Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2019, Vol. 13 Issue (5) : 79    https://doi.org/10.1007/s11783-019-1163-y
RESEARCH ARTICLE
Influence of phosphate on deposition and detachment of TiO2 nanoparticles in soil
Zhan Wang1,2, Chongyang Shen1, Yichun Du3, Yulong Zhang2, Baoguo Li1()
1. Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
2. College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
3. Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Land and Resources, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi’an 710075, China
 Download: PDF(909 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We examined influence of phosphate on transport of TiO2 NPs in soil.

Deposition was reduced at higher pH and by adsorption of phosphate in soil.

Release was more for NPs initially deposited at higher pH.

Release was more for NPs initially deposited in the presence of phosphate.

Surface roughness and charge heterogeneity play a role in the deposition/ release.

The widespread use of TiO2 nanoparticles (NPs) makes inevitable their release into the soil. Phosphate is also widespread within soil, and is likely copresent with TiO2 NPs. However, the influence of phosphate on deposition/release— and thereby on transport— of TiO2 NPs in soil is yet to be elucidated. In this study we conducted saturated column experiments to systematically examine the transport of TiO2 NPs in soil amended with phosphate at different ionic strengths (ISs) (1, 10, 100 mmol/L NaCl) and pHs (4 and 9). Results show that the deposition of TiO2 NPs decreased with decreasing IS, increasing pH, and when soil absorbed phosphate. These observations are qualitatively in agreement with Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energy calculations, because the repulsive energy barrier is larger and secondary minimum depth is smaller at a lower IS, higher pH, and in the presence of phosphate. Accordingly, both primary- and secondary-minimum deposition were inhibited. Interestingly, although the deposition was less at higher pH and in the presence of phosphate, the subsequent spontaneous detachment and detachment by reduction of solution IS in these cases were greater. In addition, the presence of phosphate in the solution can cause a small quantity of attached TiO2 NPs to detach, even without perturbations of physical and chemical conditions. Our study was the first to investigate the influence of phosphate on detachment of TiO2 NPs and the results have important implication for accurate prediction of fate and transport of TiO2 NPs in subsurface environments.

Keywords Phosphate      TiO2 nanoparticles      Transport      Soil      Deposition      Detachment     
Corresponding Author(s): Baoguo Li   
Issue Date: 09 October 2019
 Cite this article:   
Zhan Wang,Chongyang Shen,Yichun Du, et al. Influence of phosphate on deposition and detachment of TiO2 nanoparticles in soil[J]. Front. Environ. Sci. Eng., 2019, 13(5): 79.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-019-1163-y
https://academic.hep.com.cn/fese/EN/Y2019/V13/I5/79
pH TOC
(g/kg)
DOC
(g/kg)
CEC
(cmol/kg)
Free iron oxides
(g/kg)
Specific surface area
(m2/g)
5.70 7.569 0.212 14.10 17.63 63.45
Tab.1  Physical and chemical properties of soil. TOC, total organic carbon; DOC, dissolved organic carbon; CEC, cation exchange capacity. pH, TOC, free iron oxides, and specific surface area were measured by potentiometry, ammonium acetate exchange, sodium disulfite-sodium citrate-sodium bicharbonate, and saturated potassium acetate methods, respectively. TOC and DOC were measured by Elemental analyzer (Elementar Vario EL III, Germany) and TOC-1020A (Elementar, Germany), respectively
pH IS
(mmol/L)
Phosphate
(mg/L)
Zeta potentials of soil
(mV)
Zeta potentials of NPs
(mV)
Sizes of NPs
(nm)
9 1 50 -31.7 -34.5 1269.3
9 1 0 -28.7 -23.9 1513.3
9 10 50 -26.2 -31.8 1334.7
9 10 0 -25.9 -22.9 2589.3
9 100 0 -19.2 -10.9 2464.7
4 1 50 -21.4 -23.5 1281.0
4 1 0 -20.7 -18.2 1649.3
4 10 50 -25.1 -18.5 1604.0
4 10 0 -20.4 -17.1 2884.0
4 100 50 -16.5 -15.8 1807.0
4 100 0 -13.1 -12.3 2898.3
Tab.2  Zeta potentials of soil and TiO2 NPs and sizes of TiO2 NPs in the absence/presence of phosphate
Fig.1  Breakthrough curves for transport of TiO2 NPs in columns packed with soil with or without absorbed phosphate (P) at different solution pHs and ISs. Phase 1, deposition of NPs in NaCl solution in soil either with (circle) or without (square) adsorption of phosphate; Phase 2, elution with NaCl solution; Phase 3, elution with NaCl solution with either lower IS (circle) or phosphate (square). Detailed experimental conditions are given in Table 3.
Figures pH Background solution (12 h) Phase 1 (5 PVs) Phase 2 (5 PVs) Phase 3(7 PVs)
Fig. 1
(a1)
9 1 mmol/L NaCl+ 50 mg/L phosphate TiO2 NP suspension 1 mmol/L NaCl 0.1 mmol/L NaCl
Fig. 1(a1) 9 1 mmol/L NaCl TiO2 NP suspension 1 mmol/L NaCl 1 mmol/L NaCl+ 50 mg/L phosphate
Fig. 1(a2) 9 10 mmol/L NaCl+ 50 mg/L phosphate TiO2 NP suspension 10 mmol/L NaCl 1 mmol/L NaCl
Fig. 1(a2) 9 10 mmol/L NaCl TiO2 NP suspension 10 mmol/L NaCl 10 mmol/L NaCl+ 50 mg/L phosphate
Fig. 1(a3) 9 100 mmol/L NaCl+ 50 mg/L phosphate TiO2 NP suspension 100 mmol/L NaCl 10 mmol/L NaCl
Fig. 1(a3) 9 100 mmol/L NaCl TiO2 NP suspension 100 mmol/L NaCl 100 mmol/L NaCl+ 50 mg/L phosphate
Fig. 1(b1) 4 1 mmol/L NaCl+ 50 mg/L phosphate TiO2 NP suspension 1 mmol/L NaCl 0.1 mmol/L NaCl
Fig. 1(b1) 4 1 mmol/L NaCl TiO2 NP suspension 1 mmol/L NaCl 1 mmol/L NaCl+ 50 mg/L phosphate
Fig. 1(b2) 4 10 mmol/L NaCl+ 50 mg/L phosphate TiO2 NP suspension 10 mmol/L NaCl 1 mmol/L NaCl
Fig. 1(b2) 4 10 mmol/L NaCl TiO2 NP suspension 10 mmol/L NaCl 10 mmol/L NaCl+ 50 mg/L phosphate
Fig. 1(b3) 4 100 mmol/L NaCl+ 50 mg/L phosphate TiO2 NP suspension 100 mmol/L NaCl 10 mmol/L NaCl
Fig. 1(b3) 4 100 mmol/L NaCl TiO2 NP suspension 100 mmol/L NaCl 100 mmol/L NaCl+ 50 mg/L phosphate
Tab.3  Conditions of the column experiments
Fig.2  Isotherms for phosphate adsorption in soil having NaCl electrolyte solutions at different ISs and pHs.
Fig.3  Fourier transform infrared (FTIR) spectrum of soil.
Fig.4  Calculated DLVO interaction energies between a spherical TiO2 NP and a planar soil surface, both with or without adsorption of phosphate (P), at different ISs and pHs.
Fig.5  
pH IS
(mmol/L)
Phosphate
(mg/L)
Primary minimum depth (kT) Maximum energy barrier (kT) Secondary minimum
Depth (kT) Distance (nm)
9 1 50 220.77 990.1 1.93 83.46
9 1 0 273.88 581.1 2.13 72.86
9 10 50 118.62 507.06 10.11 18.66
9 10 0 168.29 302.64 10.88 17.26
9 100 0 351.58 N.A. N.A. N.A.
4 1 50 308.57 402.47 2.29 68.46
4 1 0 336.21 276.88 2.42 63.26
4 10 50 204.61 201.21 11.64 16.26
4 10 0 243.86 112.47 12.55 14.66
4 100 50 313.47 N.A. N.A. N.A.
4 100 0 394.38 N.A. N.A. N.A.
Tab.4  Calculated primary minimum, maximum energy barrier, and secondary minima between a TiO2 NP and a soil surface at different pHs and ISs. N.A., absence of maximum energy barrier or secondary minimum
Fig.6  A scanning electron microscope (SEM) image of a soil particle surface.
1 V Adam, S Loyaux-Lawniczak, G Quaranta (2015). Characterization of engineered TiO2 nanomaterials in a life cycle and risk assessments perspective. Environmental Science and Pollution Research, 22(15): 11175–11192
https://doi.org/10.1007/s11356-015-4661-x pmid: 25994264
2 S Bhattacharjee, M Elimelech (1997). Surface element integration: A novel technique for evaluation of DLVO interaction between a particle and a flat plate. Journal of Colloid and Interface Science, 193(2): 273–285
https://doi.org/10.1006/jcis.1997.5076 pmid: 9344528
3 N S Bolan, J K Syers, R W Tillman (1986). Ionic strength effects on surface charge and adsorption of phosphate and sulphate by soil. Journal of Soil Science, 37(3): 379–388
https://doi.org/10.1111/j.1365-2389.1986.tb00371.x
4 S A Bradford, S Torkzaban (2013). Colloid interaction energies for physically and chemically heterogeneous porous media. Langmuir, 29(11): 3668–3676
https://doi.org/10.1021/la400229f pmid: 23437902
5 S A Bradford, S Torkzaban (2015). Determining parameters and mechanisms of colloid retention and release in porous media. Langmuir, 31(44): 12096–12105
https://doi.org/10.1021/acs.langmuir.5b03080 pmid: 26484563
6 S A Bradford, S Torkzaban, A Shapiro (2013). A theoretical analysis of colloid attachment and straining in chemically heterogeneous porous media. Langmuir, 29(23): 6944–6952
https://doi.org/10.1021/la4011357 pmid: 23687981
7 S A Bradford, S R Yates, M Bettahar, J Simunek (2002). Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resources Research, 38(12): 63-1–63-12
https://doi.org/10.1029/2002WR001340
8 S K Brar, M Verma, R D Tyagi, R Y Surampalli (2010). Engineered nanoparticles in wastewater and wastewater sludge—Evidence and impacts. Waste Management, 30(3): 504–520
https://doi.org/10.1016/j.wasman.2009.10.012 pmid: 19926463
9 L Cai, S Peng, D Wu, M Tong (2016). Effect of different-sized colloids on the transport and deposition of titanium dioxide nanoparticles in quartz sand. Environmental Pollution, 208(Pt B): 637–644
https://doi.org/10.1016/j.envpol.2015.10.040 pmid: 26561451
10 L Cai, M Tong, X Wang, H Kim (2014). Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand. Environmental Science & Technology, 48(13): 7323–7332
https://doi.org/10.1021/es5019652 pmid: 24911544
11 G Chen, X Liu, C Su (2011). Transport and retention of TiO2 rutile nanoparticles in saturated porous media under low-ionic-strength conditions: measurements and mechanisms. Langmuir, 27(9): 5393–5402
https://doi.org/10.1021/la200251v pmid: 21446737
12 L Chen, D A Sabatini, T C G Kibbey (2010). Retention and release of TiO2 nanoparticles in unsaturated porous media during dynamic saturation change. Journal of Contaminant Hydrology, 118(3–4): 199–207
https://doi.org/10.1016/j.jconhyd.2010.07.010 pmid: 20739092
13 M Chen, N Xu, X Cao, K Zhou, Z Chen, Y Wang, C Liu (2015). Facilitated transport of anatase titanium dioxides nanoparticles in the presence of phosphate in saturated sands. Journal of Colloid and Interface Science, 451: 134–143
https://doi.org/10.1016/j.jcis.2015.04.010 pmid: 25897849
14 X Chen, S S Mao (2007). Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical Reviews, 107(7): 2891–2959
https://doi.org/10.1021/cr0500535 pmid: 17590053
15 L Clément, C Hurel, N Marmier (2013). Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants: Effects of size and crystalline structure. Chemosphere, 90(3): 1083–1090
https://doi.org/10.1016/j.chemosphere.2012.09.013 pmid: 23062945
16 M Elimelech, C R O’Melia (1990). Kinetics of deposition of colloidal particles in porous media. Environmental Science & Technology, 24(10): 1528–1536
https://doi.org/10.1021/es00080a012
17 A Esfandyari Bayat, R Junin, M N Derahman, A A Samad (2015). TiO2 nanoparticle transport and retention through saturated limestone porous media under various ionic strength conditions. Chemosphere, 134: 7–15
https://doi.org/10.1016/j.chemosphere.2015.03.052 pmid: 25889359
18 J Fang, X Q Shan, B Wen, J M Lin, G Owens (2009). Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environmental Pollution, 157(4): 1101–1109
https://doi.org/10.1016/j.envpol.2008.11.006 pmid: 19081659
19 J Fang, M J Xu, D J Wang, B Wen, J Y Han (2013). Modeling the transport of TiO2 nanoparticle aggregates in saturated and unsaturated granular media: Effects of ionic strength and pH. Water Research, 47(3): 1399–1408
https://doi.org/10.1016/j.watres.2012.12.005 pmid: 23276424
20 J Fang, K Zhang, P Sun, D Lin, B Shen, Y Luo (2016). Co-transport of Pb2+ and TiO2 nanoparticles in repacked homogeneous soil columns under saturation condition: Effect of ionic strength and fulvic acid. Science of the Total Environment, 571: 471–478
https://doi.org/10.1016/j.scitotenv.2016.07.013 pmid: 27405518
21 K Gerloff, I Fenoglio, E Carella, J Kolling, C Albrecht, A W Boots, I Förster, R P F Schins (2012). Distinctive toxicity of TiO2 rutile/anatase mixed phase nanoparticles on Caco-2 cells. Chemical Research in Toxicology, 25(3): 646–655
https://doi.org/10.1021/tx200334k pmid: 22263745
22 I G Godinez, C J G Darnault (2011). Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity. Water Research, 45(2): 839–851
https://doi.org/10.1016/j.watres.2010.09.013 pmid: 20947120
23 A Gogos, J Moll, F Klingenfuss, M van der Heijden, F Irin, M J Green, R Zenobi, T D Bucheli (2016). Vertical transport and plant uptake of nanoparticles in a soil mesocosm experiment. Journal of Nanobiotechnology, 14(1): 40
https://doi.org/10.1186/s12951-016-0191-z pmid: 27278090
24 F Gottschalk, T Sondere, R Schols, B Nowack (2009). Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environmental Science & Technology, 43(24): 9216–9222
https://doi.org/10.1021/es9015553 pmid: 20000512
25 P Guo, N Xu, D Li, X Huangfu, Z Li (2018). Aggregation and transport of rutile titanium dioxide nanoparticles with montmorillonite and diatomite in the presence of phosphate in porous sand. Chemosphere, 204: 327–334
https://doi.org/10.1016/j.chemosphere.2018.04.041 pmid: 29674144
26 K A Guzman, M P Finnegan, J F Banfield (2006). Influence of surface potential on aggregation and transport of titania nanoparticles. Environmental Science & Technology, 40(24): 7688–7693
https://doi.org/10.1021/es060847g pmid: 17256514
27 M W Hahn, D Abadzic, C R O’Melia (2004). Aquasols: On the role of secondary minima. Environmental Science & Technology, 38(22): 5915–5924
https://doi.org/10.1021/es049746d pmid: 15573589
28 M W Hahn, C R O’Meliae (2004). Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: Some concepts and applications. Environmental Science & Technology, 38(1): 210–220
https://doi.org/10.1021/es030416n pmid: 14740738
29 F He, M Zhang, T Qian, D Zhao (2009). Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: column experiments and modeling. Journal of Colloid and Interface Science, 334(1): 96–102
https://doi.org/10.1016/j.jcis.2009.02.058 pmid: 19383562
30 K E Healy, P Ducheyne (1992). Hydration and preferential molecular adsorption on titanium in vitro. Biomaterials, 13(8): 553–561
https://doi.org/10.1016/0142-9612(92)90108-Z pmid: 1633230
31 E M V Hoek, G K Agarwal (2006). Extended DLVO interactions between spherical particles and rough surfaces. Journal of Colloid and Interface Science, 298(1): 50–58
https://doi.org/10.1016/j.jcis.2005.12.031 pmid: 16469325
32 Y Ju-Nam, J R Lead (2008). Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Science of the Total Environment, 400(1–3): 396–414
https://doi.org/10.1016/j.scitotenv.2008.06.042 pmid: 18715626
33 C Kim, J Lee, S Lee (2015). TiO2 nanoparticle sorption to sand in the presence of natural organic matter. Environmental Earth Sciences, 73(9): 5585–5591
https://doi.org/10.1007/s12665-014-3812-6
34 J Lalley, C Han, X Li, D D Dionysiou, M N Nadagouda (2016). Phosphate adsorption using modified iron oxide-based sorbents in lake water: Kinetics, equilibrium, and column tests. Chemical Engineering Journal, 284: 1386–1396
https://doi.org/10.1016/j.cej.2015.08.114
35 T W Ley, R G Stevens, R R Topielec, W H Neibling (1994). Soil water monitoring and measurement. PNW., 88(6): 2054–8
36 D Lin, S D Story, S L Walker, Q Huang, W Liang, P Cai (2017). Role of pH and ionic strength in the aggregation of TiO2 nanoparticles in the presence of extracellular polymeric substances from Bacillus subtilis. Environmental Pollution, 228: 35–42
https://doi.org/10.1016/j.envpol.2017.05.025 pmid: 28511037
37 C Liu, N Xu, G Feng, D Zhou, X Cheng, Z Li (2017). Hydrochars and phosphate enhancing the transport of nanoparticle silica in saturated sands. Chemosphere, 189: 213–223
https://doi.org/10.1016/j.chemosphere.2017.09.066 pmid: 28942247
38 F Loosli, P Le Coustumer, S Stoll (2013). TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability. Water Research, 47(16): 6052–6063
https://doi.org/10.1016/j.watres.2013.07.021 pmid: 23969399
39 I L Molnar, J I Gerhard, C S Willson, D M O’Carroll (2015a). The impact of immobile zones on the transport and retention of nanoparticles in porous media. Water Resources Research, 51(11): 8973–8994
https://doi.org/10.1002/2015WR017167
40 I L Molnar, W P Johnson, J I Gerhard, C S Willson, D M O’Carroll (2015b). Predicting colloid transport through saturated porous media: A critical review. Water Resources Research, 51(9): 6804–6845
https://doi.org/10.1002/2015WR017318
41 M T Pardo, M E Guadalix, M T Garcia-Gonzalez (1992). Effect of pH and background electrolyte on P sorption by variable charge soils. Geoderma, 54(1–4): 275–284
https://doi.org/10.1016/0016-7061(92)90109-K
42 C M Park, K H Chu, J Heo, N Her, M Jang, A Son, Y Yoon (2016). Environmental behavior of engineered nanomaterials in porous media: A review. Journal of Hazardous Materials, 309: 133–150
https://doi.org/10.1016/j.jhazmat.2016.02.006 pmid: 26882524
43 F Piccinno, F Gottschalk, S Seeger, B Nowack (2012). Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research, 14(9): 1109
https://doi.org/10.1007/s11051-012-1109-9
44 A Rasmuson, E Pazmino, S Assemi, W P Johnson (2017). Contribution of nano- to microscale roughness to heterogeneity: Closing the gap between unfaovrable and favorable colloid attachment conditions. Environmental Science & Technology, 51(4): 2151–2160
https://doi.org/10.1021/acs.est.6b05911 pmid: 28132502
45 Z S Rastghalam, T Cheng, B Freake (2018). Fine particle attachment to quartz sand in the presence of multiple interacting dissolved components. Science of the Total Environment, 645: 499–508
https://doi.org/10.1016/j.scitotenv.2018.07.131 pmid: 30029125
46 C O Robichaud, A E Uyar, M R Darby, L G Zucker, M R Wiesner (2009). Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environmental Science & Technology, 43(12): 4227–4233
https://doi.org/10.1021/es8032549 pmid: 19603627
47 J Rottman, L C Platt, R Sierra-Alvarez, F Shadman (2013). Removal of TiO2 nanoparticles by porous media: Effect of filtration media and water chemistry. Chemical Engineering Journal, 217: 212–220
https://doi.org/10.1016/j.cej.2012.11.117
48 J F Schijven, S M Hassanizadeh (2000). Removal of viruses by soil passage: Overview of modeling, processes, and parameters. Critical Reviews in Environmental Science and Technology, 30(1):79
https://doi.org/10.1080/10643380091184174
49 N Seetha, S Majid Hassanizadeh, M S Mohan Kumar, A Raoof (2015). Correlation equations for average deposition rate coefficients of nanoparticles in a cylindrical pore. Water Resources Research, 51(10): 8034–8059
https://doi.org/10.1002/2015WR017723
50 C Shen, S A Bradford, T Li, B Li, Y Huang (2018). Can nanoscale surface charge heterogeneity really explain colloid detachment from primary minima upon reduction of solution ionic strength? Journal of Nanoparticle Research, 20(6): 165
https://doi.org/10.1007/s11051-018-4265-8
51 C Shen, Y Jin, B Li, W Zheng, Y Huang (2014). Facilitated attachment of nanoparticles at primary minima by nanoscale roughness is susceptible to hydrodynamic drag under unfavorable chemical conditions. Science of the Total Environment, 466– 467: 1094–1102
https://doi.org/10.1016/j.scitotenv.2013.07.125 pmid: 24013017
52 C Shen, V Lazouskaya, H Zhang, F Wang, B Li, Y Jin, Y Huang (2012a). Theoretical and experimental investigation of detachment of colloids from rough collector surfaces. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 410: 98–110
https://doi.org/10.1016/j.colsurfa.2012.06.025
53 C Shen, F Wang, B Li, Y Jin, L P Wang, Y Huang (2012b). Application of DLVO energy map to evaluate interactions between spherical colloids and rough surfaces. Langmuir, 28(41): 14681–14692
https://doi.org/10.1021/la303163c pmid: 23006065
54 C Shen, M Zhang, S Zhang, Z Wang, H Zhang, B Li, Y Huang (2015). Influence of surface heterogeneities on reversibility of fullerene (nC60) nanoparticle attachment in saturated porous media. Journal of Hazardous Materials, 290: 60–68
https://doi.org/10.1016/j.jhazmat.2015.02.067 pmid: 25746565
55 N Solovitch, J Labille, J Rose, P Chaurand, D Borschneck, M R Wiesner, J Y Bottero (2010). Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media. Environmental Science & Technology, 44(13): 4897–4902
https://doi.org/10.1021/es1000819 pmid: 20524647
56 Y Song, H H Hahn, E Hoffmann (2002). Effects of solution conditions on the precipitation of phosphate for recovery. Chemosphere, 48(10): 1029–1034
https://doi.org/10.1016/S0045-6535(02)00183-2 pmid: 12227507
57 Z Tang, T Cheng (2018). Stability and aggregation of nanoscale titanium dioxide particle (nTiO2): Effect of cation valence, humic acid, and clay colloids. Chemosphere, 192: 51–58
https://doi.org/10.1016/j.chemosphere.2017.10.105 pmid: 29091797
58 N Tufenkji, M Elimelech (2004). Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environmental Science & Technology, 38(2): 529–536
https://doi.org/10.1021/es034049r pmid: 14750730
59 N Tufenkji, M Elimelech (2005). Breakdown of colloid filtration theory: Role of the secondary energy minimum and surface charge heterogeneities. Langmuir, 21(3): 841–852
https://doi.org/10.1021/la048102g pmid: 15667159
60 Y Wang, B Gao, V L Morales, Y Tian, L Wu, J Gao, W Bai, L Yang (2012). Transport of titanium dioxide nanoparticles in saturated porous media under various solution chemistry conditions. Journal of Nanoparticle Research, 14(9): 1095
https://doi.org/10.1007/s11051-012-1095-y
61 Z Wang, D Wang, B Li, J Wang, T Li, M Zhang, Y Huang, C Shen (2016). Detachment of fullerene nC60 nanoparticles in saturated porous media under flow/stop-flow conditions: Column experiments and mechanistic explanations. Environmental Pollution, 213: 698–709
https://doi.org/10.1016/j.envpol.2016.03.053 pmid: 27023279
62 L Windler, C Lorenz, N von Goetz, K Hungerbühler, M Amberg, M Heuberger, B Nowack (2012). Release of titanium dioxide from textiles during washing. Environmental Science & Technology, 46(15): 8181–8188
https://doi.org/10.1021/es301633b pmid: 22746197
63 Y Wu, T Cheng (2016). Stability of nTiO2 particles and their attachment to sand: Effects of humic acid at different pH. Science of the Total Environment, 541: 579–589
https://doi.org/10.1016/j.scitotenv.2015.09.116 pmid: 26439650
64 K M Yao, M T Habibian, C R O’Melia (1971). Water and waste water filtration: Concepts and applications. Environmental Science & Technology, 5(11):1105–1112
https://doi.org/10.1021/es60058a005
65 R Zhang, H Zhang, C Tu, X Hu, L Li, Y Luo, P Christie (2015). Facilitated transport of titanium dioxide nanoparticles by humic substances in saturated porous media under acidic conditions. Journal of Nanoparticle Research, 17(4): 165
https://doi.org/10.1007/s11051-015-2972-y
66 X Zhu, Y Chang, Y Chen (2010). Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere, 78(3): 209–215
https://doi.org/10.1016/j.chemosphere.2009.11.013 pmid: 19963236
67 Y Zou, S Jayasuriya, C W Manke, G Mao (2015). Influence of nanoscale surface roughness on colloidal force measurements. Langmuir, 31(38): 10341–10350
https://doi.org/10.1021/acs.langmuir.5b02672 pmid: 26335845
[1] Chengjie Xue, Juan Wu, Kuang Wang, Yunqiang Yi, Zhanqiang Fang, Wen Cheng, Jianzhang Fang. Effects of different types of biochar on the properties and reactivity of nano zero-valent iron in soil remediation[J]. Front. Environ. Sci. Eng., 2021, 15(5): 101-.
[2] Yueqi Jiang, Jia Xing, Shuxiao Wang, Xing Chang, Shuchang Liu, Aijun Shi, Baoxian Liu, Shovan Kumar Sahu. Understand the local and regional contributions on air pollution from the view of human health impacts[J]. Front. Environ. Sci. Eng., 2021, 15(5): 88-.
[3] Kehui Liu, Jie Xu, Chenglong Dai, Chunming Li, Yi Li, Jiangming Ma, Fangming Yu. Exogenously applied oxalic acid assists in the phytoremediation of Mn by Polygonum pubescens Blume cultivated in three Mn-contaminated soils[J]. Front. Environ. Sci. Eng., 2021, 15(5): 86-.
[4] Junlian Qiao, Yang Liu, Hongyi Yang, Xiaohong Guan, Yuankui Sun. Remediation of arsenic contaminated soil by sulfidated zero-valent iron[J]. Front. Environ. Sci. Eng., 2021, 15(5): 83-.
[5] Sanjena Narayanasamydamodaran, Jian’e Zuo, Haiteng Ren, Nawnit Kumar. Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture[J]. Front. Environ. Sci. Eng., 2021, 15(4): 66-.
[6] Shanshan Zhao, Zhu Tao, Liwei Chen, Muqiao Han, Bin Zhao, Xuelin Tian, Liang Wang, Fangang Meng. An antifouling catechol/chitosan-modified polyvinylidene fluoride membrane for sustainable oil-in-water emulsions separation[J]. Front. Environ. Sci. Eng., 2021, 15(4): 63-.
[7] Haiyan Mou, Wenchao Liu, Lili Zhao, Wenqing Chen, Tianqi Ao. Stabilization of hexavalent chromium with pretreatment and high temperature sintering in highly contaminated soil[J]. Front. Environ. Sci. Eng., 2021, 15(4): 61-.
[8] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
[9] Hanli Wan, Jianmin Bian, Han Zhang, Yihan Li. Assessment of future climate change impacts on water-heat-salt migration in unsaturated frozen soil using CoupModel[J]. Front. Environ. Sci. Eng., 2021, 15(1): 10-.
[10] Kehui Liu, Xiaolu Liang, Chunming Li, Fangming Yu, Yi Li. Nutrient status and pollution levels in five areas around a manganese mine in southern China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 100-.
[11] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
[12] Zhengqing Cai, Xiao Zhao, Jun Duan, Dongye Zhao, Zhi Dang, Zhang Lin. Remediation of soil and groundwater contaminated with organic chemicals using stabilized nanoparticles: Lessons from the past two decades[J]. Front. Environ. Sci. Eng., 2020, 14(5): 84-.
[13] Wei Fan, Qi Li, Mingxin Huo, Xiaoyu Wang, Shanshan Lin. Transport of bacterial cell (E. coli) from different recharge water resources in porous media during simulated artificial groundwater recharge[J]. Front. Environ. Sci. Eng., 2020, 14(4): 63-.
[14] Meng Zhu, Yongming Luo, Ruyi Yang, Shoubiao Zhou, Juqin Zhang, Mengyun Zhang, Peter Christie, Elizabeth L. Rylott. Diphenylarsinic acid sorption mechanisms in soils using batch experiments and EXAFS spectroscopy[J]. Front. Environ. Sci. Eng., 2020, 14(4): 58-.
[15] Nima Kamali, Abdollah Rashidi Mehrabadi, Maryam Mirabi, Mohammad Ali Zahed. Synthesis of vinasse-dolomite nanocomposite biochar via a novel developed functionalization method to recover phosphate as a potential fertilizer substitute[J]. Front. Environ. Sci. Eng., 2020, 14(4): 70-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed