Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2019, Vol. 13 Issue (4) : 58    https://doi.org/10.1007/s11783-019-1146-z
RESEARCH ARTICLE
Community diversity and distribution of ammonia-oxidizing archaea in marsh wetlands in the black soil zone in North-east China
Chunhong Chen1, Hong Liang2(), Dawen Gao1,2()
1. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
2. School of Environment, Harbin Institute of Technology, Harbin 150090, China
 Download: PDF(1501 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

AOA amoA genes in the soils of the two wetlands affiliated with three lineages.

The main drivers of AOA community were pH and total organic carbon and ammonium.

The soil characteristics rather than the vegetation control the AOA community.

Since its first detection, ammonia-oxidizing archaea (AOA) have been proven to be ubiquitous in aquatic and terrestrial ecosystems. In this study, two freshwater marsh wetlands- the Honghe wetland and Qixinghe wetland – in the black soil zone in North-east China were chosen to investigate the AOA community diversity and distribution in wetland soils with different vegetation and depth. In the Honghe wetland, two sampling locations were chosen as the dominant plant transited from Deyeuxia to Carex. In the Qixinghe wetland, one sample location that was dominated by Deyeuxia was chosen. Samples of each location were collected from three different depths, and Illumina MiSeq platform was used to generate the AOA amoA gene archive. The results showed that the AOA amoA genes in the soils of the two wetlands were affiliated with three lineages: Nitrososphaera, Nitrosotalea, and Nitrosopumilus clusters. The different dominant status of these AOA lineages indicated their differences in adapting to acidic habitat, oxygenic/hypoxic alternation, organic matter, and other environmental factors, suggesting high diversity among AOA in marsh soils. The main driver of the AOA community was pH, along with organic carbon and ammonium nitrogen, which also played an important role combined with many other environmental factors. Thus, soil physiochemical characteristics, rather than vegetation, were the main cause of AOA community diversity in the wetlands in the black soil zone in China.

Keywords Ammonia-oxidizing archaea      amoA gene      Freshwater marsh      Diversity      Distribution     
Corresponding Author(s): Hong Liang,Dawen Gao   
Issue Date: 10 July 2019
 Cite this article:   
Chunhong Chen,Hong Liang,Dawen Gao. Community diversity and distribution of ammonia-oxidizing archaea in marsh wetlands in the black soil zone in North-east China[J]. Front. Environ. Sci. Eng., 2019, 13(4): 58.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-019-1146-z
https://academic.hep.com.cn/fese/EN/Y2019/V13/I4/58
Groups Sampling Sites Plants Water Depth
(cm)
Depth (cm) NH4+-N
(mg/kg)
NO2-N
(mg/kg)
NO3-N
(mg/kg)
TOC
(mg/kg)
pH
Hca1 Honghe Wetland Carex 65–75 0–20 19.02 0.00 48.87 16.96 3.94
Hca2 20–40 18.57 0.00 52.58 16.50 3.81
Hca3 40–60 17.57 0.00 42.49 11.97 4.21
Hde1 Honghe Wetland Deyeuxia 0–20 19.31 0.00 37.56 16.60 4.23
Hde2 20?40 17.47 0.01 32.76 15.75 4.30
Hde3 40–60 17.04 0.00 26.57 14.57 4.07
Qde1 Qixinghe Wetland Deyeuxia 15–20 0–20 17.72 0.06 36.31 31.81 6.37
Qde2 20–40 16.33 0.38 23.65 24.83 6.42
Qde3 40–60 14.77 3.14 19.19 23.38 7.15
Sdea Sanjiang
wetland
Deyeuxia 0–20 14.78 0.00 0.56 43.67 4.59
Zdea Zhalong
wetland
Deyeuxia 0–20 10.99 0.00 0.86 56.60 7.48
Tab.1  Description of the sampling sites
Fig.1  Reconstructed tree with publicly available AOA amoA gene sequences.
Sampling Sites Chao1 Shannon Simpson Sobs
Hca_1F 8.46 0.03 0.99 5.89
Hca_2F 16.04 0.08 0.98 8.54
Hca_3F 4.00 0.08 0.98 4.00
Hde_1F 20.02 0.76 0.49 12.97
Hde_2F 12.22 0.47 0.73 8.87
Hde_3F 8.93 0.09 0.97 5.62
Qde_1F 14.51 0.93 0.47 10.34
Qde_2F 13.24 0.75 0.60 9.97
Qde_3F 11.10 0.78 0.58 8.66
Hca_1R 49.59 0.47 0.82 29.19
Hca_2R 65.09 0.60 0.80 45.67
Hca_3R 45.60 0.37 0.89 30.00
Hde_1R 63.69 1.32 0.36 41.81
Hde_2R 61.37 1.35 0.41 41.13
Hde_3R 48.79 0.43 0.85 26.78
Qde_1R 20.87 1.02 0.44 14.11
Qde_2R 25.68 0.78 0.61 16.49
Qde_3R 27.57 0.84 0.59 18.92
Tab.2  The a-diversity indices of the forward sequences (the sampling sites with ‘F’ as the suffix) and the reverse sequences (the sampling sites with ‘R’ as the suffix) based on 91% sequence similarity
AOA Forward Groups Hca_1F Hca_2F Hca_3F Hde_1F Hde_2F Hde_3F Qde_1F Qde_2F Qde_3F Sde Zde
Nitrosopumilus subcluster 2.1 0 0 0 0 0 0 0.6416078 0.2006019 0.1712912 0.0000603 0.1409859
Sum of Nitrosopumilus cluster 0 0 0 0 0 0 0.6416078 0.2006019 0.1712912 0.0000603 0.1409859
Nitrososphaera subcluster 1.1 0.0017835 0.0010039 0.00067 0.0066233 0.001501 0.0007078 0.0014134 0.0058899 0.0059133 0.00325 0.2988722
Nitrososphaera subcluster 1.2 0 0.0001339 0 0 0 0 0 0 0 0 0
Nitrososphaera subcluster 1.3 0 0.0001339 0.0026801 0 0.00006823 0.00005898 0.1726148 0.7473775 0.7412437 0.000331 0.133
Nitrososphaera subcluster 1.4 0 0.0004016 0 0 0.00006823 0.00005898 0.183 0.0407997 0.0803821 0.000844 0.4265039
Nitrososphaera subcluster 2.1 0 0 0 0.00004114 0 0 0 0 0 0 0
Nitrososphaera subcluster 2.2 0.9981625 0.988555 0.9872697 0.5337749 0.8413727 0.9847824 0.00008834 0.00004299 0 0.995 0.0005112
Nitrososphaera subcluster 3.1 0 0 0 0 0 0 0.000883 0.005288 0.0011697 0 0.0000319
Sum of Nitrososphaera cluster 0.999946 0.9902282 0.9906198 0.5404394 0.8430102 0.9856081 0.3579996 0.7993981 0.8287088 0.999 0.8589193
Nitrosotalea subcluster 1.1 0.00005405 0.0002677 0 0.0004937 0.0009552 0.00005898 0 0 0 0.0000301 0
Nitrosotalea subcluster 1.2 0 0.009504 0.0093802 0.459067 0.1560347 0.0143329 0 0 0 0.000753 0
Sum of Nitrosotalea cluster 0.00005405 0.0097718 0.0093802 0.4595606 0.1569898 0.0143919 0 0 0 0.000783 0
Tab.3  Community composition of each sample based on 91% similarity of the forward sequences
Fig.2  Consensus phylogenetic tree of sequenced soil AOA amoA gene constructed with represent sequences of the forward OTUs at 91% similarity level, outputted with iTOL online tool (Letunic and Bork 2016).
Fig.3  Cluster analysis based on Bray-Curtis distance and relative abundance of the phylogenetic composition of each sample. (a) Forward sequences, (b) Reverse sequences.
Fig.4  CCA of the marsh wetlands AOA communities and environmental factors (analyzed with forward sequences).
Environmental parameters Forward sequences community Reverse sequences community
R P R P
pH 0.7595 0.006 0.7616 0.011
TOC 0.6493 0.013 0.6614 0.010
NH4+-N 0.4235 0.040 0.3914 0.044
NO3--N 0.1120 0.226 0.1047 0.218
All 0.4274 0.024 0.4001 0.029
Tab.4  Mantel regression analysis of the correlation between AOA communities and environmental parameters
1 R J E Alves, B Q Minh, T Urich, A von Haeseler, C Schleper (2018). Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nature Communications, 9(1): 1517–1533
https://doi.org/10.1038/s41467-018-03861-1 pmid: 29666365
2 J C Auguet, X Triadó-Margarit, N Nomokonova, L Camarero, E O Casamayor (2012). Vertical segregation and phylogenetic characterization of ammonia-oxidizing Archaea in a deep oligotrophic lake. ISME J, 6(9): 1786–1797
https://doi.org/10.1038/ismej.2012.33 pmid: 22495069
3 A D Bertagnolli, O Ulloa (2017). Hydrography shapes community composition and diversity of amoA-containing Thaumarchaeota in the coastal waters off central Chile. Environmental Microbiology Reports, 9(6): 717–728
https://doi.org/10.1111/1758-2229.12579 pmid: 28836743
4 S J Biller, A C Mosier, G F Wells, C A Francis (2012). Global biodiversity of aquatic ammonia-oxidizing archaea is partitioned by habitat. Frontiers in Microbiology, 3: 252
https://doi.org/10.3389/fmicb.2012.00252 pmid: 22826704
5 P C Blainey, A C Mosier, A Potanina, C A Francis, S R Quake (2011). Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis. PLoS One, 6(2): e16626
https://doi.org/10.1371/journal.pone.0016626 pmid: 21364937
6 G M Boratyn, C Camacho, P S Cooper, G Coulouris, A Fong, N Ma, T L Madden, W T Matten, S D McGinnis, Y Merezhuk, Y Raytselis, E W Sayers, T Tao, J Ye, I Zaretskaya (2013). BLAST: A more efficient report with usability improvements. Nucleic Acids Research, 41(W1): W29-W33
https://doi.org/10.1093/nar/gkt282 pmid: 23609542
7 N J Bouskill, D Eveillard, D Chien, A Jayakumar, B B Ward (2012). Environmental factors determining ammonia-oxidizing organism distribution and diversity in marine environments. Environmental Microbiology, 14(3): 714–729
https://doi.org/10.1111/j.1462-2920.2011.02623.x pmid: 22050634
8 C Brochier-Armanet, B Boussau, S Gribaldo, P Forterre (2008). Mesophilic Crenarchaeota: Proposal for a third archaeal phylum, the Thaumarchaeota. Nature Reviews Microbiology, 6(3): 245–252
https://doi.org/10.1038/nrmicro1852 pmid: 18274537
9 C Brochier-Armanet, S Gribaldo, P Forterre (2012). Spotlight on the Thaumarchaeota. ISME J, 6(2): 227–230
https://doi.org/10.1038/ismej.2011.145 pmid: 22071344
10 J M Caffrey, N Bano, K Kalanetra, J T Hollibaugh (2007). Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia. ISME J, 1(7): 660–662
https://doi.org/10.1038/ismej.2007.79 pmid: 18043673
11 C H Chen, D W Gao, Y Tao (2013). Diversity and distribution of ammonia-oxidizing Archaea in the seasonally frozen soils in Northeastern China. Applied Microbiology and Biotechnology, 97(14): 6571–6579
https://doi.org/10.1007/s00253-012-4448-7 pmid: 23053098
12 J R de la Torre, C B Walker, A E Ingalls, M Könneke, D A Stahl (2008). Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environmental Microbiology, 10(3): 810–818
https://doi.org/10.1111/j.1462-2920.2007.01506.x pmid: 18205821
13 A Fernàndez-Guerra, E O Casamayor (2012). Habitat-associated phylogenetic community patterns of microbial ammonia oxidizers. PLoS One, 7(10): e47330
https://doi.org/10.1371/journal.pone.0047330 pmid: 23056629
14 J A Fish, B Chai, Q Wang, Y Sun, C T Brown, J M Tiedje, J R Cole (2013). FunGene: The functional gene pipeline and repository. Frontiers in Microbiology, 4: 291
https://doi.org/10.3389/fmicb.2013.00291 pmid: 24101916
15 C A Francis, K J Roberts, J M Beman, A E Santoro, B B Oakley (2005). Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the United States of America, 102(41): 14683–14688
https://doi.org/10.1073/pnas.0506625102 pmid: 16186488
16 L Fu, B Niu, Z Zhu, S Wu, W Li (2012). CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics (Oxford, England), 28(23): 3150–3152
https://doi.org/10.1093/bioinformatics/bts565 pmid: 23060610
17 D Gao, F Liu, Y Xie, H Liang (2018). Temporal and spatial distribution of ammonia-oxidizing organisms of two types of wetlands in Northeast China. Applied Microbiology and Biotechnology, 102(16): 7195–7205
https://doi.org/10.1007/s00253-018-9152-9 pmid: 29948120
18 S J Hallam, K T Konstantinidis, N Putnam, C Schleper, Y Watanabe, J Sugahara, C Preston, J de la Torre, P M Richardson, E F DeLong (2006). Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proceedings of the National Academy of Sciences of the United States of America, 103(48): 18296–18301
https://doi.org/10.1073/pnas.0608549103 pmid: 17114289
19 R Hatzenpichler, E V Lebedeva, E Spieck, K Stoecker, A Richter, H Daims, M Wagner (2008). A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proceedings of the National Academy of Sciences of the United States of America, 105(6): 2134–2139
https://doi.org/10.1073/pnas.0708857105 pmid: 18250313
20 H W Hu, L M Zhang, Y Dai, H J Di, J Z He (2013). pH-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing. Journal of Soils and Sediments, 13(8): 1439–1449
https://doi.org/10.1007/s11368-013-0726-y
21 M S Jetten (2008). The microbial nitrogen cycle. Environmental Microbiology, 10(11): 2903–2909
https://doi.org/10.1111/j.1462-2920.2008.01786.x pmid: 18973618
22 M Könneke, A E Bernhard, J R de la Torre, C B Walker, J B Waterbury, D A Stahl (2005). Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437(7058): 543–546
https://doi.org/10.1038/nature03911 pmid: 16177789
23 M M M Kuypers, H K Marchant, B Kartal (2018). The microbial nitrogen-cycling network. Nature Reviews Microbiology, 16(5): 263–276
https://doi.org/10.1038/nrmicro.2018.9 pmid: 29398704
24 E V Lebedeva, R Hatzenpichler, E Pelletier, N Schuster, S Hauzmayer, A Bulaev, N V Grigor’eva, A Galushko, M Schmid, M Palatinszky, D Le Paslier, H Daims, M Wagner (2013). Enrichment and genome sequence of the group I.1a ammonia-oxidizing Archaeon “Ca. Nitrosotenuis uzonensis” representing a clade globally distributed in thermal habitats. PLoS One, 8(11): e80835
https://doi.org/10.1371/journal.pone.0080835 pmid: 24278328
25 L E Lehtovirta-Morley, K Stoecker, A Vilcinskas, J I Prosser, G W Nicol (2011). Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proceedings of the National Academy of Sciences of the United States of America, 108(38): 15892–15897
https://doi.org/10.1073/pnas.1107196108 pmid: 21896746
26 I Letunic, P Bork (2016). Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research, 44(W1): W242-W245
https://doi.org/10.1093/nar/gkw290 pmid: 27095192
27 M Li, G Wei, W Shi, Z Sun, H Li, X Wang, Z Gao (2018). Distinct distribution patterns of ammonia-oxidizing archaea and bacteria in sediment and water column of the Yellow River estuary. Scientific Reports, 8(1): 1584
https://doi.org/10.1038/s41598-018-20044-6 pmid: 29371667
28 Y C Li, B R Liu, S H Li, H Qin, W J Fu, Q F Xu (2014). Shift in abundance and structure of soil ammonia-oxidizing bacteria and archaea communities associated with four typical forest vegetations in subtropical region. Journal of Soils and Sediments, 14(9): 1577–1586
https://doi.org/10.1007/s11368-014-0902-8
29 J Liu, Z Yu, Q Yao, Y Sui, Y Shi, H Chu, C Tang, A E Franks, J Jin, X Liu, G Wang (2018). Ammonia-oxidizing archaea show more distinct biogeographic distribution patterns than ammonia-oxidizing bacteria across the black soil zone of Northeast China. Frontiers in Microbiology, 9: 171
https://doi.org/10.3389/fmicb.2018.00171 pmid: 29497404
30 S Liu, B Hu, Z He, B Zhang, G Tian, P Zheng, F Fang (2015). Ammonia-oxidizing archaea have better adaptability in oxygenated/hypoxic alternant conditions compared to ammonia-oxidizing bacteria. Applied Microbiology and Biotechnology, 99(20): 8587–8596
https://doi.org/10.1007/s00253-015-6750-7 pmid: 26099334
31 Y Liu, J Zhang, X Zhang, S Xie (2014). Depth-related changes of sediment ammonia-oxidizing microorganisms in a high-altitude freshwater wetland. Applied Microbiology and Biotechnology, 98(12): 5697–5707
https://doi.org/10.1007/s00253-014-5651-5 pmid: 24619246
32 W Ludwig, O Strunk, R Westram, L Richter, H Meier, Yadhukumar, A Buchner, T Lai, S Steppi, G Jobb, W Förster, I Brettske, S Gerber, A W Ginhart, O Gross, S Grumann, S Hermann, R Jost, A König, T Liss, R Lüβmann, M May, B Nonhoff, B Reichel, R Strehlow, A Stamatakis, N Stuckmann, A Vilbig, M Lenke, T Ludwig, A Bode, K H Schleifer (2004). ARB: A software environment for sequence data. Nucleic Acids Research, 32(4): 1363–1371
https://doi.org/10.1093/nar/gkh293 pmid: 14985472
33 B Ma, Z Dai, H Wang, M Dsouza, X Liu, Y He, J Wu, J L M Rodrigues, J A Gilbert, P C Brookes, J Xu (2017). Distinct biogeographic patterns for archaea, bacteria, and fungi along the vegetation gradient at the continental scale in eastern China. mSystems, 2(1): e00174-16
https://doi.org/10.1128/mSystems.00174-16 pmid: 28191504
34 D H Mao, Z M Wang, L Luo, C Y Ren, M M Jia (2016). Monitoring the evolution of wetland ecosystem pattern in northeast China from 1990 to 2013 based on remote sensing. Journal of Natural Resources, 31(8): 1253–1263
35 W Martens-Habbena, P M Berube, H Urakawa, J R de la Torre, D A Stahl (2009). Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature, 461(7266): 976–979
https://doi.org/10.1038/nature08465 pmid: 19794413
36 M Mehrshad, M A Amoozegar, R Ghai, S A Shahzadeh Fazeli, F Rodriguez-Valera (2016). Genome reconstruction from metagenomic data sets reveals novel microbes in the brackish waters of the Caspian Sea. Applied and Environmental Microbiology, 82(5): 1599–1612
https://doi.org/10.1128/AEM.03381-15 pmid: 26729711
37 H Mukhtar, Y Lin, J Anthony (2017). Ammonia oxidizing archaea and bacteria in east Asian paddy soils: A mini review. Environments, 4(4)86‒75
38 S E Newell, S E Fawcett, B B Ward (2013). Depth distribution of ammonia oxidation rates and ammonia-oxidizer community composition in the Sargasso Sea. Limnology and Oceanography, 58(4): 1491–1500
https://doi.org/10.4319/lo.2013.58.4.1491
39 G W Nicol, C Schleper (2006). Ammonia-oxidising Crenarchaeota: Important players in the nitrogen cycle? Trends in Microbiology, 14(5): 207–212
https://doi.org/10.1016/j.tim.2006.03.004 pmid: 16603359
40 Z G Niu, P Gong, X Cheng, J H Guo, L Wang, H B Huang, S Q Shen, Y Z Wu, X F Wang, X W Wang, Q Ying, L Liang, L N Zhang, L Wang, Q Yao, Z Z Yang, Z Q Guo, Y J Dai (2009). Geographical characteristics of China’s wetlands derived from remotely sensed data. Science in China. Series D, Earth Sciences, 52(6): 723–738
https://doi.org/10.1007/s11430-009-0075-2
41 H Pan, K X Xie, Q C Zhang, Z J Jia, J M Xu, H J Di, Y Li (2018). Archaea and bacteria respectively dominate nitrification in lightly and heavily grazed soil in a grassland system. Biology and Fertility of Soils, 54(1): 41–54
https://doi.org/10.1007/s00374-017-1236-7
42 A L Peralta, J W Matthews, A D Kent (2014). Habitat specialization along a wetland moisture gradient differs between ammonia-oxidizing and denitrifying microorganisms. Microbial Ecology, 68(2): 339–350
https://doi.org/10.1007/s00248-014-0407-4 pmid: 24658457
43 M Pester, T Rattei, S Flechl, A Gröngröft, A Richter, J Overmann, B Reinhold-Hurek, A Loy, M Wagner (2012). amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environmental Microbiology, 14(2): 525–539
https://doi.org/10.1111/j.1462-2920.2011.02666.x pmid: 22141924
44 M Pester, C Schleper, M Wagner (2011). The Thaumarchaeota: An emerging view of their phylogeny and ecophysiology. Current Opinion in Microbiology, 14(3): 300–306
https://doi.org/10.1016/j.mib.2011.04.007 pmid: 21546306
45 S Pierre, I Hewson, J P Sparks, C M Litton, C Giardina, P M Groffman, T J Fahey (2017). Ammonia oxidizer populations vary with nitrogen cycling across a tropical montane mean annual temperature gradient. Ecology, 98(7): 1896–1907
https://doi.org/10.1002/ecy.1863 pmid: 28419436
46 J I Prosser, G W Nicol (2008). Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environmental Microbiology, 10(11): 2931–2941
https://doi.org/10.1111/j.1462-2920.2008.01775.x pmid: 18973620
47 T Rognes, T Flouri, B Nichols, C Quince, F Mahé (2016). VSEARCH: A versatile open source tool for metagenomics. PeerJ, 4: e2584
https://doi.org/10.7717/peerj.2584 pmid: 27781170
48 L A Sauder, M Albertsen, K Engel, J Schwarz, P H Nielsen, M Wagner, J D Neufeld (2017). Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME J, 11(5): 1142–1157
https://doi.org/10.1038/ismej.2016.192 pmid: 28195581
49 L A Sauder, K Engel, C C Lo, P Chain, J D Neufeld (2018). “Candidatus Nitrosotenuis aquarius,” an ammonia-oxidizing archaeon from a freshwater aquarium biofilter. Applied and Environmental Microbiology, 84(19): e01430-18
https://doi.org/10.1128/AEM.01430-18 pmid: 29959256
50 C Schleper, G Jurgens, M Jonuscheit (2005). Genomic studies of uncultivated archaea. Nature Reviews Microbiology, 3(6): 479–488
https://doi.org/10.1038/nrmicro1159 pmid: 15931166
51 P D Schloss, S L Westcott, T Ryabin, J R Hall, M Hartmann, E B Hollister, R A Lesniewski, B B Oakley, D H Parks, C J Robinson, J W Sahl, B Stres, G G Thallinger, D J Van Horn, C F Weber (2009). Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23): 7537–7541
https://doi.org/10.1128/AEM.01541-09 pmid: 19801464
52 J P Shen, L M Zhang, H J Di, J Z He (2012). A review of ammonia-oxidizing bacteria and archaea in Chinese soils. Frontiers in Microbiology, 3: 296
https://doi.org/10.3389/fmicb.2012.00296 pmid: 22936929
53 B Stempfhuber, M Engel, D Fischer, G Neskovic-Prit, T Wubet, I Schöning, C Gubry-Rangin, S Kublik, B Schloter-Hai, T Rattei, G Welzl, G W Nicol, M Schrumpf, F Buscot, J I Prosser, M Schloter (2015). pH as a driver for ammonia-oxidizing archaea in forest soils. Microbial Ecology, 69(4): 879–883
https://doi.org/10.1007/s00248-014-0548-5 pmid: 25501889
54 R Tao, S A Wakelin, Y C Liang, G X Chu (2017). Response of ammonia-oxidizing archaea and bacteria in calcareous soil to mineral and organic fertilizer application and their relative contribution to nitrification. Soil Biology & Biochemistry, 114: 20–30
https://doi.org/10.1016/j.soilbio.2017.06.027
55 M Tourna, M Stieglmeier, A Spang, M Könneke, A Schintlmeister, T Urich, M Engel, M Schloter, M Wagner, A Richter, C Schleper (2011). Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proceedings of the National Academy of Sciences of the United States of America, 108(20): 8420–8425
https://doi.org/10.1073/pnas.1013488108 pmid: 21525411
56 D L Valentine (2007). Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nature Reviews Microbiology, 5(4): 316–323
https://doi.org/10.1038/nrmicro1619 pmid: 17334387
57 Z Wang, Z Wang, C Huang, Y Pei (2014). Vertical distribution of ammonia-oxidizing archaea (AOA) in the hyporheic zone of a eutrophic river in North China. World Journal of Microbiology & Biotechnology, 30(4): 1335–1346
https://doi.org/10.1007/s11274-013-1559-y pmid: 24242890
58 B B Ward, M M Jensen (2014). The microbial nitrogen cycle. Frontiers in Microbiology, 5: 553
https://doi.org/10.3389/fmicb.2014.00553 pmid: 25386170
59 Y C Wu, L Lu, B Z Wang, X G Lin, J G Zhu, Z C Cai, X Y Yan, Z J Jia (2011). Long-term field fertilization significantly alters community structure of ammonia-oxidizing bacteria rather thanarchaea in a paddy soil. Soil Science Society of America Journal, 75(4): 1431–1439
https://doi.org/10.2136/sssaj2010.0434
60 R Xi, X E Long, S Huang, H Yao (2017). pH rather than nitrification and urease inhibitors determines the community of ammonia oxidizers in a vegetable soil. AMB Express, 7(1): 129
https://doi.org/10.1186/s13568-017-0426-x pmid: 28641404
61 Q Zhang, F Tang, Y Zhou, J Xu, H Chen, M Wang, H J Laanbroek (2015). Shifts in the pelagic ammonia-oxidizing microbial communities along the eutrophic estuary of Yong River in Ningbo City, China. Frontiers in Microbiology, 6: 1180
https://doi.org/10.3389/fmicb.2015.01180 pmid: 26579089
62 J Zhou, M A Bruns, J M Tiedje (1996). DNA recovery from soils of diverse composition. Applied and Environmental Microbiology, 62(2): 316–322
pmid: 8593035
63 L Zhou, S Wang, Y Zou, C Xia, G Zhu (2015). Species, abundance and function of ammonia-oxidizing archaea in inland waters across China. Scientific Reports, 5(1): 15969
https://doi.org/10.1038/srep15969 pmid: 26522086
64 Z Zhou, G X Zhang, Y B Xu, J D Gu (2018). Successive transitory distribution of Thaumarchaeota and partitioned distribution of Bathyarchaeota from the Pearl River estuary to the northern South China Sea. Applied Microbiology and Biotechnology, 102(18): 8035–8048
https://doi.org/10.1007/s00253-018-9147-6 pmid: 29946932
[1] FSE-19054-OF-CCH_suppl_1 Download
[1] Rong Ye, Sai Xu, Qian Wang, Xindi Fu, Huixiang Dai, Wenjing Lu. Fungal diversity and its mechanism of community shaping in the milieu of sanitary landfill[J]. Front. Environ. Sci. Eng., 2021, 15(4): 77-.
[2] Min Gao, Ziye Yang, Yajie Guo, Mo Chen, Tianlei Qiu, Xingbin Sun, Xuming Wang. The size distribution of airborne bacteria and human pathogenic bacteria in a commercial composting plant[J]. Front. Environ. Sci. Eng., 2021, 15(3): 39-.
[3] Yue Hu, Ding Dong, Kun Wan, Chao Chen, Xin Yu, Huirong Lin. Potential shift of bacterial community structure and corrosion-related bacteria in drinking water distribution pipeline driven by water source switching[J]. Front. Environ. Sci. Eng., 2021, 15(2): 28-.
[4] Miao Li, Jian Li, Yuchen Lu, Cenyang Han, Xiaoxuan Wei, Guangcai Ma, Haiying Yu. Developing the QSPR model for predicting the storage lipid/water distribution coefficient of organic compounds[J]. Front. Environ. Sci. Eng., 2021, 15(2): 24-.
[5] Xinyi Hu, Ting Yang, Chen Liu, Jun Jin, Bingli Gao, Xuejun Wang, Min Qi, Baokai Wei, Yuyu Zhan, Tan Chen, Hongtao Wang, Yanting Liu, Dongrui Bai, Zhu Rao, Nan Zhan. Distribution of aromatic amines, phenols, chlorobenzenes, and naphthalenes in the surface sediment of the Dianchi Lake, China[J]. Front. Environ. Sci. Eng., 2020, 14(4): 66-.
[6] Peng Hu, Changsheng Guo, Yan Zhang, Jiapei Lv, Yuan Zhang, Jian Xu. Occurrence, distribution and risk assessment of abused drugs and their metabolites in a typical urban river in north China[J]. Front. Environ. Sci. Eng., 2019, 13(4): 56-.
[7] Qiaowen Tan, Weiying Li, Junpeng Zhang, Wei Zhou, Jiping Chen, Yue Li, Jie Ma. Presence, dissemination and removal of antibiotic resistant bacteria and antibiotic resistance genes in urban drinking water system: A review[J]. Front. Environ. Sci. Eng., 2019, 13(3): 36-.
[8] Yanqing Duan, Aijuan Zhou, Kaili Wen, Zhihong Liu, Wenzong Liu, Aijie Wang, Xiuping Yue. Upgrading VFAs bioproduction from waste activated sludge via co-fermentation with soy sauce residue[J]. Front. Environ. Sci. Eng., 2019, 13(1): 3-.
[9] Ling Sun, Hui Wang, Yuanqing Kan, Shiliang Wang. Distribution of phytoplankton community and its influence factors in an urban river network, East China[J]. Front. Environ. Sci. Eng., 2018, 12(6): 13-.
[10] Yu Miao, Nicholas W. Johnson, Kimberly Heck, Sujin Guo, Camilah D. Powell, Thien Phan, Phillip B. Gedalanga, David T. Adamson, Charles J. Newell, Michael S. Wong, Shaily Mahendra. Microbial responses to combined oxidation and catalysis treatment of 1,4-dioxane and co-contaminants in groundwater and soil[J]. Front. Environ. Sci. Eng., 2018, 12(5): 2-.
[11] Yujiao Sun, Juanjuan Zhao, Lili Chen, Yueqiao Liu, Jiane Zuo. Methanogenic community structure in simultaneous methanogenesis and denitrification granular sludge[J]. Front. Environ. Sci. Eng., 2018, 12(4): 10-.
[12] Dawen Gao, Xiaolong Wang, Hong Liang, Qihang Wei, Yuan Dou, Longwei Li. Anaerobic ammonia oxidizing bacteria: ecological distribution, metabolism, and microbial interactions[J]. Front. Environ. Sci. Eng., 2018, 12(3): 10-.
[13] Feng Wang, Weiying Li, Yue Li, Junpeng Zhang, Jiping Chen, Wei Zhang, Xuan Wu. Molecular analysis of bacterial community in the tap water with different water ages of a drinking water distribution system[J]. Front. Environ. Sci. Eng., 2018, 12(3): 6-.
[14] Xinghua Li, Junzan Han, Lei Duan. PM10 emissions from industrial coal-fired chain-grate boilers[J]. Front. Environ. Sci. Eng., 2017, 11(6): 18-.
[15] Mengmeng Wang, Quanyin Tan, Joseph F. Chiang, Jinhui Li. Recovery of rare and precious metals from urban mines—A review[J]. Front. Environ. Sci. Eng., 2017, 11(5): 1-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed