Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2019, Vol. 13 Issue (2) : 30    https://doi.org/10.1007/s11783-019-1108-5
REVIEW ARTICLE
A review on application of dielectric barrier discharge plasma technology on the abatement of volatile organic compounds
Wenjing Lu1(), Yawar Abbas1, Muhammad Farooq Mustafa2, Chao Pan1, Hongtao Wang1
1. School of Environment, Tsinghua University, Beijing 100084, China
2. Department of Environmental Design, Health and Nutritional Sciences, Allama Iqbal Open University, Islamabad 44000, Pakistan
 Download: PDF(565 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Applications of non-thermal plasma reactors for reduction of VOCs were reviewed.

• Dielectric barrier discharge (DBD) plasma was considered.

• Effect of process parameters was studied.

• Effect of catalysts and inhibitors were evaluated.

Volatile organic compounds (VOCs) released from the waste treatment facilities have become a significant issue because they are not only causing odor nuisance but may also hazard to human health. Non-thermal plasma (NTP) technologies are newly developed methods and became a research trend in recent years regarding the removal of VOCs from the air environment. Due to its unique characteristics, such as bulk homogenized volume, plasma with high reaction efficiency dielectric barrier discharge (DBD) technology is considered one of the most promising techniques of NTP. This paper reviews recent progress of DBD plasma technology for abatement of VOCs. The principle of plasma generation in DBD and its configurations (electrode, discharge gap, dielectric barrier material, etc.) are discussed in details. Based on previously published literature, attention has been paid on the effect of DBD configuration on the removal of VOCs. The removal efficiency of VOCs in DBD reactors is presented too, considering various process parameters such as initial concentration, gas feeding rate, oxygen content and input power. Moreover, using DBD technology, the role of catalysis and inhibitors in VOCs removal are discussed. Finally, a modified configuration of the DBD reactor, i.e. double dielectric barrier discharge (DDBD) for the abatement of VOCs is discussed in details. It was suggested that the DDBD plasma reactor could be used for higher conversion efficiency as well as for avoiding solid residue deposition on the electrode. These depositions can interfere with the performance of the reactor.

Keywords Non-thermal plasma (NTP)      Dielectric barrier discharge (DBD)      Volatile organic compounds (VOCs)      Abatement      Input power     
Corresponding Author(s): Wenjing Lu   
Issue Date: 04 April 2019
 Cite this article:   
Wenjing Lu,Yawar Abbas,Muhammad Farooq Mustafa, et al. A review on application of dielectric barrier discharge plasma technology on the abatement of volatile organic compounds[J]. Front. Environ. Sci. Eng., 2019, 13(2): 30.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-019-1108-5
https://academic.hep.com.cn/fese/EN/Y2019/V13/I2/30
Types of VOCs Adverse effect on human health Types of NTP used for abatement Refs.
Toluene Headache and dizziness DBD Guo et al. (2018b)
Benzene Carcinogens Corona Ge et al. (2015)
Ethylbenzene Eye and throat sensitivity DBD Hosseinzadeh et al. (2018)
Dichloromethane Carcinogens SPCP Oda et al. (1995)
Trichloroethylene Effects central nervous system Corona discharge Vandenbroucke et al. (2016)
Tetrachloroethylene Skin irritation, heart and liver DDBD Mustafa et al. (2018)
Chlorobenzene Lungs and urinary system DBD Song et al. (2018)
Xylene Headache and dizziness Corona discharge Fan et al. (2009)
Styrene Carcinogens DDBD Zhang et al. (2018)
Acetone Carcinogens DBD Zhu et al. (2015d)
Formaldehyde Carcinogens DBD Zhu et al. (2015c)
Hydrogen sulfides Nervous system DBD Liang et al. (2011)
Dimethyl sulfides Skin and eyes irritant Corona discharge Chen et al. (2009b)
Acetaldehyde Probable carcinogen Corona discharge Klett et al. (2014)
Tab.1  List of typical VOCs degraded in NTP
Fig.1  Configurations of dielectric barrier discharge (DBD) reactors, where 1 is the alternating current (AC) at high voltage; 2 is the electrode; 3 is the dielectric barriers; 4 is the discharge zone; 5 is the discharge gap. (a) Planer DBD configuration; (b) Cylindrical DBD configuration.
Dielectric material Dielectric constant
Glass 4–6
Quartz 4–7
Aluminum oxide ~10
Ceramics Ten-10 ks
Ferroelectrics Hundred-10 ks
Tab.2  Properties of the dielectric constant of commonly used dielectric material in DBD reactor
Fig.2  Illustration of IPC (a) and PPC (b) configurations: 1. AC high voltage, 2. for the electrode, 3. dielectric barriers, 4. catalyst, and 5. discharge zone.
Type of VOC Con (ppm) Flow rate (L/min) Type of catalyst *CE
(%) IPC
*CE
(%)
NTP alone
SCO2
(%)
IPC
SCO2
(%)
NTP alone
Energy density (J/L) Refs.
Toluene 100 Co-MCM-41 95–100 65 80 30 292 Xu et al. (2017b)
Toluene 1 1 MIL-53
MIL-101
CPM-5
93.4
93.02
89.0
46.1 142.2 Bahri et al. (2017)
Toluene 1500 0.25 TiO2-BaTiO3 95 70 50 35 Wang et al. (2018)
Benzene 60–202 4 Ag/TiO2 (PDC) 20–80 70 60–250 Kim et al. (2005)
Benzene
(SSPBD)
400 0.5 MnO2–TiO2/zeolite
TiO2/zeolite
MnO2/zeolite
Zeolite
83
81
75
60
60 65
62
60
46
45 10 W Hu et al. (2016)
Benzene 400 0.5 Ag0.9 Ce0.1/g-Al2O3
(PDC)
96.2 60 77.3 50 400 Jiang et al. (2016)
TCE 430 0.1 MnOx/SMF 100 73 60 25 720 Magureanu et al. (2007)
Tab.3  An overview on comparative studies on VOCs decomposition in IPC
Type of VOC Con (ppm) Flow rate (L/min) Type of catalyst *CE
(%)
PPC
*CE
(%)
NTP
SCO2
(%)
PPC
SCO2
(%)
NTP
O3
PPC
(ppm)
O3
NTP
(ppm)
Energy density (J/L) Refs.
Toluene 54 1.5 Mn1Co1 >90 >60 40 20 308 1125 455.59 Chang et al. (2018)
Toluene 108 6 Ag-Ce-O
Ag-Co-O
Ag-Mn-O
75
99
100
59.8 50 280
40
0
640 60.5 Tang et al. (2013)
Benzene 100 0.4 g-Al2O3
b-MnO2/”g-Al2O3
g-MnO2/”g-Al2O3
a-MnO2/”g-Al2O3
50
60
70
80
<50 35
45
48
55
<35 250
175
125
<125
>250 13 Li et al. (2014)
TCE 300–350 0.5 Fe-K-OMS-2 99 38 63 15 150 120 Sultana et al. (2018)
TEC 370 0.4 (K-OMS-2; a-MnO2 >99 >80 <30 <5 240 Dinh et al. (2016)
TCE 500–560 2 Pd/LaMnO3 (100℃) 89.1 82.3 10 6 0 177 460 Vandenbroucke et al. (2016)
Tab.4  An overview of decomposition of VOCs using PPC system
Fig.3  Configuration of DDBD plasma reactor: 1- AC high voltage, 2-outer electrode, 3- outer dielectric barrier, 4-discharge zone, 5- inner dielectric barrier, 6- inner electrode.
1 NAbbas, M Hussain, NRusso, GSaracco (2011). Studies on the activity and deactivation of novel optimized TiO2 nanoparticles for the abatement of VOCs. Chemical Engineering Journal, 175: 330–340
https://doi.org/10.1016/j.cej.2011.09.115
2 ZAbd Allah, J C Whitehead, P Martin (2014). Remediation of dichloromethane (CH2Cl2) using non-thermal, atmospheric pressure plasma generated in a packed-bed reactor. Environmental Science & Technology, 48(1): 558–565
https://doi.org/10.1021/es402953z
3 A AAbdelaziz, TIshijima, TSeto (2018). Humidity effects on surface dielectric barrier discharge for gaseous naphthalene decomposition. Physics of Plasmas, 25(4): 043512 (1–9)
https://doi.org/10.1063/1.5020271
4 A ZAbdullah, M Z A Bakar, S Bhatia (2006). Combustion of chlorinated volatile organic compounds (VOCs) using bimetallic chromium-copper supported on modified H-ZSM-5 catalyst. Journal of Hazardous Materials, 129(1–3): 39–49
https://doi.org/10.1016/j.jhazmat.2005.05.051
5 KAbedi, F Ghorbani-Shahna, BJaleh, ABahrami, RYarahmadi (2014). Enhanced performance of non-thermal plasma coupled with TiO2/GAC for decomposition of chlorinated organic compounds: influence of a hydrogen-rich substance. Journal of Environmental Health Science & Engineering, 12(1): 119
https://doi.org/10.1186/s40201-014-0119-1
6 KAbedi, F Ghorbani-Shahna, BJaleh, ABahrami, RYarahmadi, RHaddadi, MGandomi (2015). Decomposition of chlorinated volatile organic compounds (CVOCs) using NTP coupled with TiO2/GAC, ZnO/GAC, and TiO2–ZnO/GAC in a plasma-assisted catalysis system. Journal of Electrostatics, 73: 80–88
https://doi.org/10.1016/j.elstat.2014.10.008
7 WAbou Saoud, A A Assadi, M Guiza, ABouzaza, WAboussaoud, ISoutrel, AOuederni, DWolbert, SRtimi (2018). Abatement of ammonia and butyraldehyde under non-thermal plasma and photocatalysis: Oxidation processes for the removal of mixture pollutants at pilot scale. Chemical Engineering Journal, 344: 165–172
https://doi.org/10.1016/j.cej.2018.03.068
8 C A,Aggelopoulos D,Tataraki G Rassias (2018). Degradation of atrazine in soil by dielectric barrier discharge plasma – Potential singlet oxygen mediation. Chemical Engineering Journal, 347: 682–694
https://doi.org/doi.org/10.1016/j.cej.2018.04.111
9 AAranzabal, M Romero-Sáez, UElizundia, J RGonzález-Velasco, J AGonz�lez-Marcos (2012). Deactivation of H-zeolites during catalytic oxidation of trichloroethylene. Journal of Catalysis, 296: 165–174
https://doi.org/10.1016/j.jcat.2012.09.012
10 BAshford, X Tu (2017). Non-thermal plasma technology for the conversion of CO2. Current Opinion in Green and Sustainable Chemistry, 3: 45–49
https://doi.org/10.1016/j.cogsc.2016.12.001
11 MBahri, F Haghighat, SRohani, HKazemian (2016). Impact of design parameters on the performance of non-thermal plasma air purification system. Chemical Engineering Journal, 302: 204–212
https://doi.org/10.1016/j.cej.2016.05.035
12 MBahri, F Haghighat, SRohani, HKazemian (2017). Metal organic frameworks for gas-phase VOCs removal in a NTP-catalytic reactor. Chemical Engineering Journal, 320: 308–318
https://doi.org/10.1016/j.cej.2017.02.087
13 KBarbusinski, K Kalemba, DKasperczyk, KUrbaniec, VKozik (2017). Biological methods for odor treatment – A review. Journal of Cleaner Production, 152: 223–241
https://doi.org/10.1016/j.jclepro.2017.03.093
14 ZBo, H Hao, SYang, JZhu, J Yan, KCen (2018). Vertically-oriented graphenes supported Mn3O4 as advanced catalysts in post plasma-catalysis for toluene decomposition. Applied Surface Science, 436: 570–578
https://doi.org/10.1016/j.apsusc.2017.12.081
15 SBoycheva, D Zgureva, M Václavíková, YKalvachev, HLazarova, MPopova (2018). Studies on non-modified and copper-modified coal ash zeolites as heterogeneous catalysts for VOCs oxidation. Journal of Hazardous Materials, 361: 374–382
https://doi.org/doi.org/10.1016/j.jhazmat.2018.07.020
16 RBrandenburg (2017). Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Science & Technology, 26(5): 1–29
https://doi.org/053001 10.1088/1361-6595/aa6426
17 J HByeon, J H Park, Y S Jo, K Y Yoon, J Hwang (2010). Removal of gaseous toluene and submicron aerosol particles using a dielectric barrier discharge reactor. Journal of Hazardous Materials, 175(1–3): 417–422
https://doi.org/10.1016/j.jhazmat.2009.10.022
18 S A CCarabineiro, XChen, O Martynyuk, NBogdanchikova, MAvalos-Borja, APestryakov, P BTavares, J J MÓrfão, M F RPereira, J LFigueiredo (2015). Gold supported on metal oxides for volatile organic compounds total oxidation. Catalysis Today, 244: 103–114
https://doi.org/doi.org/10.1016/j.cattod.2014.06.034
19 C LChang, T S Lin (2005). Decomposition of toluene and acetone in packed dielectric barrier discharge reactors. Plasma Chemistry and Plasma Processing, 25(3): 227–243
https://doi.org/10.1007/s11090-004-3034-x
20 TChang, Z Shen, YHuang, JLu, D Ren, JSun, JCao, H Liu (2018). Post-plasma-catalytic removal of toluene using MnO2–Co3O4 catalysts and their synergistic mechanism. Chemical Engineering Journal, 348: 15–25
https://doi.org/10.1016/j.cej.2018.04.186
21 SChavadej, W Kiatubolpaiboon, PRangsunvigit, TSreethawong (2007). A combined multistage corona discharge and catalytic system for gaseous benzene removal. Journal of Molecular Catalysis A Chemical, 263(1–2): 128–136
https://doi.org/10.1016/j.molcata.2006.08.061
22 H LChen, H M Lee, S H Chen, M B Chang, S J Yu, S N Li (2009a). Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: a review of the performance enhancement mechanisms, current status, and suitable applications. Environmental Science & Technology, 43(7): 2216–2227
https://doi.org/10.1021/es802679b
23 JChen, Q Su, HPan, JWei, X Zhang, YShi (2009b). Influence of balance gas mixture on decomposition of dimethyl sulfide in a wire-cylinder pulse corona reactor. Chemosphere, 75(2): 261–265
https://doi.org/10.1016/j.chemosphere.2008.12.010
24 JChen, Z Xie, JTang, JZhou, X Lu, HZhao (2016). Oxidation of toluene by dielectric barrier discharge with photo-catalytic electrode. Chemical Engineering Journal, 284: 166–173
https://doi.org/10.1016/j.cej.2015.09.006
25 A SChiper, N Blin-Simiand, MHeninger, HMestdagh, PBoissel, FJorand, JLemaire, JLeprovost, SPasquiers, GPopa, P Christian (2009). Detailed characterization of 2-heptanone conversion by dielectric barrier discharge in N2 and N2/O2 mixtures. The Journal of Physical Chemistry A, 114(1): 397–407
https://doi.org/10.1021/jp907295d
26 SChoi, M S Lee, D W Park (2014). Photocatalytic performance of TiO2/V2O5 nanocomposite powder prepared by DC arc plasma. Current Applied Physics, 14(3): 433–438
https://doi.org/10.1016/j.cap.2014.01.004
27 BCrowley (2015). On the electrical conductivity of plasmas and metals. arXiv preprint arXiv:1508.06101. Available online at (accessed January 10, 2019)
28 QDai, X Wang, GLu (2008). Low-temperature catalytic combustion of trichloroethylene over cerium oxide and catalyst deactivation. Applied Catalysis B: Environmental, 81(3–4): 192–202
https://doi.org/doi.org/10.1016/j.apcatb.2007.12.013
29 SDelagrange, L Pinard, J MTatibouët (2006). Combination of a non-thermal plasma and a catalyst for toluene removal from air: Manganese based oxide catalysts. Applied Catalysis B: Environmental, 68(3–4): 92–98
https://doi.org/10.1016/j.apcatb.2006.07.002
30 M NDinh, J M Giraudon, A Vandenbroucke, RMorent, NDe Geyter, J FLamonier (2016). Manganese oxide octahedral molecular sieve K-OMS-2 as catalyst in post plasma-catalysis for trichloroethylene degradation in humid air. Journal of Hazardous Materials, 314: 88–94
https://doi.org/10.1016/j.jhazmat.2016.04.027
31 DDobslaw, O Ortlinghaus, CDobslaw (2018). A combined process of non-thermal plasma and a low-cost mineral adsorber for VOC removal and odor abatement in emissions of organic waste treatment plants. Journal of Environmental Chemical Engineering, 6(2): 2281–2289
https://doi.org/doi.org/10.1016/j.jece.2018.03.012
32 MDors, Izdebski Tomasz, Tański Mateusz, J Mizeraczyk (2014). The influence of hydrogen sulphide and configuration of a DBD reactor powered with nanosecond high voltage pulses on hydrogen production from biogas. European Chemical Bulletin, 3(8): 798–804
33 BDou, D Liu, QZhang, RZhao, Q Hao, FBin, JCao (2017). Enhanced removal of toluene by dielectric barrier discharge coupling with Cu-Ce-Zr supported ZSM-5/TiO2/Al2O3. Catalysis Communications, 92: 15–18
https://doi.org/10.1016/j.catcom.2016.12.024
34 XFan, T Zhu, YSun, XYan (2011). The roles of various plasma species in the plasma and plasma-catalytic removal of low-concentration formaldehyde in air. Journal of Hazardous Materials, 196: 380–385
https://doi.org/10.1016/j.jhazmat.2011.09.044
35 XFan, T L Zhu, M Y Wang, X M Li (2009). Removal of low-concentration BTX in air using a combined plasma catalysis system. Chemosphere, 75(10): 1301–1306
https://doi.org/10.1016/j.chemosphere.2009.03.029
36 XFeng, H Liu, CHe, ZShen, T Wang (2018). Synergistic effects and mechanism of a non-thermal plasma catalysis system in volatile organic compound removal: a review. Catalysis Science & Technology, 8(4): 936–954
https://doi.org/10.1039/C7CY01934C
37 JFlorian, N Merbahi, GWattieaux, J MPlewa, MYousfi (2015). Comparative studies of double dielectric barrier discharge and microwave argon plasma jets at atmospheric pressure for biomedical applications. IEEE Transactions on Plasma Science, 43(9): 3332–3338
https://doi.org/10.1109/TPS.2015.2404879
38 AFridman (2008). Plasma Chemistry. New York: Cambridge University Press
39 SFutamura, M Sugasawa (2008). Additive effect on energy efficiency and byproduct distribution in VOC decomposition with nonthermal plasma. IEEE Transactions on Industry Applications, 44(1): 40–45
https://doi.org/10.1109/TIA.2007.912760
40 M SGandhi, Y S Mok (2012). Decomposition of trifluoromethane in a dielectric barrier discharge non-thermal plasma reactor. Journal of Environmental Sciences-China, 24(7): 1234–1239
https://doi.org/10.1016/S1001-0742(11)60935-2
41 HGe, D Hu, XLi, YTian, Z Chen, YZhu (2015). Removal of low-concentration benzene in indoor air with plasma-MnO2 catalysis system. Journal of Electrostatics, 76: 216–221
https://doi.org/10.1016/j.elstat.2015.06.003
42 L JGuo, N Jiang, JLi, K FShang, NLu, Y Wu (2018a). Abatament of mixed volatile organic cmpounds in a catalytic hybrid surface/packed discharge plasma reactor. Frontiers of Environmental Science & Engineering, 12(2): 15
https://doi.org/10.1007/s11783-018-1017-z
43 TGuo, X Du, ZPeng, LXu, J Dong, JLi, PCheng, ZZhou (2017). Quantification and risk assessment of organic products resulting from non-thermal plasma removal of toluene in nitrogen. Rapid Communications in Mass Spectrometry, 31(17): 1424–1430
https://doi.org/10.1002/rcm.7917
44 TGuo, X Li, JLi, ZPeng, L Xu, JDong, PCheng, ZZhou (2018b). On-line quantification and human health risk assessment of organic by-products from the removal of toluene in air using non-thermal plasma. Chemosphere, 194: 139–146
https://doi.org/10.1016/j.chemosphere.2017.11.173
45 YGuo, X Liao, JHe, WOu, D Ye (2010). Effect of manganese oxide catalyst on the dielectric barrier discharge decomposition of toluene. Catalysis Today, 153(3–4): 176–183
https://doi.org/10.1016/j.cattod.2010.03.024
46 Y FGuo, D Q Ye, K F Chen, J C He, W L Chen (2006). Toluene decomposition using a wire-plate dielectric barrier discharge reactor with manganese oxide catalyst in situ. Journal of Molecular Catalysis A Chemical, 245(1–2): 93–100
https://doi.org/10.1016/j.molcata.2005.09.013
47 A MHarling, D J Glover, J C Whitehead, K Zhang (2009). The role of ozone in the plasma-catalytic destruction of environmental pollutants. Applied Catalysis B: Environmental, 90(1–2): 157–161
https://doi.org/10.1016/j.apcatb.2009.03.005
48 AHosseinzadeh, A A Najafpoor, A J Jafari, R K Jazani, M Baziar, HBargozin, F GPiranloo (2018). Application of response surface methodology and artificial neural network modeling to assess non-thermal plasma efficiency in simultaneous removal of BTEX from waste gases: Effect of operating parameters and prediction performance. Process Safety and Environmental Protection, 119: 261–270
https://doi.org/10.1016/j.psep.2018.08.010
49 JHu, N Jiang, JLi, KShang, NLu, Y Wu (2016). Degradation of benzene by bipolar pulsed series surface/packed-bed discharge reactor over MnO2–TiO2/zeolite catalyst. Chemical Engineering Journal, 293: 216–224
https://doi.org/10.1016/j.cej.2016.02.036
50 HHuang, D Ye, XGuan (2008). The simultaneous catalytic removal of VOCs and O3 in a post-plasma. Catalysis Today, 139(1–2): 43–48
https://doi.org/10.1016/j.cattod.2008.08.029
51 SIijima, M Nakamura, AYokoi, MKubota, LHuang, HMatsuda (2011). Decomposition of dichloromethane and in situ alkali absorption of resulting halogenated products by a packed-bed non-thermal plasma reactor. Journal of Material Cycles and Waste Management, 13(3): 206–212
https://doi.org/10.1007/s10163-011-0022-0
52 AIndarto, J W Choi, H Lee, H KSong (2008). Decomposition of greenhouse gases by plasma. Environmental Chemistry Letters, 6(4): 215–222
https://doi.org/10.1007/s10311-008-0160-3
53 YIwamura, Y Saito (2015). Enhanced decomposition of benzene by non-thermal atmospheric pressure plasma with oxidized titanium electrode. IEEJ Transactions on Fundamentals and Materials, 135(1): 17–21
https://doi.org/10.1541/ieejfms.135.17
54 JJarrige, P Vervisch (2009). Plasma-enhanced catalysis of propane and isopropyl alcohol at ambient temperature on a MnO2-based catalyst. Applied Catalysis B: Environmental, 90(1–2): 74–82
https://doi.org/10.1016/j.apcatb.2009.02.015
55 ZJia, A Vega-Gonzalez, M BAmar, KHassouni, STieng, STouchard, AKanaev, XDuten (2013). Acetaldehyde removal using a diphasic process coupling a silver-based nano-structured catalyst and a plasma at atmospheric pressure. Catalysis Today, 208: 82–89
https://doi.org/10.1016/j.cattod.2012.10.028
56 LJiang, G Nie, RZhu, JWang, J Chen, YMao, ZCheng, W AAnderson (2017). Efficient degradation of chlorobenzene in a non-thermal plasma catalytic reactor supported on CeO2/HZSM-5 catalysts. Journal of Environmental Sciences-China, 55: 266–273
https://doi.org/10.1016/j.jes.2016.07.014
57 NJiang, J Hu, JLi, KShang, NLu, Y Wu (2016). Plasma-catalytic degradation of benzene over Ag–Ce bimetallic oxide catalysts using hybrid surface/packed-bed discharge plasmas. Applied Catalysis B: Environmental, 184: 355–363
https://doi.org/10.1016/j.apcatb.2015.11.044
58 NJiang, N Lu, KShang, JLi, Y Wu (2013). Effects of electrode geometry on the performance of dielectric barrier/packed-bed discharge plasmas in benzene degradation. Journal of Hazardous Materials, 262: 387–393
https://doi.org/10.1016/j.jhazmat.2013.08.072
59 M SKamal, S A Razzak, M M Hossain (2016). Catalytic oxidation of volatile organic compounds (VOCs) – A review. Atmospheric Environment, 140: 117–134
https://doi.org/10.1016/j.atmosenv.2016.05.031
60 OKaratum, M A Deshusses (2016). A comparative study of dilute VOCs treatment in a non-thermal plasma reactor. Chemical Engineering Journal, 294: 308–315
https://doi.org/10.1016/j.cej.2016.03.002
61 JKaruppiah, P M K Reddy, E L Reddy, C Subrahmanyam (2013). Catalytic non-thermal plasma reactor for decomposition of dilute chlorobenzene. Plasma Processes and Polymers, 10(12): 1074–1080
https://doi.org/10.1002/ppap.201300060
62 MKeidar, I Beilis (2018). Plasma Engineering, 2nd Edition. Cambridge, Massachusetts: Academic Press, 3–100
https://doi.org/doi.org/10.1016/B978-0-12-813702-4.00001-6
63 A HKhoja, M Tahir, N A SAmin (2017). Dry reforming of methane using different dielectric materials and DBD plasma reactor configurations. Energy Conversion and Management, 144: 262–274
https://doi.org/10.1016/j.enconman.2017.04.057
64 D HKim, Y S Mok, S B Lee (2011). Effect of temperature on the decomposition of trifluoromethane in a dielectric barrier discharge reactor. Thin Solid Films, 519(20): 6960–6963
https://doi.org/10.1016/j.tsf.2010.11.060
65 H HKim, Y H Lee, A Ogata, SFutamura (2003). Plasma-driven catalyst processing packed with photocatalyst for gas-phase benzene decomposition. Catalysis Communications, 4(7): 347–351
https://doi.org/10.1016/S1566-7367(03)00086-4
66 H HKim, A Ogata, SFutamura (2006). Effect of different catalysts on the decomposition of VOCS using flow-type plasma-driven catalysis. IEEE Transactions on Plasma Science, 34(3): 984–995
https://doi.org/10.1109/TPS.2006.875728
67 H HKim, S M Oh, A Ogata, SFutamura (2004). Decomposition of benzene using Ag/TiO2 packed plasma-driven catalyst reactor: influence of electrode configuration and Ag-loading amount. Catalysis Letters, 96(3–4): 189–194
https://doi.org/10.1023/B:CATL.0000030119.69922.07
68 H HKim, S M Oh, A Ogata, SFutamura (2005). Decomposition of gas-phase benzene using plasma-driven catalyst (PDC) reactor packed with Ag/TiO2 catalyst. Applied Catalysis B: Environmental, 56(3): 213–220
https://doi.org/10.1016/j.apcatb.2004.09.008
69 H HKim, Y Teramoto, NNegishi, AOgata (2015). A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: A review. Catalysis Today, 256: 13–22
https://doi.org/10.1016/j.cattod.2015.04.009
70 K HKim, J E Szulejko, P Kumar, E EKwon, A AAdelodun, P A KReddy (2017). Air ionization as a control technology for off-gas emissions of volatile organic compounds. Environmental Pollution, 225: 729–743
https://doi.org/10.1016/j.envpol.2017.03.026
71 K JKim, J Kim, Y SSon, S GChung, J CKim (2012). Advanced oxidation of aromatic VOCs using a pilot system with electron beam–catalyst coupling. Radiation Physics and Chemistry, 81(5): 561–565
https://doi.org/10.1016/j.radphyschem.2012.01.010
72 CKlett, X Duten, STieng, STouchard, PJestin, KHassouni, AVega-González (2014). Acetaldehyde removal using an atmospheric non-thermal plasma combined with a packed bed: Role of the adsorption process. Journal of Hazardous Materials, 279: 356–364
https://doi.org/10.1016/j.jhazmat.2014.07.014
73 UKogelschatz (2003). Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chemistry and Plasma Processing, 23(1): 1–46
https://doi.org/10.1023/A:1022470901385
74 UKogelschatz, B Eliasson, WEgli (1997). Dielectric-barrier discharges. Principle and applications. Le Journal de Physique IV, 07(C4): C4–47–C44–66
75 MKraus, B Eliasson, UKogelschatz, AWokaun (2001). CO2 reforming of methane by the combination of dielectric-barrier discharges and catalysis. Physical Chemistry Chemical Physics, 3(3): 294–300
https://doi.org/10.1039/b007015g
76 S KKundu, E M Kennedy, V V Gaikwad, T S Molloy, B Z Dlugogorski (2012). Experimental investigation of alumina and quartz as dielectrics for a cylindrical double dielectric barrier discharge reactor in argon diluted methane plasma. Chemical Engineering Journal, 180: 178–189
https://doi.org/10.1016/j.cej.2011.11.039
77 C WKwong, C Y H Chao, K S Hui, M P Wan (2008). Removal of VOCs from indoor environment by ozonation over different porous materials. Atmospheric Environment, 42(10): 2300–2311
https://doi.org/10.1016/j.atmosenv.2007.12.030
78 H MLee, M B Chang (2003). Abatement of gas-phase p-xylene via dielectric barrier discharges. Plasma Chemistry and Plasma Processing, 23(3): 541–558
https://doi.org/10.1023/A:1023239122885
79 YLi, Z Fan, JShi, ZLiu, W Shangguan (2014). Post plasma-catalysis for VOCs degradation over different phase structure MnO2 catalysts. Chemical Engineering Journal, 241: 251–258
https://doi.org/10.1016/j.cej.2013.12.036
80 W JLiang, H P Fang, J Li, FZheng, J XLi, Y QJin (2011). Performance of non-thermal DBD plasma reactor during the removal of hydrogen sulfide. Journal of Electrostatics, 69(3): 206–213
https://doi.org/10.1016/j.elstat.2011.03.011
81 W JLiang, J Li, J XLi, TZhu, Y Q Jin (2010). Formaldehyde removal from gas streams by means of NaNO2 dielectric barrier discharge plasma. Journal of Hazardous Materials, 175(1–3): 1090–1095
https://doi.org/10.1016/j.jhazmat.2009.10.034
82 W JLiang, L Ma, HLiu, JLi (2013). Toluene degradation by non-thermal plasma combined with a ferroelectric catalyst. Chemosphere, 92(10): 1390–1395
https://doi.org/10.1016/j.chemosphere.2013.05.042
83 ELinga Reddy, V MBiju, CSubrahmanyam (2012a). Production of hydrogen and sulfur from hydrogen sulfide assisted by nonthermal plasma. Applied Energy, 95: 87–92
https://doi.org/10.1016/j.apenergy.2012.02.010
84 ELinga Reddy, JKaruppiah, ARenken, LKiwi Minsker, CSubrahmanyam (2012b). Kinetics of the decomposition of hydrogen sulfide in a dielectric barrier discharge reactor. Chemical Engineering & Technology, 35(11): 2030–2034
https://doi.org/doi.org/10.1002/ceat.201200134
85 BLu, X Zhang, XYu, TFeng, S Yao (2006). Catalytic oxidation of benzene using DBD corona discharges. Journal of Hazardous Materials, 137(1): 633–637
https://doi.org/10.1016/j.jhazmat.2006.02.012
86 NLu, J Li, XWang, TWang, Y Wu (2012). Application of double-dielectric barrier discharge plasma for removal of pentachlorophenol from wastewater coupling with activated carbon adsorption and simultaneous regeneration. Plasma Chemistry and Plasma Processing, 32(1): 109–121
https://doi.org/10.1007/s11090-011-9328-x
87 CMa, B Dai, PLiu, NZhou, A Shi, LBan, HChen (2014). Deep oxidative desulfurization of model fuel using ozone generated by dielectric barrier discharge plasma combined with ionic liquid extraction. Journal of Industrial and Engineering Chemistry, 20(5): 2769–2774
https://doi.org/10.1016/j.jiec.2013.11.005
88 T JMa, W S Lan (2015). Ethylene decomposition with a wire-plate dielectric barrier discharge reactor: parameters and kinetic study. International Journal of Environmental Science and Technology, 12(12): 3951–3956
https://doi.org/10.1007/s13762-015-0799-9
89 MMagureanu, N B Mandache, P Eloy, E MGaigneaux, V IParvulescu (2005). Plasma-assisted catalysis for volatile organic compounds abatement. Applied Catalysis B: Environmental, 61(1–2): 12–20
https://doi.org/10.1016/j.apcatb.2005.04.007
90 MMagureanu, N B Mandache, V I Parvulescu, C Subrahmanyam, ARenken, LKiwi-Minsker (2007). Improved performance of non-thermal plasma reactor during decomposition of trichloroethylene: Optimization of the reactor geometry and introduction of catalytic electrode. Applied Catalysis B: Environmental, 74(3–4): 270–277
https://doi.org/10.1016/j.apcatb.2007.02.019
91 DMei, X Tu (2017). Conversion of CO2 in a cylindrical dielectric barrier discharge reactor: Effects of plasma processing parameters and reactor design. Journal of CO2 Utilization, 19: 68–78
https://doi.org/doi.org/10.1016/j.jcou.2017.02.015
92 AMfopara, M J Kirkpatrick, E Odic (2009). Dilute methane treatment by atmospheric pressure dielectric barrier discharge: effects of water vapor. Plasma Chemistry and Plasma Processing, 29(2): 91–102
https://doi.org/10.1007/s11090-008-9164-9
93 WMista, R Kacprzyk (2008). Decomposition of toluene using non-thermal plasma reactor at room temperature. Catalysis Today, 137(2–4): 345–349
https://doi.org/10.1016/j.cattod.2008.02.009
94 MMłotek, E Reda, PJóźwik, KKrawczyk, ZBojar (2015). Plasma-catalytic decomposition of cyclohexane in gliding discharge reactor. Applied Catalysis A, General, 505: 150–158
https://doi.org/10.1016/j.apcata.2015.07.033
95 Y SMok, S B Lee, J H Oh, K S Ra, B H Sung (2008). Abatement of trichloromethane by using nonthermal plasma reactors. Plasma Chemistry and Plasma Processing, 28(6): 663–676
https://doi.org/10.1007/s11090-008-9151-1
96 M FMustafa, X Fu, YLiu, YAbbas, HWang, W Lu (2018). Volatile organic compounds (VOCs) removal in non-thermal plasma double dielectric barrier discharge reactor. Journal of Hazardous Materials, 347: 317–324
https://doi.org/10.1016/j.jhazmat.2018.01.021
97 M FMustafa, X Fu, WLu, YLiu, Y Abbas, HWang, M TArslan (2017a). Application of non-thermal plasma technology on fugitive methane destruction: configuration and optimization of double dielectric barrier discharge reactor. Journal of Cleaner Production, 174: 670–677
https://doi.org/doi.org/10.1016/j.jclepro.2017.10.283
98 M FMustafa, Y Liu, ZDuan, HGuo, S Xu, HWang, WLu (2017b). Volatile compounds emission and health risk assessment during composting of organic fraction of municipal solid waste. Journal of Hazardous Materials, 327: 35–43
https://doi.org/10.1016/j.jhazmat.2016.11.046
99 W TNarengerile, TWatanabe (2012). Acetone decomposition by water plasmas at atmospheric pressure. Chemical Engineering Science, 69(1): 296–303
https://doi.org/10.1016/j.ces.2011.10.045
100 H HNguyen, K S Kim (2015). Combination of plasmas and catalytic reactions for CO2 reforming of CH4 by dielectric barrier discharge process. Catalysis Today, 256(Part 1): 88–95
https://doi.org/10.1016/j.cattod.2015.04.034
101 M JNi, X Shen, XGao, Z LWu, HLu, Z S Li, Z Y Luo, K F Cen (2011). Naphthalene decomposition in a DC corona radical shower discharge. Journal of Zhejiang University. Science A, 12(1): 71–77
https://doi.org/10.1631/jzus.A1010009
102 B MObradović, G BSretenović, M MKuraica (2011). A dual-use of DBD plasma for simultaneous NOx and SO2 removal from coal-combustion flue gas. Journal of Hazardous Materials, 185(2–3): 1280–1286
https://doi.org/10.1016/j.jhazmat.2010.10.043
103 TOda (2003). Non-thermal plasma processing for environmental protection: decomposition of dilute VOCs in air. Journal of Electrostatics, 57(3–4): 293–311
https://doi.org/10.1016/S0304-3886(02)00179-1
104 TOda, A Kumada, KTanaka, TTakahashi, SMasuda (1995). Low temperature atmospheric pressure discharge plasma processing for volatile organic compounds. Journal of Electrostatics, 35(1): 93–101
https://doi.org/10.1016/0304-3886(95)00010-8
105 MOndarts, W Hajji, JOutin, TBejat, EGonze (2017). Non-thermal plasma for indoor air treatment: toluene degradation in a corona discharge at ppbv levels. Chemical Engineering Research & Design, 118: 194–205
https://doi.org/10.1016/j.cherd.2016.12.015
106 MPacheco, E Alva, RValdivia, JPacheco, CRivera, ASantana, JHuertas, BLefort, NEstrada (2012). Removal of main exhaust gases of vehicles by a double dielectric barrier discharge.14th Latin American Workshop on Plasma Physics (Lawpp 2011), 370: 1–7
https://doi.org/10.1088/1742-6596/370/1/012023
107 S KPadhi, S Gokhale (2014). Biological oxidation of gaseous VOCs – rotating biological contactor a promising and eco-friendly technique. Journal of Environmental Chemical Engineering, 2(4): 2085–2102
https://doi.org/10.1016/j.jece.2014.09.005
108 C WPark, J H Byeon, K Y Yoon, J H Park, J Hwang (2011). Simultaneous removal of odors, airborne particles, and bioaerosols in a municipal composting facility by dielectric barrier discharge. Separation and Purification Technology, 77(1): 87–93
https://doi.org/10.1016/j.seppur.2010.11.024
109 CQin, H Guo, PLiu, WBai, J Huang, XHuang, XDang, D Yan (2018). Toluene abatement through adsorption and plasma oxidation using ZSM-5 mixed with g-Al2O3, TiO2 or BaTiO3. Journal of Industrial and Engineering Chemistry, 63: 449–455
https://doi.org/10.1016/j.jiec.2018.03.005
110 MRagazzi, P Tosi, E CRada, VTorretta, MSchiavon (2014). Effluents from MBT plants: plasma techniques for the treatment of VOCs. Waste Management (New York, N.Y.), 34(11): 2400–2406
https://doi.org/10.1016/j.wasman.2014.07.026
111 B RRaju, E L Reddy, J Karuppiah, P M KReddy, CSubrahmanyam (2013). Catalytic non-thermal plasma reactor for the decomposition of a mixture of volatile organic compounds. Journal of Chemical Sciences, 125(3): 673–678
https://doi.org/10.1007/s12039-013-0401-2
112 ERezaei, J Soltan, NChen (2013). Catalytic oxidation of toluene by ozone over alumina supported manganese oxides: effect of catalyst loading. Applied Catalysis B: Environmental, 136–137: 239–247
https://doi.org/10.1016/j.apcatb.2013.01.061
113 URoland, F Holzer, F DKopinke (2002). Improved oxidation of air pollutants in a non-thermal plasma. Catalysis Today, 73(3–4): 315–323
https://doi.org/10.1016/S0920-5861(02)00015-9
114 URoland, F Holzer, F DKopinke (2005). Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds: Part 2. Ozone decomposition and deactivation of g-Al2O3. Applied Catalysis B: Environmental, 58(3–4): 217–226
https://doi.org/10.1016/j.apcatb.2004.11.024
115 ARutscher (2008). Characteristics of low-temperature plasmas under nonthermal conditions–a short summary. In: Hippler R, Kersten H, Schmidt M, Schoenbach K H, eds. Low Temperature Plasmas: Fundamentals, Technologies and Techniques, 2nd Edition. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 1: 1–14
116 MSchiavon, M Scapinello, PTosi, MRagazzi, VTorretta, E CRada (2015). Potential of non-thermal plasmas for helping the biodegradation of volatile organic compounds (VOCs) released by waste management plants. Journal of Cleaner Production, 104: 211–219
https://doi.org/doi.org/10.1016/j.jclepro.2015.05.034
117 MSchiavon, M Schiorlin, VTorretta, RBrandenburg, MRagazzi (2017a). Non-thermal plasma assisting the biofiltration of volatile organic compounds. Journal of Cleaner Production, 148: 498–508
https://doi.org/10.1016/j.jclepro.2017.02.008
118 MSchiavon, V Torretta, ACasazza, MRagazzi (2017b). Non-thermal plasma as an innovative option for the abatement of volatile organic compounds: a review. Water, Air, and Soil Pollution, 228(10): 1–20
https://doi.org/10.1007/s11270-017-3574-3
119 MSchmidt, I Jõgi, MHołub, RBrandenburg (2015). Non-thermal plasma based decomposition of volatile organic compounds in industrial exhaust gases. International Journal of Environmental Science and Technology, 12(12): 3745–3754
https://doi.org/10.1007/s13762-015-0814-1
120 FShahna, A Bahrami, IAlimohammadi, RYarahmadi, BJaleh, MGandomi, HEbrahimi, KAd-Din Abedi (2017). Chlorobenzene degeradation by non-thermal plasma combined with EG-TiO2/ZnO as a photocatalyst: Effect of photocatalyst on CO2 selectivity and byproducts reduction. Journal of Hazardous Materials, 324: 544–553
https://doi.org/doi.org/10.1016/j.jhazmat.2016.11.025
121 YShi, Z Shao, TShou, RTian, J Jiang, YHe (2016). Abatement of gaseous xylene using double dielectric barrier discharge plasma with in situ UV light: operating parameters and byproduct analysis. Plasma Chemistry and Plasma Processing, 36(6): 1501–1515
https://doi.org/10.1007/s11090-016-9741-2
122 YShu, J Ji, YXu, JDeng, H Huang, MHe, D Y CLeung, MWu, S Liu, SLiu, GLiu, R Xie, QFeng, YZhan, R Fang, XYe (2018). Promotional role of Mn doping on catalytic oxidation of VOCs over mesoporous TiO2 under vacuum ultraviolet (VUV) irradiation. Applied Catalysis B: Environmental, 220: 78–87
https://doi.org/10.1016/j.apcatb.2017.08.019
123 LSivachandiran, J Karuppiah, CSubrahmanyam (2012). DBD plasma reactor for oxidative decomposition of chlorobenzene. International Journal of Chemical Reactor Engineering, 10(1): 1–14
https://doi.org/10.1515/1542-6580.2785
124 M GSobacchi, A V Saveliev, A A Fridman, A F Gutsol, L A Kennedy (2003). Experimental assessment of pulsed corona discharge for treatment of VOC emissions. Plasma Chemistry and Plasma Processing, 23(2): 347–370
https://doi.org/10.1023/A:1022976204132
125 HSong, F Hu, YPeng, KLi, S Bai, JLi (2018). Non-thermal plasma catalysis for chlorobenzene removal over CoMn/TiO2 and CeMn/TiO2: Synergistic effect of chemical catalysis and dielectric constant. Chemical Engineering Journal, 347: 447–454
https://doi.org/10.1016/j.cej.2018.04.018
126 Y HSong, S J Kim, K I Choi, T Yamamoto (2002). Effects of adsorption and temperature on a nonthermal plasma process for removing VOCs. Journal of Electrostatics, 55(2): 189–201
https://doi.org/10.1016/S0304-3886(01)00197-8
127 CSubrahmanyam, A Renken, LKiwi-Minsker (2006). Catalytic abatement of volatile organic compounds assisted by non-thermal plasma: Part II. Optimized catalytic electrode and operating conditions. Applied Catalysis B: Environmental, 65(1–2): 157–162
https://doi.org/10.1016/j.apcatb.2006.02.024
128 CSubrahmanyam, A Renken, LKiwi-Minsker (2010). Catalytic non-thermal plasma reactor for abatement of toluene. Chemical Engineering Journal, 160(2): 677–682
https://doi.org/10.1016/j.cej.2010.04.011
129 SSultana, A M Vandenbroucke, C Leys, NDe Geyter, RMorent (2015). Abatement of VOCs with alternate adsorption and plasma-assisted regeneration: a review. Catalysts, 5(2): 718–746
https://doi.org/10.3390/catal5020718
130 SSultana, Z Ye, S K PVeerapandian, ALöfberg, NDe Geyter, RMorent, J MGiraudon, J FLamonier (2018). Synthesis and catalytic performances of K-OMS-2, Fe/K-OMS-2 and Fe-K-OMS-2 in post plasma-catalysis for dilute TCE abatement. Catalysis Today, 307: 20–28
https://doi.org/10.1016/j.cattod.2017.05.078
131 XTang, F Feng, LYe, XZhang, YHuang, ZLiu, K Yan (2013). Removal of dilute VOCs in air by post-plasma catalysis over Ag-based composite oxide catalysts. Catalysis Today, 211: 39–43
https://doi.org/10.1016/j.cattod.2013.04.026
132 FThevenet, O Guaitella, EPuzenat, CGuillard, ARousseau (2008). Influence of water vapour on plasma/photocatalytic oxidation efficiency of acetylene. Applied Catalysis B: Environmental, 84(3–4): 813–820
https://doi.org/10.1016/j.apcatb.2008.06.029
133 FThevenet, C Guillard, ARousseau (2014). Acetylene photocatalytic oxidation using continuous flow reactor: Gas phase and adsorbed phase investigation, assessment of the photocatalyst deactivation. Chemical Engineering Journal, 244: 50–58
https://doi.org/10.1016/j.cej.2014.01.038
134 Q HTrinh, S H Kim, Y S Mok (2016). Removal of dilute nitrous oxide from gas streams using a cyclic zeolite adsorption–plasma decomposition process. Chemical Engineering Journal, 302: 12–22
https://doi.org/10.1016/j.cej.2016.05.030
135 A MVandenbroucke, RMorent, NDe Geyter, CLeys (2011). Non-thermal plasmas for non-catalytic and catalytic VOC abatement. Journal of Hazardous Materials, 195: 30–54
https://doi.org/10.1016/j.jhazmat.2011.08.060
136 A MVandenbroucke, M TNguyen Dinh, NNuns, J M Giraudon, N De Geyter, CLeys, J FLamonier, RMorent (2016). Combination of non-thermal plasma and Pd/LaMnO3 for dilute trichloroethylene abatement. Chemical Engineering Journal, 283: 668–675
https://doi.org/10.1016/j.cej.2015.07.089
137 BWang, S Yao, YPeng, YXu (2018). Toluene removal over TiO2-BaTiO3 catalysts in an atmospheric dielectric barrier discharge. Journal of Environmental Chemical Engineering, 6(4): 3819–3826
https://doi.org/10.1016/j.jece.2018.06.006
138 CWang, G Zhang, XWang (2012). Comparisons of discharge characteristics of a dielectric barrier discharge with different electrode structures. Vacuum, 86(7): 960–964
https://doi.org/10.1016/j.vacuum.2011.06.027
139 SWang, L Zhang, CLong, ALi (2014). Enhanced adsorption and desorption of VOCs vapor on novel micro-mesoporous polymeric adsorbents. Journal of Colloid and Interface Science, 428: 185–190
https://doi.org/10.1016/j.jcis.2014.04.055
140 J CWhitehead (2010). Plasma catalysis: A solution for environmental problems. Pure and Applied Chemistry, 82(6): 1329–1336
https://doi.org/10.1351/PAC-CON-10-02-39
141 TWu, X Wang (2015). Emission of oxygenated volatile organic compounds (OVOCs) during the aerobic decomposition of orange wastes. Journal of Environmental Sciences-China, 33: 69–77
https://doi.org/10.1016/j.jes.2015.01.006
142 TWu, X Wang, DLi, ZYi (2010). Emission of volatile organic sulfur compounds (VOSCs) during aerobic decomposition of food wastes. Atmospheric Environment, 44(39): 5065–5071
https://doi.org/10.1016/j.atmosenv.2010.09.019
143 GXiao, W Xu, RWu, MNi, C Du, XGao, ZLuo, K Cen (2014). Non-thermal plasmas for VOCs abatement. Plasma Chemistry and Plasma Processing, 34(5): 1033–1065
https://doi.org/10.1007/s11090-014-9562-0
144 SXu, W Lu, YLiu, ZMing, Y Liu, RMeng, HWang (2017a). Structure and diversity of bacterial communities in two large sanitary landfills in China as revealed by high-throughput sequencing. Waste Management, 63: 41–48
https://doi.org/doi.org/10.1016/j.wasman.2016.07.047
145 XXu, J Wu, WXu, MHe, M Fu, LChen, AZhu, D Ye (2017b). High-efficiency non-thermal plasma-catalysis of cobalt incorporated mesoporous MCM-41 for toluene removal. Catalysis Today, 281: 527–533
https://doi.org/10.1016/j.cattod.2016.03.036
146 XYan, Y Sun, TZhu, XFan (2013). Conversion of carbon disulfide in air by non-thermal plasma. Journal of Hazardous Materials, 261: 669–674
https://doi.org/10.1016/j.jhazmat.2013.07.043
147 ZYang, H Yi, XTang, SZhao, Q Yu, FGao, YZhou, J Wang, YHuang, KYang, Y Shi (2017). Potential demonstrations of “hot spots” presence by adsorption-desorption of toluene vapor onto granular activated carbon under microwave radiation. Chemical Engineering Journal, 319: 191–199
https://doi.org/10.1016/j.cej.2017.02.157
148 TYe, Z Xiong, J XYu, BJisong (2016). Experimental study on biomass and gasification for hydrogen. Journal of Computational and Theoretical Nanoscience, 13(2): 1130–1135
https://doi.org/10.1166/jctn.2016.5023
149 ZYe, Y Zhang, PLi, LYang, R Zhang, HHou (2008). Feasibility of destruction of gaseous benzene with dielectric barrier discharge. Journal of Hazardous Materials, 156(1–3): 356–364
https://doi.org/10.1016/j.jhazmat.2007.12.048
150 C HYi, Y H Lee, D Woo Kim, G YYeom (2003). Characteristic of a dielectric barrier discharges using capillary dielectric and its application to photoresist etching. Surface and Coatings Technology, 163–164: 723–727
https://doi.org/10.1016/S0257-8972(02)00649-7
151 HZhang, K Li, LLi, LLiu, X Meng, TSun, JJia, M Fan (2018). High efficient styrene mineralization through novel NiO-TiO2-Al2O3 packed pre-treatment/treatment/post-treatment dielectric barrier discharge plasma. Chemical Engineering Journal, 343: 759–769
https://doi.org/10.1016/j.cej.2018.03.057
152 HZhang, K Li, CShu, ZLou, T Sun, JJia (2014a). Enhancement of styrene removal using a novel double-tube dielectric barrier discharge (DDBD) reactor. Chemical Engineering Journal, 256: 107–118
https://doi.org/10.1016/j.cej.2014.06.105
153 HZhang, K Li, TSun, JJia, Z Lou, LFeng (2014b). Removal of styrene using dielectric barrier discharge plasmas combined with sol–gel prepared TiO2 coated g-Al2O3. Chemical Engineering Journal, 241: 92–102
https://doi.org/10.1016/j.cej.2013.12.019
154 HZhang, K Li, TSun, JJia, Z Lou, SYao, GWang (2015). The combination effect of dielectric barrier discharge (DBD) and TiO2 catalytic process on styrene removal and the analysis of the by-products and intermediates. Research on Chemical Intermediates, 41(1): 175–189
https://doi.org/10.1007/s11164-013-1180-6
155 RZhu, Y Mao, LJiang, JChen (2015a). Performance of chlorobenzene removal in a nonthermal plasma catalysis reactor and evaluation of its byproducts. Chemical Engineering Journal, 279: 463–471
https://doi.org/10.1016/j.cej.2015.05.043
156 TZhu, R R Li, M F Ma, X Li (2017). Influence of energy efficiency on VOCs decomposition in non-thermal plasma reactor. International Journal of Environmental Science and Technology, 14(7): 1505–1512
https://doi.org/10.1007/s13762-017-1256-8
157 TZhu, X Li, WZhao, NXia, X Wang (2015b). Experimental research on toluene degradation in plasma as the driving force of nanomaterials. Open Journal of Applied Sciences, 05(10): 586–594
158 TZhu, R Wang, WBian, YChen (2018). Advanced oxidation technology for H2S odor gas using non-thermal plasma. Plasma Science and Technology, 20(5): 1–6
https://doi.org/10.1088/2058-6272/aaae62
159 XZhu, X Gao, RQin, YZeng, R Qu, CZheng, XTu (2015c). Plasma-catalytic removal of formaldehyde over Cu–Ce catalysts in a dielectric barrier discharge reactor. Applied Catalysis B: Environmental, 170–171: 293–300
https://doi.org/10.1016/j.apcatb.2015.01.032
160 XZhu, X Gao, XYu, CZheng, XTu (2015d). Catalyst screening for acetone removal in a single-stage plasma-catalysis system. Catalysis Today, 256: 108–114
https://doi.org/10.1016/j.cattod.2015.01.028
160 XZhu, S Liu , YCai , XGao , J Zhou , CZheng , X Tu (2016). Post-plasma catalytic removalof methanol over Mn–Ce catalysts in an atmospheric dielectricbarrier discharge. Applied Catalysis B: Environmental, 183: 124–132
https://doi.org/10.1016/j.apcatb.2015.10.013
[1] Christian GEORGE, Anne BEELDENS, Fotios BARMPAS, Jean-François DOUSSIN, Giuseppe MANGANELLI, Hartmut HERRMANN, Jörg KLEFFMANN, Abdelwahid MELLOUKI. Impact of photocatalytic remediation of pollutants on urban air quality[J]. Front. Environ. Sci. Eng., 2016, 10(5): 2-.
[2] He NIU,Ziwei MO,Min SHAO,Sihua LU,Shaodong XIE. Screening the emission sources of volatile organic compounds (VOCs) in China by multi-effects evaluation[J]. Front. Environ. Sci. Eng., 2016, 10(5): 1-.
[3] Hengyi DUAN,Xiaotu LIU,Meilin YAN,Yatao WU,Zhaorong LIU. Characteristics of carbonyls and volatile organic compounds (VOCs) in residences in Beijing, China[J]. Front. Environ. Sci. Eng., 2016, 10(1): 73-84.
[4] Jinying XI,Insun KANG,Hongying HU,Xian ZHANG. A biofilter model for simultaneous simulation of toluene removal and bed pressure drop under varied inlet loadings[J]. Front. Environ. Sci. Eng., 2015, 9(3): 554-562.
[5] Wei WEI, Shuxiao WANG, Jiming HAO, Shuiyuan CHENG. Trends of chemical speciation profiles of anthropogenic volatile organic compounds emissions in China, 2005–2020[J]. Front Envir Sci Eng, 2014, 8(1): 27-41.
[6] Junhua LI, Hong HE, Chun HU, Jincai ZHAO. The abatement of major pollutants in air and water by environmental catalysis[J]. Front Envir Sci Eng, 2013, 7(3): 302-325.
[7] Dan WU, Chunyan ZHANG, Li HAO, Changjun GENG, Xie QUAN, . Removal of multicomponent VOCs in off-gases from an oil refining wastewater treatment plant by a compost-based biofilter system[J]. Front.Environ.Sci.Eng., 2009, 3(4): 483-491.
[8] LU Sihua, LIU Ying, SHAO Min, HUANG Shan. Chemical speciation and anthropogenic sources of ambient volatile organic compounds (VOCs) during summer in Beijing, 2004[J]. Front.Environ.Sci.Eng., 2007, 1(2): 147-152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed