Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2019, Vol. 13 Issue (1) : 7    https://doi.org/10.1007/s11783-019-1095-6
RESEARCH ARTICLE
Characterization of CANON reactor performance and microbial community shifts with elevated COD/N ratios under a continuous aeration mode
Yao Zhang, Yayi Wang(), Yuan Yan, Haicheng Han, Min Wu
State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
 Download: PDF(1911 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

COD/N at low ratios (0–0.82) improved N removals of CANON.

CANON performance decreased after COD/N up to 0.82.

The relative abundance of AOB decreased continuously with increasing COD/N.

AOB outcompeted at a high COD load led to CANON failure.

The relative abundance of AnAOB decreased and increased with increasing COD/N.

The effects of increasing COD/N on nitrogen removal performance and microbial structure were investigated in a SBR adopting a completely autotrophic nitrogen removal over nitrite process with a continuous aeration mode (DO at approximately 0.15–0.2 mg/L). As the COD/N increased from 0.1 to≤0.59, the nitrogen removal efficiency (NRE) increased from 88.7% to 95.5%; while at COD/N ratios of 0.59–0.82, the NRE remained at 90.7%–95.5%. As the COD/N increased from 0.82 to 1.07, the NRE decreased continuously until reaching 60.1%. Nitrosomonas sp. (AOB) and Candidatus Jettenia (anammox bacteria) were the main functional genera in the SBR. As the COD/N increased from 0.10 to 1.07, the relative abundance of Nitrosomonas decreased from 13.4% to 2.0%, while that of Candidatus Jettenia decreased from 35% to 9.9% with COD/N<0.82 then increased to 45.4% at a COD/N of 1.07. Aerobic heterotrophic bacteria outcompeted AOB at high COD loadings (650 mg/L) because of oxygen competition, which ultimately led to deteriorated nitrogen removal performance.

Keywords CANON process      COD/N ratio      Anammox      Ammonia oxidizing bacteria      Aerobic heterotrophic bacteria     
Corresponding Author(s): Yayi Wang   
Issue Date: 03 December 2018
 Cite this article:   
Yao Zhang,Yayi Wang,Yuan Yan, et al. Characterization of CANON reactor performance and microbial community shifts with elevated COD/N ratios under a continuous aeration mode[J]. Front. Environ. Sci. Eng., 2019, 13(1): 7.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-019-1095-6
https://academic.hep.com.cn/fese/EN/Y2019/V13/I1/7
Fig.1  Schematic diagram of the experimental device (a SBR with a continuous aeration mode).
Phase Day
(d)
Influent NH4+
(mg N/L)
Influent COD
(mg/L)
Influent COD/N Aeration rate
(L/min)
DO
(mg/L)
0–20 550±20 0 0.10 0.24±0.02 0.14±0.02
21–35 580±20 150 0.28 0.24±0.02 0.14±0.02
36–49 580±20 350 0.59 0.28±0.02 0.14±0.02
50–67 580±20 500 0.82 0.34±0.02 0.14±0.02
68–102 580±20 650 1.07 0.40±0.02 0.14±0.02
Tab.1  Operational parameters of the reactor in different stages
Fig.2  Variations in COD/N (a), nitrogen (NH4+-N, NO3--N and NO2--N) (b) and TNRR and NRE (c) during long-term operation. The red dash line in c) represents the average NRE at each operational phase.
Fig.3  Variations in nitrogen and COD concentrations in typical SBR cycles at different COD/N ratios. a) day 11 (phase I); b) day 35 (phase II); c) day 48 (phase III); d) day 61 (phase IV); e) day 76 (phase V); f) day 96 (phase V). The shadow area represents anoxic stage.
Fig.4  Variations in microbial activities of functional bacteria in the studied CANON at different COD/N ratios. OUR: the oxygen uptake rate; OURH: the oxygen uptake rate of heterotrophic bacteria; OURA: the AOB oxygen uptake rate. SOUR: specific oxygen uptake rate; AA: anammox activity; SAA: specific anammox activity.
Sample Sequence 0.97
OTU Ace Chao Coverage Shannon Simpson
H1 20299 281 311 323 0.997586 3.09 0.1425
H2 20299 287 317 313 0.997783 3.42 0.1113
H3 20299 293 339 333 0.997093 3.74 0.053
H4 20299 262 301 298 0.997438 3.55 0.0549
H5 20299 271 334 352 0.996601 3.4 0.0681
H6 20299 251 300 304 0.997093 2.9 0.144
H7 20299 228 269 262 0.997488 2.7 0.1607
H8 20299 217 260 262 0.997340 2.4 0.2348
Tab.2  Alpha-diversity of samples H1–H8
Fig.5  Histogram of bacterial flora distribution of sludge samples at the phylum level (a) and the genus level (b). The influent COD/N ratios of samples H1, H2, H3 and H4 were 0.10, 0.28, 0.59, and 0.82, respectively, while H5, H6, H7 and H8 were collected at a COD/N ratio of 1.07.
Fig.6  RDA analysis of the bacterial population structures in sludge samples collected at different COD/N ratios. The influent COD/N ratios of samples H1, H2, H3 and H4 were 0.10, 0.28, 0.59, and 0.82, respectively, while H5, H6, H7 and H8 were collected at a COD/N ratio of 1.07.
1 APHA (2012). Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, Washington, DC, USA
2 Bae H, Chung Y C, Jung J Y (2010). Microbial community structure and occurrence of diverse autotrophic ammonium oxidizing microorganisms in the anammox process. Water Science and Technology, 61(11): 2723–2732
https://doi.org/10.2166/wst.2010.075 pmid: 20489244
3 Björnsson L, Hugenholtz P, Tyson G W, Blackall L L (2002). Filamentous Chloroflexi (green non-sulfur bacteria) are abundant in wastewater treatment processes with biological nutrient removal. Microbiology-Sgm, 148(Pt 8): 2309–2318
https://doi.org/10.1099/00221287-148-8-2309 pmid: 12177325
4 Cao S, Du R, Li B, Ren N, Peng Y (2016). High-throughput profiling of microbial community structures in an ANAMMOX-UASB reactor treating high-strength wastewater. Applied Microbiology and Biotechnology, 100(14): 6457–6467
https://doi.org/10.1007/s00253-016-7427-6 pmid: 27020296
5 Chamchoi N, Nitisoravut S, Schmidt J E (2008). Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification. Bioresource Technology, 99(9): 3331–3336
https://doi.org/10.1016/j.biortech.2007.08.029 pmid: 17911013
6 Chen C, Sun F, Zhang H, Wang J, Shen Y, Liang X (2016). Evaluation of COD effect on anammox process and microbial communities in the anaerobic baffled reactor (ABR). Bioresource Technology, 216: 571–578
https://doi.org/10.1016/j.biortech.2016.05.115 pmid: 27285572
7 Chen H, Liu S, Yang F, Xue Y, Wang T (2009). The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal. Bioresource Technology, 100(4): 1548–1554
https://doi.org/10.1016/j.biortech.2008.09.003 pmid: 18977657
8 Chu Z, Wang K, Li X, Zhu M, Yang L, Zhang J (2015). Microbial characterization of aggregates within a one-stage nitritation-anammox system using high-throughput amplicon sequencing. Chemical Engineering Journal, 262: 41–48
https://doi.org/10.1016/j.cej.2014.09.067
9 de Almeida Fernandes L, Pereira A D, Leal C D, Davenport R, Werner D, Filho C R M, Bressani-Ribeiro T, de Lemos Chernicharo C A, de Araújo J C (2018). Effect of temperature on microbial diversity and nitrogen removal performance of an anammox reactor treating anaerobically pretreated municipal wastewater. Bioresource Technology, 258: 208–219
https://doi.org/10.1016/j.biortech.2018.02.083 pmid: 29525596
10 DeGraaf A, DeBruijn P, Robertson L A, Jetten M, Kuenen J G (1996). Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology-UK, 142(8): 2187–2196
https://doi.org/10.1099/13500872-142-8-2187
11 Jenni S, Vlaeminck S E, Morgenroth E, Udert K M (2014). Successful application of nitritation/anammox to wastewater with elevated organic carbon to ammonia ratios. Water Research, 49: 316–326
https://doi.org/10.1016/j.watres.2013.10.073 pmid: 24355291
12 Kartal B, Rattray J, van Niftrik L A, van de Vossenberg J, Schmid M C, Webb R I, Schouten S, Fuerst J A, Damsté J S S, Jetten M S M, Strous M (2007). Candidatus “Anammoxoglobus propionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Systematic and Applied Microbiology, 30(1): 39–49
https://doi.org/10.1016/j.syapm.2006.03.004 pmid: 16644170
13 Kartal B, van Niftrik L, Rattray J, van de Vossenberg J L, Schmid M C, Sinninghe Damsté J, Jetten M S M, Strous M (2008). Candidatus ‘Brocadia fulgida’: An autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiology Ecology, 63(1): 46–55
https://doi.org/10.1111/j.1574-6941.2007.00408.x pmid: 18081590
14 Kindaichi T, Yuri S, Ozaki N, Ohashi A (2012). Ecophysiological role and function of uncultured Chloroflexi in an anammox reactor. Water Science and Technology, 66(12): 2556–2561
https://doi.org/10.2166/wst.2012.479 pmid: 23109570
15 Kornaros M, Dokianakis S N, Lyberatos G (2010). Partial nitrification/denitrification can be attributed to the slow response of nitrite oxidizing bacteria to periodic anoxic disturbances. Environmental Science & Technology, 44(19 19SI): 7245–7253
https://doi.org/10.1021/es100564j pmid: 20583804
16 Kumar M, Lin J G (2010). Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal—Strategies and issues. Journal of Hazardous Materials, 178(1-3): 1–9
https://doi.org/10.1016/j.jhazmat.2010.01.077 pmid: 20138428
17 Lackner S, Gilbert E M, Vlaeminck S E, Joss A, Horn H, van Loosdrecht M C M (2014). Full-scale partial nitritation/anammox experiences—An application survey. Water Research, 55: 292–303
https://doi.org/10.1016/j.watres.2014.02.032 pmid: 24631878
18 Lackner S, Horn H (2013). Comparing the performance and operation stability of an SBR and MBBR for single-stage nitritation-anammox treating wastewater with high organic load. Environmental Technology, 34(9-12): 1319–1328
https://doi.org/10.1080/09593330.2012.746735 pmid: 24191464
19 Leal C D, Pereira A D, Nunes F T, Ferreira L O, Coelho A C C, Bicalho S K, Mac Conell E F A, Ribeiro T B, de Lemos Chernicharo C A, de Araújo J C (2016). Anammox for nitrogen removal from anaerobically pre-treated municipal wastewater: Effect of COD/N ratios on process performance and bacterial community structure. Bioresource Technology, 211: 257–266
https://doi.org/10.1016/j.biortech.2016.03.107 pmid: 27023380
20 Lin X, Wang Y (2017). Microstructure of anammox granules and mechanisms endowing their intensity revealed by microscopic inspection and rheometry. Water Research, 120: 22–31
https://doi.org/10.1016/j.watres.2017.04.053 pmid: 28478292
21 Neef A, Amann R, Schlesner H, Schleifer K H (1998). Monitoring a widespread bacterial group: In situ detection of planctomycetes with 16S rRNA-targeted probes. Microbiology-UK, 144(Pt 12): 3257–3266
https://doi.org/10.1099/00221287-144-12-3257 pmid: 9884217
22 Ni S Q, Ni J Y, Hu D L, Sung S (2012). Effect of organic matter on the performance of granular anammox process. Bioresource Technology, 110: 701–705
https://doi.org/10.1016/j.biortech.2012.01.066 pmid: 22342041
23 Pereira A D, Leal C D, Dias M F, Etchebehere C, Chernicharo C A L, de Araújo J C (2014). Effect of phenol on the nitrogen removal performance and microbial community structure and composition of an anammox reactor. Bioresource Technology, 166: 103–111
https://doi.org/10.1016/j.biortech.2014.05.043 pmid: 24907569
24 Sabumon P C (2007). Anaerobic ammonia removal in presence of organic matter: a novel route. Journal of Hazardous Materials, 149(1): 49–59
https://doi.org/10.1016/j.jhazmat.2007.03.052 pmid: 17445980
25 Sánchez Guillén J A, Yimman Y, Lopez Vazquez C M, Brdjanovic D, van Lier J B (2014). Effects of organic carbon source, chemical oxygen demand/N ratio and temperature on autotrophic nitrogen removal. Water Science and Technology, 69(10): 2079–2084
https://doi.org/10.2166/wst.2014.128 pmid: 24845324
26 Schaubroeck T, De Clippeleir H, Weissenbacher N, Dewulf J, Boeckx P, Vlaeminck S E, Wett B (2015). Environmental sustainability of an energy self-sufficient sewage treatment plant: improvements through DEMON and co-digestion. Water Research, 74: 166–179
https://doi.org/10.1016/j.watres.2015.02.013 pmid: 25727156
27 Shu D, He Y, Yue H, Wang Q (2015). Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing. Bioresource Technology, 186: 163–172
https://doi.org/10.1016/j.biortech.2015.03.072 pmid: 25817026
28 Sliekers A O, Derwort N, Campos-Gomez J L, Strous M, Kuenen J G, Jetten M (2002). Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Research, 36(PII S0043–1354(01)00476–610): 2475–2482
29 Tang C J, Zheng P, Wang C H, Mahmood Q (2010). Suppression of anaerobic ammonium oxidizers under high organic content in high-rate Anammox UASB reactor. Bioresource Technology, 101(6): 1762–1768
https://doi.org/10.1016/j.biortech.2009.10.032 pmid: 19900808
30 Third K A, Paxman J, Schmid M, Strous M, Jetten M S, Cord-Ruwisch R (2005). Treatment of nitrogen-rich wastewater using partial nitrification and anammox in the CANON process. Water Science and Technology, 52(4): 47–54
https://doi.org/10.2166/wst.2005.0086 pmid: 16235745
31 Third K A, Sliekers A O, Kuenen J G, Jetten M S (2001). The CANON system (Completely Autotrophic Nitrogen-removal Over Nitrite) under ammonium limitation: Interaction and competition between three groups of bacteria. Systematic and Applied Microbiology, 24(4): 588–596
https://doi.org/10.1078/0723-2020-00077 pmid: 11876366
32 Vlaeminck S E, Terada A, Smets B F, De Clippeleir H, Schaubroeck T, Bolca S, Demeestere L, Mast J, Boon N, Carballa M, Verstraete W (2010). Aggregate size and architecture determine microbial activity balance for one-stage partial nitritation and anammox. Applied and Environmental Microbiology, 76(3): 900–909
https://doi.org/10.1128/AEM.02337-09 pmid: 19948857
33 Wang Y, Chen J, Zhou S, Wang X, Chen Y, Lin X, Yan Y, Ma X, Wu M, Han H (2017). 16S rRNA gene high-throughput sequencing reveals shift in nitrogen conversion related microorganisms in a CANON system in response to salt stress. Chemical Engineering Journal, 317: 512–521
https://doi.org/10.1016/j.cej.2017.02.096
34 Yan Y, Wang Y, Chen Y, Lin X, Wu M, Chen J (2016). Single-stage PN/A technology treating saline ammonia-rich wastewater: Finding the balance between efficient performance and less N2O and NO emissions. RSC Advances, 6(114): 113152–113162
https://doi.org/10.1039/C6RA24109C
35 Zhang X, Yu B, Zhang N, Zhang H, Wang C, Zhang H (2016). Effect of inorganic carbon on nitrogen removal and microbial communities of CANON process in a membrane bioreactor. Bioresource Technology, 202: 113–118
https://doi.org/10.1016/j.biortech.2015.11.083 pmid: 26706724
36 Zhao J, Zuo J, Lin J, Li P (2015). The performance of a combined nitritation-anammox reactor treating anaerobic digestion supernatant under various C/N ratios. Journal of Environmental Sciences (China), 30: 207–214
https://doi.org/10.1016/j.jes.2014.08.022 pmid: 25872729
37 Zhou X, Zhang X, Zhang Z, Liu Y (2018). Full nitration-denitration versus partial nitration-denitration-anammox for treating high-strength ammonium-rich organic wastewater. Bioresource Technology, 261: 379–384
https://doi.org/10.1016/j.biortech.2018.04.049 pmid: 29680704
38 Zhou X, Zhang Z, Zhang X, Liu Y (2018). A novel single-stage process integrating simultaneous COD oxidation, partial nitritation-denitritation and anammox (SCONDA) for treating ammonia-rich organic wastewater. Bioresource Technology, 254: 50–55
https://doi.org/10.1016/j.biortech.2018.01.057 pmid: 29413938
39 Zhu Y, Wang Y, Jiang X, Zhou S, Wu M, Pan M, Chen H (2017). Microbial community compositional analysis for membrane bioreactor treating antibiotics containing wastewater. Chemical Engineering Journal, 325: 300–309
https://doi.org/10.1016/j.cej.2017.05.073
[1] FSE-19003-OF-ZY_suppl_1 Download
[1] Fei Xie, Bowei Zhao, Ying Cui, Xiao Ma, Xiao Zhang, Xiuping Yue. Reutilize tire in microbial fuel cell for enhancing the nitrogen removal of the anammox process coupled with iron-carbon micro-electrolysis[J]. Front. Environ. Sci. Eng., 2021, 15(6): 121-.
[2] Guoliang Zhang, Liang Zhang, Xiaoyu Han, Shujun Zhang, Yongzhen Peng. Start-up of PN-anammox system under low inoculation quantity and its restoration after low-loading rate shock[J]. Front. Environ. Sci. Eng., 2021, 15(2): 32-.
[3] Shengjie Qiu, Jinjin Liu, Liang Zhang, Qiong Zhang, Yongzhen Peng. Sludge fermentation liquid addition attained advanced nitrogen removal in low C/N ratio municipal wastewater through short-cut nitrification-denitrification and partial anammox[J]. Front. Environ. Sci. Eng., 2021, 15(2): 26-.
[4] Jinjin Fu, Quan Zhang, Baocheng Huang, Niansi Fan, Rencun Jin. A review on anammox process for the treatment of antibiotic-containing wastewater: Linking effects with corresponding mechanisms[J]. Front. Environ. Sci. Eng., 2021, 15(1): 17-.
[5] Jing Ding, Wanyi Seow, Jizhong Zhou, Raymond Jianxiong Zeng, Jun Gu, Yan Zhou. Effects of Fe(II) on anammox community activity and physiologic response[J]. Front. Environ. Sci. Eng., 2021, 15(1): 7-.
[6] Zhen Bi, Deqing Wanyan, Xiang Li, Yong Huang. Biological conversion pathways of sulfate reduction ammonium oxidation in anammox consortia[J]. Front. Environ. Sci. Eng., 2020, 14(3): 38-.
[7] Zhihao Si, Xinshan Song, Xin Cao, Yuhui Wang, Yifei Wang, Yufeng Zhao, Xiaoyan Ge, Awet Arefe Tesfahunegn. Nitrate removal to its fate in wetland mesocosm filled with sponge iron: Impact of influent COD/N ratio[J]. Front. Environ. Sci. Eng., 2020, 14(1): 4-.
[8] Dawen Gao, Xiaolong Wang, Hong Liang, Qihang Wei, Yuan Dou, Longwei Li. Anaerobic ammonia oxidizing bacteria: ecological distribution, metabolism, and microbial interactions[J]. Front. Environ. Sci. Eng., 2018, 12(3): 10-.
[9] Yandong Yang,Liang Zhang,Hedong Shao,Shujun Zhang,Pengchao Gu,Yongzhen Peng. Enhanced nutrients removal from municipal wastewater through biological phosphorus removal followed by partial nitritation/anammox[J]. Front. Environ. Sci. Eng., 2017, 11(2): 8-.
[10] Alberto MANNUCCI,Giulio MUNZ,Gualtiero MORI,Claudio LUBELLO,Jan A. OLESZKIEWICZ. Applicability of the Arrhenius model for Ammonia Oxidizing Bacteria subjected to temperature time gradients[J]. Front. Environ. Sci. Eng., 2015, 9(6): 988-994.
[11] Daijun ZHANG, Cui BAI, Ting TANG, Qing YANG. Influence of influent on anaerobic ammonium oxidation in an Expanded Granular Sludge Bed-Biological Aerated Filter integrated system[J]. Front Envir Sci Eng Chin, 2011, 5(2): 291-297.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed