Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2019, Vol. 13 Issue (2) : 24    https://doi.org/10.1007/s11783-019-1110-y
RESEARCH ARTICLE
Reaction mechanism of arsenic capture by a calcium-based sorbent during the combustion of arsenic-contaminated biomass: A pilot-scale experience
Mei Lei1,2(), Ziping Dong1,2, Ying Jiang3, Philip Longhurst3, Xiaoming Wan1,2, Guangdong Zhou1
1. Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. School of Water, Energy, and Environment, Cranfield University, MK43 0AL, Cranfield, UK
 Download: PDF(644 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Pilot-scale combustion is required to treat arsenic-enriched biomass in China.

CaO addition to arsenic-enriched biomass reduces arsenic emission.

CaO captures arsenic via chemical adsorption to form Ca3(AsO4)2.

Large quantities of contaminated biomass due to phytoremediation were disposed through combustion in low-income rural regions of China. This process provided a solution to reduce waste volume and disposal cost. Pilot-scale combustion trials were conducted for in site disposal at phytoremediation sites. The reaction mechanism of arsenic capture during pilot-scale combustion should be determined to control the arsenic emission in flue gas. This study investigated three Pteris vittata L. biomass with a disposal capacity of 600 kg/d and different arsenic concentrations from three sites in China. The arsenic concentration in flue gas was greater than that of the national standard in the trial with no emission control, and the arsenic concentration in biomass was 486 mg/kg. CaO addition notably reduced arsenic emission in flue gas, and absorption was efficient when CaO was mixed with biomass at 10% of the total weight. For the trial with 10% CaO addition, arsenic recovery from ash reached 76%, which is an ~8-fold increase compared with the control. Synchrotron radiation analysis confirmed that calcium arsenate is the dominant reaction product.

Keywords Arsenic contamination      Phytoremediation      Emission control      Calcium-based sorbent      Biomass disposal      Pilot-scale combustion     
Corresponding Author(s): Mei Lei   
Issue Date: 27 March 2019
 Cite this article:   
Mei Lei,Ziping Dong,Ying Jiang, et al. Reaction mechanism of arsenic capture by a calcium-based sorbent during the combustion of arsenic-contaminated biomass: A pilot-scale experience[J]. Front. Environ. Sci. Eng., 2019, 13(2): 24.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-019-1110-y
https://academic.hep.com.cn/fese/EN/Y2019/V13/I2/24
Fig.1  Schematic diagram of the incineration equipment.
Sample ID CaO added in feedstock Atmospheric pressure (kPa) O2 content in flue gas (% by volume) Flue gas temp (°C) Flue gas flow rate (m3/min)
HN 0 99.4 14.4 46.6 16.9
GX 0 99.2 15.7 48.0 19.7
JY 0 99.4 18.2 47.7 23.5
JY 5% 98.5 17.0 47.7 32.1
JY 10% 98.5 17.0 47.0 32.9
JY 15% 98.7 18.6 46.3 38.2
Tab.1  Operational parameters for P. vittata combustion
Sample ID HN GX JY
Proximate analysis on fresh weight basis
Moisture content (%) 9.54 10.01 9.34
Ash content (%) 9.4 9.9 12.44
Volatile matter (%) 66.87 65.86 65.48
Fixed carbon (%) 14.19 14.23 12.74
CV (MJ/kg) 18.26 17.67 17.26
Elemental analysis (%) on DW basis
C 47.13 46.54 44.5
H 5.21 4.93 4.85
O 36.63 37.61 36.77
N 1.44 0.84 1.21
S 0.19 0.18 0.23
Tab.2  Proximate and elemental analyses of P. vittata
Element HN GX JY
As 22.1±9.2 98.4±21.4 486.0±41.0
P 1600±207 1100±834 1900±501
K 19900±2800 15500±2900 20200±6100
Na 62.4±12.4 55.5±20.6 99.9±28.0
Ca 2900±372 3500±970 4460±530
Mg 1560±660 10500±340 1870±130
Cu 11.2±0.2 8.8±0.5 17.0±2.0
Zn 23.9±2.4 25.2±12.3 45.0±8.7
Fe 101±6 50.4±7.6 274±70.4
Tab.3  Element concentrations (mg/kg on DW basis) of three P. vittata biomass samples
Fig.2  Thermogravimetric results of P. vittata samples: a) TG curves of the three biomass samples, b) DTG curves of the three biomass samples.
Biomass Degradation stage Temp (°C) Total weight loss (%) Maximum weight loss rate (%/°C) Temp @ maximum weight loss rate (°C)
JY 1 30–150 7.26 0.0008 102
2 >150–350 55.85 0.0103 279
3 >350–510 30.89 0.0030 371
4 >510–800 0.3 ? ?
HN 1 30–120 6.54 0.0008 102
2 >120–300 50.50 0.0138 274
3 >300–510 36.96 0.0020 428
4 >510–800 0.3 ? ?
GX 1 30–150 5.06 0.0009 99
2 >150–350 52.65 0.0103 283
3 >350–510 33.49 0.0025 396
4 >510–800 5.9 ? ?
Tab.4  Key thermal characteristics of HN, GX, and JY biomass samples
Sample ID Total As in biomass feedstock (g) As in Bottom ash (g) As in condensate
fly ash (g)
As in dedusting
fly ash (g)
Spray liquid (g) Total ash recovery (%) Total As recovered in solid residue (g) Eash (As recovery in ash) Eash-a Etotal (Total As recovery)
HN 1.66±0.69 0.39±0.032 0.18±0.020 0.023±0.01 0.0022±0.00004 52.5% 0.595 35.9% 68.38% 65.3%
GX 7.38±1.60 1.33±0.075 0.22±0.092 0.0014±0.0007 0.0019±0.00006 45.8% 1.553 21.0% 45.85% 27.8%
JY control 36.45±3.08 3.30±1.09 0.21±0.026 0.0015±0.00003 0.0021±0.0001 44.6% 3.514 9.6% 21.52% 12.0%
JY+ 5% CaO 34.63±2.92 10.62±0.81 5.91±1.18 0.0062±0.0030 0.0011±0.0001 86.52% 16.537 47.8% 55.25% 48.4%
JY+ 10% CaO 32.81±2.77 15.83±0.61 9.09±3.52 0.0025±0.0008 0.0014±0.0002 80.13% 24.924 76.0% 94.85% 76.3%
JY+ 15% CaO 30.98±2.61 14.64±1.68 6.67±0.33 0.0071±0.0048 0.0012±0.0002 81.07% 21.318 68.8% 84.86% 69.4%
Tab.5  As distribution in solid/gaseous residuals and total As recovery
Index Concentration
mg/m3
Pollution control standard for hazardous waste incineration (GB18484-2001) mg/m3
Soot 9.86 100
Blackness Level-I Greenman Level-I
NOx 60.5–117 500
SO2 n.da 400
HCl 12.6–20 100
HF 0.58–0.75 9
Tab.6  Concentration of other common pollutants in flue gas
Fig.3  XAFS normalized As K-edge profiles in ash samples: a) Normalized As K-edge profiles for bottom ash samples and reference As compounds. b) Normalized As K-edge profiles for fly ash samples and reference As compounds. Note: Bottom and fly ashes A, B, and C are ash samples collected from combustion trials using JY biomass blended with 15%, 10%, and 5% CaO, respectively.
1 L EBool, J J Helble (1995). A laboratory study of the partitioning of trace elements during pulverized coal combustion. Fuel and Energy Abstracts, 9(5): 880–887
https://doi.org/10.1021/ef00053a021
2 T BChen, X Y Liao, Z C Huang, M Lei, W XLi, L YMo, Z ZAn, C YWei, X YXiao, HXie (2006). Phytoremediation of arsenic-contaminated soil in China. In: Willey N, eds. Phytoremediation. Methods in Biotechnology: Humana Press, 391–402
3 T BChen, C Y Wei, Z C Huang, Q F Huang, Q G Lu, Z L Fan (2002). Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation. Chinese Science Bulletin, 47(11): 902–905
https://doi.org/10.1360/02tb9202
4 SChesworth, G Yang, D P YChang, A DJones, P BKelly, I MKennedy (1994). The fate of arsenic in a laminar diffusion flame. Combustion and Flame, 98(3): 259–266
https://doi.org/10.1016/0010-2180(94)90240-2
5 M LContreras, J MArostegui, LArmesto (2009). Arsenic interactions during co-combustion processes based on thermodynamic equilibrium calculations. Fuel, 88(3): 539–546
https://doi.org/10.1016/j.fuel.2008.09.028
6 BDhir, S A Nasim, S Samantary, SSrivastava (2012). Assessment of osmolyte accumulation in heavy metal exposed salvinia natans. International Journal of Botany, 8(3): 153–158
https://doi.org/10.3923/ijb.2012.153.158
7 FFrandsen, K Dam-Johansen, PRasmussen (1994). Trace elements from combustion and gasification of coal-An equilibrium approach. Progress in Energy and Combustion Science, 20(2): 115–138
https://doi.org/10.1016/0360-1285(94)90007-8
8 B KGullett, K Raghunathan (1994). Reduction of coal-based metal emissions by furnace sorbent injection. Energy & Fuels, 8(5): 1068–1076
https://doi.org/10.1021/ef00047a009
9 XGuo, C G Zheng, M H Xu (2004). Characterization of Arsenic emissions from a coal-fired power plant. Energy & Fuels, 18(6): 1822–1826
https://doi.org/10.1021/ef049921b
10 LHelsen, E Van Den Bulck (2000). Metal behavior during the low-temperature pyrolysis of chromated copper arsenate-treated wood waste. Environmental Science & Technology, 34(14): 2931–2938
https://doi.org/10.1021/es991102w
11 M EHirsch, R O Sterling, F E Huggins, J J Helble (2000). Speciation of combustion-derived particulate phase arsenic. Environmental Engineering Science, 17(6): 315–327
https://doi.org/10.1089/ees.2000.17.315
12 Z CHuang, T B Chen, M Lei, T DHu (2004). Direct determination of arsenic species in arsenic hyperaccumulator Pteris vittata by EXAFS. Acta Botanica Sinica, 46: 46–50
13 R AJadhav, L S Fan (2001). Capture of gas-phase arsenic oxide by lime: Kinetic and mechanistic studies. Environmental Science & Technology, 35(4): 794–799
https://doi.org/10.1021/es001405m pmid: 11349294
14 YJiang, M Lei, L BDuan, PLonghurst (2015). Integrating phytoremediation with biomass valorisation and critical element recovery: A UK contaminated land perspective. Biomass and Bioenergy, 83: 328–339
https://doi.org/10.1016/j.biombioe.2015.10.013
15 G MKertulis-Tartar, L QMa, CTu, T Chirenje (2006). Phytoremediation of an arsenic-contaminated site using Pteris vittata L.: A two-year study. International Journal of Phytoremediation, 8(4): 311–322
https://doi.org/10.1080/15226510600992873 pmid: 17305305
16 YLi, H Tong, YZhuo, YLi, X Xu (2007). Simultaneous removal of SO2 and trace As2O3 from flue gas: mechanism, kinetics study, and effect of main gases on arsenic capture. Environmental Science & Technology, 41(8): 2894–2900
https://doi.org/10.1021/es0618494 pmid: 17533855
17 RLiu, J Yang, YXiao, ZLiu (2009). Fate of Forms of arsenic in Yima coal during pyrolysis. Energy & Fuels, 23(4): 2013–2017
https://doi.org/10.1021/ef800604r
18 SMahuli, R Agnihotri, SChauk, AGhoshdastidar, L SFan (1997). Mechanism of arsenic sorption by hydrated lime. Environmental Science & Technology, 31(11): 3226–3231
https://doi.org/10.1021/es9702125
19 J P ANeeft, O PVan Pruissen, MMakkee, J AMoulijn (1997). Catalysts for the oxidation of soot from diesel exhaust gases. II. Contact between soot and catalyst under practical conditions. Applied Catalysis B: Environmental, 12(1): 21–31
https://doi.org/10.1016/S0926-3373(96)00060-4
20 ANzihou, B Stanmore (2013). The fate of heavy metals during combustion and gasification of contaminated biomass: A brief review. Journal of Hazardous Materials, 256-257: 56–66
https://doi.org/10.1016/j.jhazmat.2013.02.050 pmid: 23669791
21 DPudasainee, H R Paur, S Fleck, HSeifert (2014). Trace metals emission in syngas from biomass gasification. Fuel Processing Technology, 120: 54–60
https://doi.org/10.1016/j.fuproc.2013.12.010
22 J ARatafia-Brown (1994). Overview of trace element partitioning in flames and furnaces of utility coal-fired boilers. Fuel Processing Technology, 39(1-3): 139–157
https://doi.org/10.1016/0378-3820(94)90177-5
23 ASas-Nowosielska, R Kucharski, EMałkowski, MPogrzeba, J MKuperberg, KKryński (2004). Phytoextraction crop disposal: An unsolved problem. Environment Pollution, 128(3): 373–379
https://doi.org/10.1016/j.envpol.2003.09.012 pmid: 14720479
24 MSimone, F Barontini, CNicolella, LTognotti (2012). Gasification of pelletized biomass in a pilot scale downdraft gasifier. Bioresource Technology, 116: 403–412
https://doi.org/10.1016/j.biortech.2012.03.119 pmid: 22537399
25 R OSterling, J J Helble (2003). Reaction of arsenic vapor species with fly ash compounds: kinetics and speciation of the reaction with calcium silicates. Chemosphere, 51(10): 1111–1119
https://doi.org/10.1016/S0045-6535(02)00722-1 pmid: 12718977
26 R P W JStruis, S CVon, SStucki, RPrins (2002). Gasification reactivity of charcoal with CO2. Part II: Metal catalysis as a function of conversion. Chemical Engineering Science, 57: 3593–3602
https://doi.org/10.1016/S0009-2509(02)00255-5
27 X MWan, M Lei, JYang (2017). Two potential multi-metal hyperaccumulators found in four mining sites in Hunan Province, China. Catena, 148: 67–73
https://doi.org/10.1016/j.catena.2016.02.005
28 X LYan, T B Chen, X Y Liao, Z C Huang, J R Pan, T D Hu, C J Nie, H Xie (2008). Arsenic transformation and volatilization during incineration of the hyperaccumulator Pteris vittata L. Environmental Science & Technology, 42(5): 1479–1484
https://doi.org/10.1021/es0717459 pmid: 18441791
29 J PZhang, Y Q Wang, R G Zhang, J Y Muo, D Y Ren (1999). Distribution of arsenic in colal and its residues. Research of Environmental Sciences, 01:30–32+37
30 D XZhong, Z P Zhong, L H Wu, H Xue, Z WSong, Y MLuo (2015). Thermal characteristics and fate of heavy metals during thermal treatment of Sedum plumbizincicola, a zinc and cadmium hyperaccumulator. Fuel Processing Technology, 131: 125–132
https://doi.org/10.1016/j.fuproc.2014.11.022
[1] Kehui Liu, Jie Xu, Chenglong Dai, Chunming Li, Yi Li, Jiangming Ma, Fangming Yu. Exogenously applied oxalic acid assists in the phytoremediation of Mn by Polygonum pubescens Blume cultivated in three Mn-contaminated soils[J]. Front. Environ. Sci. Eng., 2021, 15(5): 86-.
[2] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
[3] Ling Huang, Syed Bilal Shah, Haiyang Hu, Ping Xu, Hongzhi Tang. Pollution and biodegradation of hexabromocyclododecanes: A review[J]. Front. Environ. Sci. Eng., 2020, 14(1): 11-.
[4] Xinghua Li, Junzan Han, Lei Duan. PM10 emissions from industrial coal-fired chain-grate boilers[J]. Front. Environ. Sci. Eng., 2017, 11(6): 18-.
[5] Yi ZHONG, Jian WANG, Yizhi SONG, Yuting LIANG, Guanghe LI. Microbial community and functional genes in the rhizosphere of alfalfa in crude oil-contaminated soil[J]. Front Envir Sci Eng, 2012, 6(6): 797-805.
[6] Liu YANG, Ye WU, Jerry M. DAVIS, Jiming HAO. Estimating the effects of meteorology on PM2.5 reduction during the 2008 Summer Olympic Games in Beijing, China[J]. Front Envir Sci Eng Chin, 2011, 5(3): 331-341.
[7] HAO Jiming, HE Kebin, DUAN Lei, LI Junhua, WANG Litao. Air pollution and its control in China[J]. Front.Environ.Sci.Eng., 2007, 1(2): 129-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed