, the red part represents semi-volatile organic species, and the green part represents semi-volatile inorganic species. The red and green parts of the cloud shapes represent organic and inorganic gas-phase species undergoing gas-particle partitioning, respectively.
Building type Parameter and unit for ventilation Parameter value a)
Public buildings Airflow rate per person, m3/(p?h) 10–30
Residential buildings Air exchange rate b), h-1 0.45–0.7
Hospital Air exchange rate b), h-1 2–5
High occupancy buildings Airflow rate per person, m3/(p?h) 11–38
Tab.2  Ventilation requirements in GB50736-2012, China (Design code for heating, ventilation, and air conditioning of civil buildings)
Fig.2  Size-resolved penetration factor based on an empirical equation by Shi et al. (2017). dp is particle diameter.
Fig.3  Size-resolved indoor deposition velocity, Calculated using Eq. (8).
References Building type Location Ventilation mode a) Species
Saraga et al. (2017) Public_office Asia Mechanical SO42-, NH4+, NO3-, OC, EC, Fe, Cu, Mn, PM2.5
Han et al. (2016) Residence Asia Natural SO42-, NH4+, NO3-, OC, EC, PM2.5
Zhu et al. (2015) Public_office Asia Mechanical SO42-, NH4+, NO3-, PM2.5
Public_office Asia Natural
Lomboy et al. (2015) Public_hospital Asia Natural SO42-, Fe, PM2.5
Public_hospital Asia Mechanical
Zhang et al. (2014) Public_lab Asia Natural SO42-, NH4+, NO3-, OC, EC, Fe, Cu, Mn, PM2.5
Hassanvand et al. (2014) Residence Asia Natural SO42-, NH4+, NO3-, PM2.5
Wang et al., (2014) Public_school Asia Natural SO42-, NH4+, NO3-, OC, EC, PM2.5
Chithra and Nagendra (2013) Public_school Asia Natural SO42-, NH4+, NO3-, Fe
Chen et al. (2013) Public_lab Asia Natural SO42-, NH4+, NO3-, PM2.5
Public_lab Asia Mechanical
Zhu et al. (2012) Residence Asia Natural SO42-, NH4+, NO3-, OC, EC, Fe, Mn, PM2.5
Huang et al. (2012) Public_office Asia Natural SO42-, NH4+, NO3-, PM2.5
Residence Asia Natural
Klinmalee et al. (2009) Public_school Asia Mechanical SO42-, NH4+, NO3-, EC, PM2.5
Public_store Asia Mechanical
Kulshrestha et al. (2009) Residence Asia N.A. b) SO42-, NH4+, NO3-, PM2.5
Loupa et al. (2016) Public_hospital Europe Mechanical and natural SO42-, EC, Fe, Cu, Mn, PM2.5
Perrino et al. (2016) Residence Europe Natural SO42-, NH4+, NO3-, OC, EC, Fe, PM2.5
Sajani et al. (2015) Public Europe Mechanical SO42-, NH4+, NO3-, OC, EC, Fe, PM2.5
Residence Europe Mechanical
Tofful and Perrino (2015) Public_school Europe Natural SO42-, NH4+, NO3-, OC, EC, PM2.5
Rivas et al. (2015) Public_school Europe Natural SO42-, NH4+, NO3-, OC, EC, Fe, Cu, Mn, PM2.5
Saraga et al. (2015) Residence Europe Natural SO42-, NH4+, NO3-, OC, EC, PM2.5
Viana et al. (2014) Public_school Europe Natural SO42-, NH4+, NO3-, OC, EC, Fe, Cu, Mn, PM2.5
Buczyńska et al. (2014) Residence Europe Natural SO42-, NO3-
Moreno et al. (2014) Public_school Europe Natural SO42-, NH4+, NO3-, OC, EC, Fe, Cu, Mn, PM2.5
Montagne et al. (2014a) Residence Europe N.A. b) Fe, Cu, PM2.5
Montagne et al. (2014b) Residence Europe N.A. b) Fe, Cu, PM2.5
Alves et al. (2013) Public_school Europe Natural SO42-, NH4+, NO3-, OC, EC, PM2.5
Sangiorgi et al. (2013) Public_office Europe Natural SO42-, NH4+, NO3-, PM2.5
Seleventi et al. (2012) Residence Europe Natural SO42-, NH4+, NO3-, OC, EC, PM2.5
Saraga et al. (2010) Residence Europe Natural SO42-, NO3-, PM2.5
Fromme et al. (2008) Public_school Europe Natural SO42-, NH4+, NO3-
Lazaridis et al. (2008) Residence Europe Natural SO42-, NH4+, NO3-, OC, EC, PM2.5
Stevens et al. (2014) Residence North America N.A. b) SO42-, NO3-, OC, EC, Fe, Mn, PM2.5
Hasheminassab et al. (2014) Residence North America Natural SO42-, OC, EC, Fe, Cu, Mn
Baxter et al. (2007) Residence North America N.A. b) SO42-, EC, Fe, PM2.5
Hering et al. 2007) Residence North America Mechanical SO42-, NO3-, EC
John et al. (2007) Public_school North America Natural SO42-, NH4+, NO3-, Fe, PM2.5
Barraza et al. (2014) Residence South America Natural SO42-, OC, EC, Fe, Cu, Mn
Ruiz et al. (2010) Residence South America Natural SO42-, OC, EC, Fe, Cu, Mn, PM2.5
Tab.3  Basic information from 37 studies reviewed in this study. This information includes building type, location, ventilation mode if reported, and what species were measured
Fig.4  Measured RIO of sulfate in (a) residential and (b) public buildings.
Fig.5  Normalized RIO of PM2.5 in (a) residential and (b) public buildings.
Fig.6  Normalized RIO of EC in (a) residential and (b) public buildings.
Fig.7  Normalized RIO of Fe in (a) residential and (b) public buildings
Fig.8  Normalized RIO of Cu in (a) residential and (b) public buildings.
Fig.9  Normalized RIO of Mn in (a) residential and (b) public buildings.
Fig.10  Normalized RIO of NO3- in (a) residential and (b) public buildings.
Fig.11  Normalized RIO of NH4+ in (a) residential and (b) public buildings.
Fig.12  Normalized RIO of OC in (a) residential and (b) public buildings. This includes both RIO less than one but mostly greater than or equal to one, which is quite different from Figs. 5–11.
1 Allen A G, Nemitz E, Shi J P, Harrison R M, Greenwood J C (2001). Size distributions of trace metals in atmospheric aerosols in the United Kingdom. Atmospheric Environment, 35(27): 4581–4591
https://doi.org/10.1016/S1352-2310(01)00190-X
2 Allen R W, Adar S D, Avol E, Cohen M, Curl C L, Larson T, Liu L J S, Sheppard L, Kaufman J D (2012). Modeling the residential infiltration of outdoor PM2.5 in the multi-ethnic study of atherosclerosis and air pollution (MESA air). Environmental Health Perspectives, 120(6): 824–830
https://doi.org/10.1289/ehp.1104447 pmid: 22534026
3 Alves C, Nunes T, Silva J, Duarte M (2013). Comfort parameters and particulate matter (PM10 and PM2.5) in school classrooms and outdoor air. Aerosol and Air Quality Research, 13(5): 1521–1535
https://doi.org/10.4209/aaqr.2012.11.0321
4 Andersen R, Fabi V, Toftum J, Corgnati S P, Olesen B W (2013). Window opening behaviour modelled from measurements in Danish dwellings. Building and Environment, 69: 101–113
https://doi.org/10.1016/j.buildenv.2013.07.005
5 Andersen R V, Toftum J, Andersen K K, Olesen B W (2009). Survey of occupant behaviour and control of indoor environment in Danish dwellings. Energy and Building, 41(1): 11–16
https://doi.org/10.1016/j.enbuild.2008.07.004
6 Azuma K, Uchiyama I, Uchiyama S, Kunugita N (2016). Assessment of inhalation exposure to indoor air pollutants: Screening for health risks of multiple pollutants in Japanese dwellings. Environmental Research, 145: 39–49
https://doi.org/10.1016/j.envres.2015.11.015 pmid: 26618504
7 Barraza F, Jorquera H, Valdivia G, Montoya L D (2014). Indoor PM2.5 in Santiago, Chile, spring 2012: Source apportionment and outdoor contributions. Atmospheric Environment, 94: 692–700
https://doi.org/10.1016/j.atmosenv.2014.06.014
8 Baxter L K, Clougherty J E, Laden F, Levy J I (2007). Predictors of concentrations of nitrogen dioxide, fine particulate matter, and particle constituents inside of lower socioeconomic status urban homes. Journal of Exposure Science & Environmental Epidemiology, 17(5): 433–444
https://doi.org/10.1038/sj.jes.7500532 pmid: 17051138
9 Bekö G, Gustavsen S, Frederiksen M, Bergsøe N C, Kolarik B, Gunnarsen L, Toftum J, Clausen G (2016). Diurnal and seasonal variation in air exchange rates and interzonal airflows measured by active and passive tracer gas in homes. Building and Environment, 104: 178–187
https://doi.org/10.1016/j.buildenv.2016.05.016
10 Belis C A, Karagulian F, Larsen B R, Hopke P K (2013). Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmospheric Environment, 69: 94–108
https://doi.org/10.1016/j.atmosenv.2012.11.009
11 Brauer M, Dumyahn T S, Spengler J D, Gutschmidt K, Heinrich J, Wichmann H E (1995). Measurement of acidic aerosol species in eastern Europe: Implications for air pollution epidemiology. Environmental Health Perspectives, 103(5): 482–488
https://doi.org/10.1289/ehp.95103482 pmid: 7656878
12 Brook R D, Rajagopalan S, Pope C A 3rd, Brook J R, Bhatnagar A, Diez-Roux A V, Holguin F, Hong Y, Luepker R V, Mittleman M A, Peters A, Siscovick D, Smith S C Jr, Whitsel L, Kaufman J D, American Heart Association Council on Epidemiology and Prevention, Council on the Kidney in Cardiovascular Disease, and Council on Nutrition, Physical Activity and Metabolism (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation, 121(21): 2331–2378
https://doi.org/10.1161/CIR.0b013e3181dbece1 pmid: 20458016
13 Buczyńska A J, Krata A, Van Grieken R, Brown A, Polezer G, De Wael K, Potgieter-Vermaak S (2014). Composition of PM2.5 and PM1 on high and low pollution event days and its relation to indoor air quality in a home for the elderly. Science of the Total Environment, 490: 134–143
https://doi.org/10.1016/j.scitotenv.2014.04.102 pmid: 24852612
14 Cao J, Mo J, Sun Z, Zhang Y (2018). Indoor particle age, a new concept for improving the accuracy of estimating indoor airborne SVOC concentrations, and applications. Building and Environment, 136: 88–97
https://doi.org/10.1016/j.buildenv.2018.03.028
15 Cao S J, Kong X R, Li L, Zhang W, Ye Z P, Deng Y (2017). An investigation of the PM2.5 and NO2 concentrations and their human health impacts in the metro subway system of Suzhou, China. Environmental Science. Processes & Impacts, 19(5): 666–675
https://doi.org/10.1039/C6EM00655H pmid: 28338137
16 Chen C, Zhao B (2011). Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmospheric Environment, 45(2): 275–288
https://doi.org/10.1016/j.atmosenv.2010.09.048
17 Chen C, Zhao B, Weschler C J (2012). Assessing the influence of indoor exposure to “outdoor ozone” on the relationship between ozone and short-term mortality in U.S. communities. Environmental Health Perspectives, 120(2): 235–240
https://doi.org/10.1289/ehp.1103970 pmid: 22100611
18 Chen S J, Lin T C, Tsai J H, Hsieh L T, Cho J Y (2013). Characteristics of indoor aerosols in college laboratories. Aerosol and Air Quality Research, 13(2): 649–661
https://doi.org/10.4209/aaqr.2012.07.0176
19 Chen Y, Xie S, Luo B (2018). Seasonal variations of transport pathways and potential sources of PM2.5 in Chengdu, China (2012–2013). Frontiers of Environmental Science & Engineering, 12(1): 12
20 Chithra V S, Nagendra S M S (2013). Chemical and morphological characteristics of indoor and outdoor particulate matter in an urban environment. Atmospheric Environment, 77: 579–587
https://doi.org/10.1016/j.atmosenv.2013.05.044
21 Chow J C, Lowenthal D H, Chen L W A, Wang X, Watson J G (2015). Mass reconstruction methods for PM2.5: A review. Air Quality, Atmosphere & Health, 8(3): 243–263
https://doi.org/10.1007/s11869-015-0338-3 pmid: 26052367
22 DeCarlo P F, Avery A M, Waring M S (2018). Thirdhand smoke uptake to aerosol particles in the indoor environment. Science Advances, 4(5): eaap8368
https://doi.org/10.1126/sciadv.aap8368 pmid: 29750194
23 Diapouli E, Chaloulakou A, Koutrakis P (2013). Estimating the concentration of indoor particles of outdoor origin: A review. Journal of the Air & Waste Management Association, 63(10): 1113–1129
https://doi.org/10.1080/10962247.2013.791649 pmid: 24282964
24 Donahue N M, Robinson A L, Stanier C O, Pandis S N (2006). Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environmental Science & Technology, 40(8): 2635–2643
https://doi.org/10.1021/es052297c pmid: 16683603
25 Ebelt S T, Wilson W E, Brauer M (2005). Exposure to ambient and nonambient components of particulate matter: A comparison of health effects. Epidemiology (Cambridge, Mass.), 16(3): 396–405
https://doi.org/10.1097/01.ede.0000158918.57071.3e pmid: 15824557
26 Fang T, Guo H, Zeng L, Verma V, Nenes A, Weber R J (2017a). Highly acidic ambient particles, soluble metals, and oxidative potential: a link between sulfate and aerosol toxicity. Environmental Science & Technology, 51(5): 2611–2620
https://doi.org/10.1021/acs.est.6b06151 pmid: 28141928
27 Fang T, Zeng L, Gao D, Verma V, Stefaniak A B, Weber R J (2017b). Ambient size distributions and lung deposition of aerosol dithiothreitol-measured oxidative potential: Contrast between soluble and insoluble particles. Environmental Science & Technology, 51(12): 6802–6811
https://doi.org/10.1021/acs.est.7b01536 pmid: 28548846
28 Feng Z, Zhou X, Xu S, Ding J, Cao S J (2018). Impacts of humidification process on indoor thermal comfort and air quality using portable ultrasonic humidifier. Building and Environment, 133: 62–72
https://doi.org/10.1016/j.buildenv.2018.02.011
29 Fromme H, Diemer J, Dietrich S, Cyrys J, Heinrich J, Lang W, Kiranoglu M, Twardella D (2008). Chemical and morphological properties of particulate matter (PM10, PM2.5) in school classrooms and outdoor air. Atmospheric Environment, 42(27): 6597–6605
https://doi.org/10.1016/j.atmosenv.2008.04.047
30 Gauderman W J, Urman R, Avol E, Berhane K, McConnell R, Rappaport E, Chang R, Lurmann F, Gilliland F (2015). Association of improved air quality with lung development in children. The New England Journal of Medicine, 372(10): 905–913
https://doi.org/10.1056/NEJMoa1414123 pmid: 25738666
31 GBD-2015-Mortality-and-Causes-of-Death-Collaborators (2016). Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 388(10053): 1459–1544
32 Glasius M, Goldstein A H (2016). Recent discoveries and future challenges in atmospheric organic chemistry. Environmental Science & Technology, 50(6): 2754–2764
https://doi.org/10.1021/acs.est.5b05105 pmid: 26862779
33 Habre R, Moshier E, Castro W, Nath A, Grunin A, Rohr A, Godbold J, Schachter N, Kattan M, Coull B, Koutrakis P (2014). The effects of PM2.5 and its components from indoor and outdoor sources on cough and wheeze symptoms in asthmatic children. Journal of Exposure Science & Environmental Epidemiology, 24(4): 380–387
https://doi.org/10.1038/jes.2014.21 pmid: 24714073
34 Han Y J, Li X H, Zhu T L, Lv D, Chen Y, Hou L A, Zhang Y P, Ren M Z (2016). Characteristics and relationships between indoor and outdoor PM2.5 in Beijing: A residential apartment case study. Aerosol and Air Quality Research, 16(10): 2386–2395
https://doi.org/10.4209/aaqr.2015.12.0682
35 Hänninen O O, Lebret E, Ilacqua V, Katsouyanni K, Künzli N, Srám R J, Jantunen M (2004). Infiltration of ambient PM2.5 and levels of indoor generated non-ETS PM2.5 in residences of four European cities. Atmospheric Environment, 38(37): 6411–6423
https://doi.org/10.1016/j.atmosenv.2004.07.015
36 Hasheminassab S, Daher N, Shafer M M, Schauer J J, Delfino R J, Sioutas C (2014). Chemical characterization and source apportionment of indoor and outdoor fine particulate matter (PM2.5) in retirement communities of the Los Angeles Basin. Science of the Total Environment, 490: 528–537
https://doi.org/10.1016/j.scitotenv.2014.05.044 pmid: 24880542
37 Hassanvand M S, Naddafi K, Faridi S, Arhami M, Nabizadeh R, Sowlat M H, Pourpak Z, Rastkari N, Momeniha F, Kashani H, Gholampour A, Nazmara S, Alimohammadi M, Goudarzi G, Yunesian M (2014). Indoor/outdoor relationships of PM10, PM2.5, and PM1 mass concentrations and their water-soluble ions in a retirement home and a school dormitory. Atmospheric Environment, 82: 375–382
https://doi.org/10.1016/j.atmosenv.2013.10.048
38 Hering S V, Lunden M M, Thatcher T L, Kirchstetter T W, Brown N I (2007). Using regional data and building leakage to assess indoor concentrations of particles of outdoor origin. Aerosol Science and Technology, 41(7): 639–654
https://doi.org/10.1080/02786820701368026
39 Hodas N, Meng Q, Lunden M M, Rich D Q, Ozkaynak H, Baxter L K, Zhang Q, Turpin B J (2012). Variability in the fraction of ambient fine particulate matter found indoors and observed heterogeneity in health effect estimates. Journal of Exposure Science & Environmental Epidemiology, 22(5): 448–454
https://doi.org/10.1038/jes.2012.34 pmid: 22617722
40 Hodas N, Turpin B J (2014). Shifts in the gas-particle partitioning of ambient organics with transport into the indoor environment. Aerosol Science and Technology, 48(3): 271–281
https://doi.org/10.1080/02786826.2013.871500
41 Hopke P K (2016). Review of receptor modeling methods for source apportionment. Journal of the Air & Waste Management Association, 66(3): 237–259
https://doi.org/10.1080/10962247.2016.1140693 pmid: 26756961
42 Huang H, Zou C W, Cao J J, Tsang P K, Zhu F X, Yu C L, Xue S J (2012). Water-soluble Ions in PM2.5 on the Qianhu Campus of Nanchang University, Nanchang City: Indoor-outdoor distribution and source implications. Aerosol and Air Quality Research, 12(3): 435–443
https://doi.org/10.4209/aaqr.2011.11.0219
43 Ivey C E, Holmes H A, Hu Y, Mulholland J A, Russell A G (2016). A method for quantifying bias in modeled concentrations and source impacts for secondary particulate matter. Frontiers of Environmental Science & Engineering, 10(5): 14
https://doi.org/10.1007/s11783-016-0866-6
44 Ivey C E, Holmes H A, Hu Y T, Mulholland J A, Russell A G (2015). Development of PM2.5 source impact spatial fields using a hybrid source apportionment air quality model. Geoscientific Model Development, 8(7): 2153–2165
https://doi.org/10.5194/gmd-8-2153-2015
45 Jan R, Roy R, Yadav S, Satsangi P G (2017). Exposure assessment of children to particulate matter and gaseous species in school environments of Pune, India. Building and Environment, 111: 207–217
https://doi.org/10.1016/j.buildenv.2016.11.008
46 Ji W, Li H, Zhao B, Deng F (2018). Tracer element for indoor PM2.5 in China migrated from outdoor. Atmospheric Environment, 176: 171–178
https://doi.org/10.1016/j.atmosenv.2017.12.034
47 Ji W, Zhao B (2015). Estimating mortality derived from indoor exposure to particles of outdoor origin. PLoS One, 10(4): e0124238
https://doi.org/10.1371/journal.pone.0124238 pmid: 25860147
48 John K, Karnae S, Crist K, Kim M, Kulkarni A (2007). Analysis of trace elements and ions in ambient fine particulate matter at three elementary schools in Ohio. Journal of the Air & Waste Management Association, 57(4): 394–406
https://doi.org/10.3155/1047-3289.57.4.394 pmid: 17458459
49 Johnson A M, Waring M S, DeCarlo P F (2016). Real-time transformation of outdoor aerosol components upon transport indoors measured with aerosol mass spectrometry. Indoor Air, 27(1): 230–240
https://doi.org/10.1111/ina.12299 pmid: 27008502
50 Klepeis N E, Nelson W C, Ott W R, Robinson J P, Tsang A M, Switzer P, Behar J V, Hern S C, Engelmann W H (2001). The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. Journal of Exposure Analysis and Environmental Epidemiology, 11(3): 231–252
https://doi.org/10.1038/sj.jea.7500165 pmid: 11477521
51 Klinmalee A, Srimongkol K, Kim Oanh N T (2009). Indoor air pollution levels in public buildings in Thailand and exposure assessment. Environmental Monitoring and Assessment, 156(1–4): 581–594
https://doi.org/10.1007/s10661-008-0507-z pmid: 18712485
52 Koutrakis P, Briggs S L K, Leaderer B P (1992). Source apportionment of indoor aerosols in Suffolk and Onondaga counties, New York. Environmental Science & Technology, 26(3): 521–527
https://doi.org/10.1021/es00027a012
53 Kroll J H, Seinfeld J H (2008). Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere. Atmospheric Environment, 42(16): 3593–3624
https://doi.org/10.1016/j.atmosenv.2008.01.003
54 Kulshrestha A, Bisht D S, Masih J, Massey D, Tiwari S, Taneja A (2009). Chemical characterization of water-soluble aerosols in different residential environments of semi aridregion of India. Journal of Atmospheric Chemistry, 62(2): 121–138
https://doi.org/10.1007/s10874-010-9143-4
55 Lakey P S J, Berkemeier T, Tong H, Arangio A M, Lucas K, Pöschl U, Shiraiwa M (2016). Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract. Scientific Reports, 6(1): 32916
https://doi.org/10.1038/srep32916 pmid: 27605301
56 Lazaridis M, Aleksandropoulou V, Hanssen J E, Dye C, Eleftheriadis K, Katsivela E (2008). Inorganic and carbonaceous components in indoor/outdoor particulate matter in two residential houses in Oslo, Norway. Journal of the Air & Waste Management Association, 58(3): 346–356
https://doi.org/10.3155/1047-3289.58.3.346 pmid: 18376638
57 Leaderer B P, Naeher L, Jankun T, Balenger K, Holford T R, Toth C, Sullivan J, Wolfson J M, Koutrakis P (1999). Indoor, outdoor, and regional summer and winter concentrations of PM10, PM2.5, SO42-, H+, NH4+, NO3-, NH3, and nitrous acid in homes with and without kerosene space heaters. Environmental Health Perspectives, 107(3): 223–231
https://doi.org/10.1289/ehp.99107223 pmid: 10064553
58 Lim S S, Vos T, Flaxman A D, Danaei G, Shibuya K, Adair-Rohani H, Amann M, Anderson H R, Andrews K G, Aryee M, Atkinson C, Bacchus L J, Bahalim A N, Balakrishnan K, Balmes J, Barker-Collo S, Baxter A, Bell M L, Blore J D, Blyth F, Bonner C, Borges G, Bourne R, Boussinesq M, Brauer M, Brooks P, Bruce N G, Brunekreef B, Bryan-Hancock C, Bucello C, Buchbinder R, Bull F, Burnett R T, Byers T E, Calabria B, Carapetis J, Carnahan E, Chafe Z, Charlson F, Chen H, Chen J S, Cheng A T, Child J C, Cohen A, Colson K E, Cowie B C, Darby S, Darling S, Davis A, Degenhardt L, Dentener F, Des Jarlais D C, Devries K, Dherani M, Ding E L, Dorsey E R, Driscoll T, Edmond K, Ali S E, Engell R E, Erwin P J, Fahimi S, Falder G, Farzadfar F, Ferrari A, Finucane M M, Flaxman S, Fowkes F G, Freedman G, Freeman M K, Gakidou E, Ghosh S, Giovannucci E, Gmel G, Graham K, Grainger R, Grant B, Gunnell D, Gutierrez H R, Hall W, Hoek H W, Hogan A, Hosgood H D 3rd, Hoy D, Hu H, Hubbell B J, Hutchings S J, Ibeanusi S E, Jacklyn G L, Jasrasaria R, Jonas J B, Kan H, Kanis J A, Kassebaum N, Kawakami N, Khang Y H, Khatibzadeh S, Khoo J P, Kok C, Laden F, Lalloo R, Lan Q, Lathlean T, Leasher J L, Leigh J, Li Y, Lin J K, Lipshultz S E, London S, Lozano R, Lu Y, Mak J, Malekzadeh R, Mallinger L, Marcenes W, March L, Marks R, Martin R, McGale P, McGrath J, Mehta S, Mensah G A, Merriman T R, Micha R, Michaud C, Mishra V, Mohd Hanafiah K, Mokdad A A, Morawska L, Mozaffarian D, Murphy T, Naghavi M, Neal B, Nelson P K, Nolla J M, Norman R, Olives C, Omer S B, Orchard J, Osborne R, Ostro B, Page A, Pandey K D, Parry C D, Passmore E, Patra J, Pearce N, Pelizzari P M, Petzold M, Phillips M R, Pope D, Pope C A 3rd, Powles J, Rao M, Razavi H, Rehfuess E A, Rehm J T, Ritz B, Rivara F P, Roberts T, Robinson C, Rodriguez-Portales J A, Romieu I, Room R, Rosenfeld L C, Roy A, Rushton L, Salomon J A, Sampson U, Sanchez-Riera L, Sanman E, Sapkota A, Seedat S, Shi P, Shield K, Shivakoti R, Singh G M, Sleet D A, Smith E, Smith K R, Stapelberg N J, Steenland K, Stöckl H, Stovner L J, Straif K, Straney L, Thurston G D, Tran J H, Van Dingenen R, van Donkelaar A, Veerman J L, Vijayakumar L, Weintraub R, Weissman M M, White R A, Whiteford H, Wiersma S T, Wilkinson J D, Williams H C, Williams W, Wilson N, Woolf A D, Yip P, Zielinski J M, Lopez A D, Murray C J, Ezzati M, AlMazroa M A, Memish Z A (2012). A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380(9859): 2224–2260
https://doi.org/10.1016/S0140-6736(12)61766-8 pmid: 23245609
59 Lippmann M, Chen L C, Gordon T, Ito K, Thurston G D (2013). National Particle Component Toxicity (NPACT) Initiative: Integrated Epidemiologic and Toxicologic Studies of the Health Effects of Particulate Matter Components. Boston, USA: Research Report Health Effect Institute
60 Liu C, Cai J, Qiao L, Wang H, Xu W, Li H, Zhao Z, Chen R, Kan H (2017a). The acute effects of fine particulate matter constituents on blood inflammation and coagulation. Environmental Science & Technology, 51(14): 8128–8137
https://doi.org/10.1021/acs.est.7b00312 pmid: 28621946
61 Liu C, Cao J (2018). Potential role of intraparticle diffusion in dynamic partitioning of secondary organic aerosols. Atmospheric Pollution Research, 9(6): 1131–1136
https://doi.org/10.1016/j.apr.2018.04.012
62 Liu C, Kolarik B, Gunnarsen L, Zhang Y (2015a). C-depth method to determine diffusion coefficient and partition coefficient of PCB in building materials. Environmental Science & Technology, 49(20): 12112–12119
https://doi.org/10.1021/acs.est.5b03352 pmid: 26347992
63 Liu C, Liu Z, Little J C, Zhang Y (2013a). Convenient, rapid and accurate measurement of SVOC emission characteristics in experimental chambers. PLoS One, 8(8): e72445
https://doi.org/10.1371/journal.pone.0072445 pmid: 24015246
64 Liu C, Shi S, Weschler C, Zhao B, Zhang Y (2013b). Analysis of the dynamic interaction between SVOCs and airborne particles. Aerosol Science and Technology, 47(2): 125–136
https://doi.org/10.1080/02786826.2012.730163
65 Liu C, Zhang Y (2016). Characterizing the equilibrium relationship between DEHP in PVC flooring and air using a closed-chamber SPME method. Building and Environment, 95: 283–290
https://doi.org/10.1016/j.buildenv.2015.09.028
66 Liu C, Zhang Y, Benning J L, Little J C (2015b). The effect of ventilation on indoor exposure to semivolatile organic compounds. Indoor Air, 25(3): 285–296
https://doi.org/10.1111/ina.12139 pmid: 24939666
67 Liu C, Zhang Y, Weschler C J (2014). The impact of mass transfer limitations on size distributions of particle associated SVOCs in outdoor and indoor environments. Science of the Total Environment, 497– 498: 401–411
https://doi.org/10.1016/j.scitotenv.2014.07.095 pmid: 25146909
68 Liu C, Zhang Y, Weschler C J (2017b). Exposure to SVOCs from inhaled particles: Impact of desorption. Environmental Science & Technology, 51(11): 6220–6228
https://doi.org/10.1021/acs.est.6b05864 pmid: 28452220
69 Liu D L, Nazaroff W W (2001). Modeling pollutant penetration across building envelopes. Atmospheric Environment, 35(26): 4451–4462
https://doi.org/10.1016/S1352-2310(01)00218-7
70 Lomboy M, Quirit L L, Molina V B, Dalmacion G V, Schwartz J D, Suh H H, Baja E S (2015). Characterization of particulate matter 2.5 in an urban tertiary care hospital in the Philippines. Building and Environment, 92: 432–439
https://doi.org/10.1016/j.buildenv.2015.05.018
71 López-Aparicio S, Smolík J, Mašková L, Součková M, Grøntoft T, Ondráčková L, Stankiewicz J (2011). Relationship of indoor and outdoor air pollutants in a naturally ventilated historical building envelope. Building and Environment, 46(7): 1460–1468
https://doi.org/10.1016/j.buildenv.2011.01.013
72 Loupa G, Zarogianni A M, Karali D, Kosmadakis I, Rapsomanikis S (2016). Indoor/outdoor PM2.5 elemental composition and organic fraction medications, in a Greek hospital. Science of the Total Environment, 550: 727–735
https://doi.org/10.1016/j.scitotenv.2016.01.070 pmid: 26849336
73 Lu M, Lin B L, Inoue K, Lei Z, Zhang Z, Tsunemi K (2018). PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan. Frontiers of Environmental Science & Engineering, 12(2): 13
74 Lunden M M, Kirchstetter T W, Thatcher T L, Hering S V, Brown N J (2008). Factors affecting the indoor concentrations of carbonaceous aerosols of outdoor origin. Atmospheric Environment, 42(22): 5660–5671
https://doi.org/10.1016/j.atmosenv.2008.03.017
75 Lunden M M, Revzan K L, Fischer M L, Thatcher T L, Littlejohn D, Hering S V, Brown N J (2003). The transformation of outdoor ammonium nitrate aerosols in the indoor environment. Atmospheric Environment, 37(39–40): 5633–5644
https://doi.org/10.1016/j.atmosenv.2003.09.035
76 Ministry-of-Environment-Protection (2013). The Chinese Exposure Factors Handbook (Adults). Beijing, China Environmental Science Press (in Chinese)
77 Ministry of Housing and Urban-Rural Development of China (MOHURD), General Administration of Quality Supervision, Inspection and Quarantine of China (GAQSIQC) (2012). GB50736. Design code for heating ventilation and air conditioning of civil buildings. Beijing: Ministry of Housing and Urban-Rural Development of China, General Administration of Quality Supervision, Inspection and Quarantine of China (in Chinese)
78 Mohammed M O A, Song W W, Ma W L, Li W L, Ambuchi J J, Thabit M, Li Y F (2015). Trends in indoor-outdoor PM2.5 research: A systematic review of studies conducted during the last decade (2003–2013). Atmospheric Pollution Research, 6(5): 893–903
https://doi.org/10.5094/APR.2015.099
79 Montagne D, Hoek G, Nieuwenhuijsen M, Lanki T, Pennanen A, Portella M, Meliefste K, Wang M, Eeftens M, Yli-Tuomi T, Cirach M, Brunekreef B (2014a). The association of LUR modeled PM2.5 elemental composition with personal exposure. Science of the Total Environment, 493: 298–306
https://doi.org/10.1016/j.scitotenv.2014.05.057 pmid: 24950499
80 Montagne D, Hoek G, Nieuwenhuijsen M, Lanki T, Siponen T, Portella M, Meliefste K, Brunekreef B (2014b). Temporal associations of ambient PM2.5 elemental concentrations with indoor and personal concentrations. Atmospheric Environment, 86: 203–211
https://doi.org/10.1016/j.atmosenv.2013.12.021
81 Morawska L, Afshari A, Bae G N, Buonanno G, Chao C Y H, Hänninen O, Hofmann W, Isaxon C, Jayaratne E R, Pasanen P, Salthammer T, Waring M, Wierzbicka A (2013). Indoor aerosols: From personal exposure to risk assessment. Indoor Air, 23(6): 462–487
https://doi.org/10.1111/ina.12044 pmid: 23574389
82 Moreno T, Rivas I, Bouso L, Viana M, Jones T, Alvarez-Pedrerol M, Alastuey A, Sunyer J, Querol X (2014). Variations in school playground and classroom atmospheric particulate chemistry. Atmospheric Environment, 91: 162–171
https://doi.org/10.1016/j.atmosenv.2014.03.066
83 Nazaroff W W (2018a). The air around us. Indoor Air, 28(1): 3–5
https://doi.org/10.1111/ina.12423 pmid: 29243865
84 Nazaroff W W (2018b). The particles around us. Indoor Air, 28(2): 215–217
https://doi.org/10.1111/ina.12444 pmid: 29441666
85 Noullett M, Jackson P L, Brauer M (2010). Estimation and characterization of children’s ambient generated exposure to PM2.5 using sulphate and elemental carbon as tracers. Atmospheric Environment, 44(36): 4629–4637
https://doi.org/10.1016/j.atmosenv.2010.08.004
86 Pei J, Yin Y, Liu J (2016). Long-term indoor gas pollutant monitor of new dormitories with natural ventilation. Energy and Building, 129: 514–523
https://doi.org/10.1016/j.enbuild.2016.08.033
87 Perrino C, Tofful L, Canepari S (2016). Chemical characterization of indoor and outdoor fine particulate matter in an occupied apartment in Rome, Italy. Indoor Air, 26(4): 558–570
https://doi.org/10.1111/ina.12235 pmid: 26184798
88 Persily A, Musser A, Emmerich S J (2010). Modeled infiltration rate distributions for U.S. housing. Indoor Air, 20(6): 473–485
https://doi.org/10.1111/j.1600-0668.2010.00669.x pmid: 21070374
89 Persily A K (2016). Field measurement of ventilation rates. Indoor Air, 26(1): 97–111
https://doi.org/10.1111/ina.12193 pmid: 25689218
90 Polidori A, Cheung K L, Arhami M, Delfino R J, Schauer J J, Sioutas C (2009). Relationships between size-fractionated indoor and outdoor trace elements at four retirement communities in southern California. Atmospheric Chemistry and Physics, 9(14): 4521–4536
https://doi.org/10.5194/acp-9-4521-2009
91 Pope C A 3rd, Dockery D W (2006). Health effects of fine particulate air pollution: Lines that connect. Journal of the Air & Waste Management Association, 56(6): 709–742
https://doi.org/10.1080/10473289.2006.10464485 pmid: 16805397
92 Riley W J, McKone T E, Lai A C K, Nazaroff W W (2002). Indoor particulate matter of outdoor origin: Importance of size-dependent removal mechanisms. Environmental Science & Technology, 36(2): 200–207
https://doi.org/10.1021/es010723y pmid: 11831216
93 Rivas I, Viana M, Moreno T, Bouso L, Pandolfi M, Alvarez-Pedrerol M, Forns J, Alastuey A, Sunyer J, Querol X (2015). Outdoor infiltration and indoor contribution of UFP and BC, OC, secondary inorganic ions and metals in PM2.5 in schools. Atmospheric Environment, 106: 129–138
https://doi.org/10.1016/j.atmosenv.2015.01.055
94 Ruiz P A, Toro C, Cáceres J, López G, Oyola P, Koutrakis P (2010). Effect of gas and kerosene space heaters on indoor air quality: A study in homes of Santiago, Chile. Journal of the Air & Waste Management Association, 60(1): 98–108
https://doi.org/10.3155/1047-3289.60.1.98 pmid: 20102039
95 Sajani S Z, Ricciardelli I, Trentini A, Bacco D, Maccone C, Castellazzi S, Lauriola P, Poluzzi V, Harrison R M (2015). Spatial and indoor/outdoor gradients in urban concentrations of ultrafine particles and PM2.5 mass and chemical components. Atmospheric Environment, 103: 307–320
https://doi.org/10.1016/j.atmosenv.2014.12.064
96 Salthammer T, Zhang Y, Mo J, Koch H M, Weschler C J (2018). Assessing human exposure to organic pollutants in the indoor environment. Angewandte Chemie International Edition, 57(38): 12228–12263
https://doi.org/10.1002/anie.201711023 pmid: 29537125
97 Sangiorgi G, Ferrero L, Ferrini B S, Lo Porto C, Perrone M G, Zangrando R, Gambaro A, Lazzati Z, Bolzacchini E (2013). Indoor airborne particle sources and semi-volatile partitioning effect of outdoor fine PM in offices. Atmospheric Environment, 65: 205–214
https://doi.org/10.1016/j.atmosenv.2012.10.050
98 Saraga D, Maggos T, Sadoun E, Fthenou E, Hassan H, Tsiouri V, Karavoltsos S, Sakellari A, Vasilakos C, Kakosimos K (2017). Chemical characterization of indoor and outdoor particulate matter (PM2.5, PM10) in Doha, Qatar. Aerosol and Air Quality Research, 17(5): 1156–1168
https://doi.org/10.4209/aaqr.2016.05.0198
99 Saraga D E, Maggos T, Helmis C G, Michopoulos J, Bartzis J G, Vasilakos C (2010). PM1 and PM2.5 ionic composition and VOCs measurements in two typical apartments in Athens, Greece: Investigation of smoking contribution to indoor air concentrations. Environmental Monitoring and Assessment, 167(1–4): 321–331
https://doi.org/10.1007/s10661-009-1052-0 pmid: 19572108
100 Saraga D E, Makrogkika A, Karavoltsos S, Sakellari A, Diapouli E, Eleftheriadis K, Vasilakos C, Helmis C, Maggos T (2015). A pilot investigation of PM indoor/outdoor mass concentration and chemical analysis during a period of extensive fireplace use in Athens. Aerosol and Air Quality Research, 15(7): 2485–2495
https://doi.org/10.4209/aaqr.2015.02.0100
101 Sarnat J A, Long C M, Koutrakis P, Coull B A, Schwartz J, Suh H H (2002). Using sulfur as a tracer of outdoor fine particulate matter. Environmental Science & Technology, 36(24): 5305–5314
https://doi.org/10.1021/es025796b pmid: 12521154
102 Sarnat S E, Sarnat J A, Mulholland J, Isakov V, Özkaynak H, Chang H H, Klein M, Tolbert P E (2013). Application of alternative spatiotemporal metrics of ambient air pollution exposure in a time-series epidemiological study in Atlanta. Journal of Exposure Science & Environmental Epidemiology, 23(6): 593–605
https://doi.org/10.1038/jes.2013.41 pmid: 23963512
103 Satsangi P G, Yadav S, Pipal A S, Kumbhar N (2014). Characteristics of trace metals in fine (PM2.5) and inhalable (PM10) particles and its health risk assessment along with in-silico approach in indoor environment of India. Atmospheric Environment, 92: 384–393
https://doi.org/10.1016/j.atmosenv.2014.04.047
104 Schweiker M, Haldi F, Shukuya M, Robinson D (2012). Verification of stochastic models of window opening behaviour for residential buildings. Journal of Building Performance Simulation, 5(1): 55–74
https://doi.org/10.1080/19401493.2011.567422
105 See S W, Balasubramanian R (2006). Risk assessment of exposure to indoor aerosols associated with Chinese cooking. Environmental Research, 102(2): 197–204
https://doi.org/10.1016/j.envres.2005.12.013 pmid: 16457802
106 See S W, Wang Y H, Balasubramanian R (2007). Contrasting reactive oxygen species and transition metal concentrations in combustion aerosols. Environmental Research, 103(3): 317–324
https://doi.org/10.1016/j.envres.2006.08.012 pmid: 17011545
107 Seinfeld J H, Pankow J F (2003). Organic atmospheric particulate material. Annual Review of Physical Chemistry, 54(1): 121–140
https://doi.org/10.1146/annurev.physchem.54.011002.103756 pmid: 12524426
108 Seleventi M K, Saraga D E, Helmis C G, Bairachtari K, Vasilakos C, Maggos T (2012). PM2.5 indoor/outdoor relationship and chemical composition in ions and OC/EC in an apartment in the center of Athens. Fresenius Environmental Bulletin, 21(11): 3177–3183
109 Shi S, Chen C, Zhao B (2015). Air infiltration rate distributions of residences in Beijing. Building and Environment, 92: 528–537
https://doi.org/10.1016/j.buildenv.2015.05.027
110 Shi S, Chen C, Zhao B (2017). Modifications of exposure to ambient particulate matter: Tackling bias in using ambient concentration as surrogate with particle infiltration factor and ambient exposure factor. Environmental Pollution, 220(Pt A): 337–347
https://doi.org/10.1016/j.envpol.2016.09.069 pmid: 27707596
111 Shi S, Zhao B (2012). Comparison of the predicted concentration of outdoor originated indoor polycyclic aromatic hydrocarbons between a kinetic partition model and a linear instantaneous model for gas–particle partition. Atmospheric Environment, 59: 93–101
https://doi.org/10.1016/j.atmosenv.2012.05.007
112 Shi S, Zhao B (2016). Occupants’ interactions with windows in 8 residential apartments in Beijing and Nanjing, China. Building Simulation, 9(2): 221–231
https://doi.org/10.1007/s12273-015-0266-z
113 Song Y, Sun L, Wang X, Zhang Y, Wang H, Li R, Xue L, Chen J, Wang W (2018). Pollution characteristics of particulate matters emitted from outdoor barbecue cooking in urban Jinan in eastern China. Frontiers of Environmental Science & Engineering, 12(2): 14
114 Stanek L W, Sacks J D, Dutton S J, Dubois J J B (2011). Attributing health effects to apportioned components and sources of particulate matter: An evaluation of collective results. Atmospheric Environment, 45(32): 5655–5663
https://doi.org/10.1016/j.atmosenv.2011.07.023
115 Stevens C, Williams R, Jones P (2014). Progress on understanding spatial and temporal variability of PM2.5 and its components in the Detroit Exposure and Aerosol Research Study (DEARS). Environmental Science. Processes & Impacts, 16(1): 94–105
https://doi.org/10.1039/C3EM00364G pmid: 24247528
116 Suh H H, Koutrakis P, Spengler J D (1994). The relationship between airborne acidity and ammonia in indoor environments. Journal of Exposure Analysis and Environmental Epidemiology, 4(1): 1–22
pmid: 7894266
117 Szymczak W, Menzel N, Keck L (2007). Emission of ultrafine copper particles by universal motors controlled by phase angle modulation. Journal of Aerosol Science, 38(5): 520–531
https://doi.org/10.1016/j.jaerosci.2007.03.002
118 Tofful L, Perrino C (2015). Chemical composition of indoor and outdoor PM2.5 in three schools in the city of Rome. Atmosphere, 6(10): 1422–1443
https://doi.org/10.3390/atmos6101422
119 Viana M, Rivas I, Querol X, Alastuey A, Sunyer J, Álvarez-Pedrerol M, Bouso L, Sioutas C (2014). Indoor/outdoor relationships and mass closure of quasi-ultrafine, accumulation and coarse particles in Barcelona schools. Atmospheric Chemistry and Physics, 14(9): 4459–4472
https://doi.org/10.5194/acp-14-4459-2014
120 Wallace L A, Emmerich S J, Howard-Reed C (2002). Continuous measurements of air change rates in an occupied house for 1 year: The effect of temperature, wind, fans, and windows. Journal of Exposure Analysis and Environmental Epidemiology, 12(4): 296–306
https://doi.org/10.1038/sj.jea.7500229 pmid: 12087436
121 Wang J, Lai S, Ke Z, Zhang Y, Yin S, Zheng J (2014). Exposure assessment, chemical characterization and source identification of PM2.5 for school children and industrial downwind residents in Guangzhou, China. Environmental Geochemistry and Health, 36(3): 385–397
https://doi.org/10.1007/s10653-013-9557-4 pmid: 23934516
122 Wang L, Fu J S, Wei W, Wei Z, Meng C, Ma S, Wang J (2018). How aerosol direct effects influence the source contributions to PM2.5 concentrations over Southern Hebei, China in severe winter haze episodes. Frontiers of Environmental Science & Engineering, 12(3): 13
123 Wang L, Zhao B, Liu C, Lin H, Yang X, Zhang Y (2010). Indoor SVOC pollution in China: A review. Chinese Science Bulletin, 55(15): 1469–1478
https://doi.org/10.1007/s11434-010-3094-7
124 Wark K, Warner C F (1976). Air Pollution: Its Origin and Control. New York: Harper and Row Publishers
125 Weschler C J, Nazaroff W W (2008). Semivolatile organic compounds in indoor environments. Atmospheric Environment, 42(40): 9018–9040
https://doi.org/10.1016/j.atmosenv.2008.09.052
126 West J J, Cohen A, Dentener F, Brunekreef B, Zhu T, Armstrong B, Bell M L, Brauer M, Carmichael G, Costa D L, Dockery D W, Kleeman M, Krzyzanowski M, Künzli N, Liousse C, Lung S C C, Martin R V, Pöschl U, Pope C A 3rd, Roberts J M, Russell A G, Wiedinmyer C (2016). What we breathe impacts our health: Improving understanding of the link between air pollution and health. Environmental Science & Technology, 50(10): 4895–4904
https://doi.org/10.1021/acs.est.5b03827 pmid: 27010639
127 Xie R, Sabel C E, Lu X, Zhu W, Kan H, Nielsen C P, Wang H (2016). Long-term trend and spatial pattern of PM2.5 induced premature mortality in China. Environment International, 97: 180–186
https://doi.org/10.1016/j.envint.2016.09.003 pmid: 27614532
128 Xiong Q, Yu H, Wang R, Wei J, Verma V (2017). Rethinking the dithiothreitol (DTT) based PM oxidative potential: measuring DTT consumption versus ROS generation. Environmental Science & Technology, 51(11): 6507–6514
https://doi.org/10.1021/acs.est.7b01272 pmid: 28489384
129 Yamamoto N, Shendell D G, Winer A M, Zhang J (2010). Residential air exchange rates in three major US metropolitan areas: Results from the relationship among indoor, outdoor, and personal air study 1999–2001. Indoor Air, 20(1): 85–90
https://doi.org/10.1111/j.1600-0668.2009.00622.x pmid: 19874401
130 Yan D, O’Brien W, Hong T, Feng X, Burak Gunay H, Tahmasebi F, Mahdavi A (2015). Occupant behavior modeling for building performance simulation: Current state and future challenges. Energy and Building, 107(Supplement C): 264–278
https://doi.org/10.1016/j.enbuild.2015.08.032
131 Zhang J M, Chen J M, Yang L X, Sui X, Yao L, Zheng L F, Wen L, Xu C H, Wang W X (2014). Indoor PM2.5 and its chemical composition during a heavy haze-fog episode at Jinan, China. Atmospheric Environment, 99: 641–649
https://doi.org/10.1016/j.atmosenv.2014.10.026
132 Zhou X, Cai J, Zhao Y, Chen R, Wang C, Zhao A, Yang C, Li H, Liu S, Cao J, Kan H, Xu H (2018). Estimation of residential fine particulate matter infiltration in Shanghai, China. Environmental Pollution, 233: 494–500
https://doi.org/10.1016/j.envpol.2017.10.054 pmid: 29102879
133 Zhu C S, Cao J J, Shen Z X, Liu S X, Zhang T, Zhao Z Z, Xu H M, Zhang E K (2012). Indoor and outdoor chemical components of PM2.5 in the rural areas of Northwestern China. Aerosol and Air Quality Research, 12(6): 1157–1165
https://doi.org/10.4209/aaqr.2012.01.0003
134 Zhu Y H, Yang L X, Meng C P, Yuan Q, Yan C, Dong C, Sui X, Yao L, Yang F, Lu Y L, Wang W X (2015). Indoor/outdoor relationships and diurnal/nocturnal variations in water-soluble ion and PAH concentrations in the atmospheric PM2.5 of a business office area in Jinan, a heavily polluted city in China. Atmospheric Research, 153: 276–285
https://doi.org/10.1016/j.atmosres.2014.08.014
[1] Aifang Gao, Junyi Wang, Jianfei Luo, Aiguo Li, Kaiyu Chen, Pengfei Wang, Yiyi Wang, Jingyi Li, Jianlin Hu, Hongliang Zhang. Temporal variation of PM2.5-associated health effects in Shijiazhuang, Hebei[J]. Front. Environ. Sci. Eng., 2021, 15(5): 82-.
[2] Huibin Guo, Ning Wang, Xiang Li. Antioxidative potential of metformin: Possible protective mechanism against generating OH radicals[J]. Front. Environ. Sci. Eng., 2021, 15(2): 21-.
[3] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
[4] Cesunica E. Ivey, Heather A. Holmes, Yongtao Hu, James A. Mulholland, Armistead G. Russell. A method for quantifying bias in modeled concentrations and source impacts for secondary particulate matter[J]. Front. Environ. Sci. Eng., 2016, 10(5): 14-.
[5] Jingjing PENG, Hong LI, Jianqiang SU, Qiufang ZHANG, Junpeng RUI, Chao CAI. Response of bacterial communities to short-term pyrene exposure in red soil[J]. Front Envir Sci Eng, 2013, 7(4): 559-567.
[6] Can DONG, Lingxiao YANG, Chao YAN, Qi YUAN, Yangchun YU, Wenxing WANG. Particle size distributions, PM2.5 concentrations and water-soluble inorganic ions in different public indoor environments: a case study in Jinan, China[J]. Front Envir Sci Eng, 2013, 7(1): 55-65.
[7] LIU Rui, ZHOU Qixing, ZHANG Lanying, GUO Hao. Toxic effects of wastewater from various phases of monosodium glutamate production on seed germination and root elongation of crops[J]. Front.Environ.Sci.Eng., 2007, 1(1): 114-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed