Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2020, Vol. 14 Issue (1) : 2    https://doi.org/10.1007/s11783-019-1181-9
RESEARCH ARTICLE
Quantification of pesticide residues on plastic mulching films in typical farmlands of the North China
Baoyuan Guo1,2,4(), Jiao Meng1,2, Xinyu Wang3, Chengnan Yin1, Weiyu Hao1,2, Baiwen Ma1,2, Zhang Tao1,2
1. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Beijing Union University, Beijing 100101, China
4. Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
 Download: PDF(810 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Pesticide residuals on mulching film of Shandong, Tianjin and Hebei.

• Detected 29 pesticides in soil and 30 in mulching film.

• Pesticides on plastic films: 86.4‒22213.2 ng/g and in soil: 9.3‒535.3 ng/g.

• Pesticides on plastic films 20 times higher than in soil.

Plastic debris as new pollutants attracts much attention in the recent years. The plastic mulching films is one of the most important plastic debirs source in the environment. The aim of this work was to investigate the current status of pesticide residues on the plastic mulching films. Based on the QuEChERS method, multi-residue methods for detection of pesticide residues with gas chromatography tandem mass spectrum (GC-MS) and high performance liquid chromatography tandem mass spectrum (HPLC-MS) were developed for the analysis of the pesticides residues in plastic film and soil samples from Tianjin, Hebei and Shandong. The total concentrations of pesticide residues were in the range of 86.4‒22213.2 ng/g in plastic film debris, which was about 20 times higher than that in soil (9.3‒535.3 ng/g). Residual level of pesticides varied greatly in different samples. The historical usage and recent application of pesticides were the main sources for pesticide residues on plastic films and soil. In short, plastic mulching films could act as a sink for pesticides in farmland and the ubiquitous pesticide residues on plastic films should draw more attention.

Keywords Pesticides      Plastic mulching film      Soil      QuEChERS      Farmland     
Corresponding Author(s): Baoyuan Guo   
Issue Date: 30 October 2019
 Cite this article:   
Baoyuan Guo,Jiao Meng,Xinyu Wang, et al. Quantification of pesticide residues on plastic mulching films in typical farmlands of the North China[J]. Front. Environ. Sci. Eng., 2020, 14(1): 2.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-019-1181-9
https://academic.hep.com.cn/fese/EN/Y2020/V14/I1/2
No. Area Geographical coordinates
S01 Baigou, Hebei N39°08′17.52″, E116°0′24.60″
S02 Cangzhou, Hebei N38°15′8.03″, E116°52′35.04″
S03 Dezhou, Hebei N37°31′13.43″, E116°16′10.71″
S04 Dezhou, Shandong N37°22′11.46″, E116°19′13.53″
S05 Hengshui 1, Hebei N37°46′52.06″, E115°40′15.11″
S06 Hengshui 2, Hebei N37°41′57.09″, E115°35′58.26″
S07 Hengshui 3, Hebei N37°42′20.99″, E115°44′58.50″
S08 Qingzhou 1, Shandong N36°45′35.57″, E118°26′39.97″
S09 Qingzhou 2, Shandong N36°42′29.94″, E118°34′3.75″
S10 Raoyang 1, Hebei N38°15′22.07″, E115°45′12.63″
S11 Raoyang 2, Hebei N38°13′43.54″, E115°45′33.37″
S12 Renqiu, Hebei N38°42′46.63″, E116°02′13.52″
S13 Shouguang 1, Shandong N36°49′45.25″, E118°51′48.44″
S14 Shouguang 2, Shandong N36°55′6.52″, E118°48′36.92″
S15 Shouguang 3, Shandong N36°54′54.56″, E118°40′59.81″
S16 Shouguang 4, Shandong N36°50′44.43″, E118°40′29.03″
S17 Tianjin 1 N38°59′21.50″, E116°58′6.24″
S18 Tianjin 2 N39°18′45.44″, E116°57′29.76″
S19 Zouping, Shandong N36°50′5.55″, E117°46′17.87″
S20 Zibo, Shandong N36°54′21.82″, E117°58′53.50″
Tab.1  Location of sampling sites
Number Name CAS No. Log P Soil degradation
DT50 (days)
LC50
(mg/kg)
Classification
1 Tricyclazole 41814-78-2 1.4 450 >1000 Fungicide
2 Imazalil 73790-28-0 2.56 76.3 541 Fungicide
3 Boscalid 188425-85-6 2.96 484.4 >500 Fungicide
4 Dimethomorph 110488-70-5 2.68 72.7 >500 Fungicide
5 Myclobutanil 88671-89-0 2.87 560 125 Fungicide
6 Triadimefon 43121-43-3 3.18 26 50 Fungicide
7 Cyazofamid 120116-88-3 3.2 10 >1000 Fungicide
8 Thifluzamide 130000-40-7 4.16 1145 >1250 Fungicide
9 Flusilazole 85509-19-9 3.87 300 388 Fungicide
10 Tebuconazole 80443-41-0 3.7 63 1381 Fungicide
11 Hexaconazole 79983-71-4 3.9 122 414 Fungicide
12 Difenoconazole 119446-68-3 4.36 130 616 Fungicide
13 Procymidone 32809-16-8 3.3 7 >1000 Fungicide
014 Atrazine 1912-24-9 2.7 75 79 Herbicide
15 Flumioxazin 103361-09-7 2.55 21.9 491 Herbicide
16 Acetochlor 34256-82-1 4.14 14 105.5 Herbicide
17 butachlor 23184-66-9 4.5 56 0.515 Herbicide
18 Butralin 33629-47-9 4.93 22 >1000 Herbicide
19 Trifluralin 1582-09-8 5.27 181 >500 Herbicide
20 Oxyfluorfen 42874-03-3 4.86 35 >1000 Herbicide
21 Acetamiprid 135410-20-7 0.8 1.6 9 Insecticide
22 Thiacloprid 111988-49-9 1.26 0.88 105 Insecticide
23 Azoxystrobin 131860-33-8 2.5 78 283 Insecticide
24 Tebufenozide 112410-23-8 4.25 400 >1000 Insecticide
25 Indoxacarb 144171-61-9 4.65 113.2 625 Insecticide
26 Hexaflumuron 86479-06-3 5.68 57 880 Insecticide
27 Lufenuron 103055-07-8 5.12 16.3 >500 Insecticide
28 Etoxazole 153233-91-1 5.25 19.3 >1000 Insecticide
29 Pyridaben 96489-71-3 6.37 55 19 Insecticide
30 Chlorfenapyr 122453-73-0 4.83 1.4 / Insecticide
31 Bifenthrin 83322-02-5 6.6 26 8 Insecticide
32 Fenpropathrin 64257-84-7 6.04 34 184 Insecticide
33 Cyhalothrin 91465-08-6 6.8 57 >1000 Insecticide
34 Flonicamid 158062-67-0 -0.43 3.1 >1000 Insecticide
35 Thiamethoxam 153719-23-4 -0.13 50 >1000 Insecticide
Tab.2  Pesticides selected in the present work*
Fig.1  Flow chart of the sample preparation.
sites Insecticides Herbicides Fungicides Total Conc.
(ng/g)
Amounts
Conc.
(ng/g)
Amounts Conc.
(ng/g)
Amounts Conc.
(ng/g)
Amounts
Tianjin-1 352.0 6 4.5 3 7.5 3 357.9 12
Tianjin-2 11.7 5 3.5 3 0.0 0 10.1 8
Shouguang-1 530.1 4 8.1 3 1.0 2 535.3 9
Shouguang-3 25.8 5 12.4 5 22.3 8 55.5 18
Shouguang-4 31.2 5 8.7 3 62.9 8 97.7 16
Zouping 123.5 4 19.6 5 3.4 4 142.5 13
Zibo 54.0 3 6.9 3 0.4 1 58.3 7
Qingzhou-1 56.1 6 132.5 5 19.5 2 202.0 13
Qingzhou-2 142.7 8 138.5 6 118.3 5 391.5 19
Baigou 2.0 1 424.1 4 0.7 1 425.7 6
Cangzhou 12.4 3 6.5 4 0.4 1 16.3 8
Dezhou-1 4.4 1 26.8 5 10.6 3 40.8 9
Dezhou-2 20.4 4 131.8 3 14.9 6 163.1 13
Hengshui-1 0.0 0 189.4 6 2.2 4 191.6 10
Hengshui-2 15.3 3 54.9 6 4.9 4 72.1 13
Hengshui-3 6.1 1 2.8 2 1.3 2 9.3 5
Raoyang-1 12.7 3 5.9 4 2.9 4 18.6 11
Raoyang-2 4.7 1 480.2 4 1.0 1 484.8 6
Renqiu 4.9 1 20.3 4 4.4 2 28.6 7
mean 73.3 3.4 84.2 4.1 14.1 3.2 168.1 10.7
Tab.3  Pesticide residues in soil samples
Fig.2  Detection rate of pesticide residues in soil and plastic film samples.
Sites Insecticides Herbicides Fungicides Total conc. Amounts
Conc. Amounts Conc. Amounts Conc. Amounts
Tianjin-1 1754.4 6 208.8 4 231.2 10 2194.4 20
Tianjin-2 3301.1 3 240.0 4 53.9 6 3594.9 13
Shouguang-1 21792.5 5 245.3 4 175.3 9 22213.2 18
Shouguang-2 94.9 3 182.1 3 199.2 8 476.3 14
Shouguang-3 126.9 5 395.7 2 165.3 7 688.0 14
Shouguang-4 545.1 4 407.2 5 205.1 4 1157.3 13
Zouping 12109.9 8 268.8 5 223.2 9 12601.9 22
Zibo 156.3 2 225.3 3 93.9 6 475.5 11
Qingzhou-1 181.3 3 388.5 4 344.3 7 914.1 14
Qingzhou-2 14440.0 4 262.1 5 164.0 9 14866.1 18
Baigou 238.7 4 150.4 4 74.7 7 463.7 15
Cangzhou 114.4 4 190.7 4 243.2 5 548.3 13
Dezhou-1 71.2 3 25.1 2 55.2 6 151.5 11
Dezhou-2 502.1 6 99.2 4 71.5 6 672.8 16
Hengshui-1 570.1 3 135.2 4 165.1 6 870.4 13
Hengshui-2 6.9 1 41.1 3 38.4 3 86.4 7
Hengshui-3 2847.5 6 146.7 3 158.4 9 3152.5 18
Raoyang-1 356.3 8 134.7 4 279.7 9 770.7 21
Raoyang-2 2166.4 7 149.6 5 341.6 8 2657.6 20
Renqiu 147.2 3 244.8 4 318.4 8 710.4 15
mean 3076.2 4.4 207.1 3.8 180.1 7.1 3463.3 15.3
Tab.4  Pesticide residues on plastic film samples (ng/g)
Fig.3  Comparison of pesticide residues in soil and plastic film samples.
1 M Anastassiades, S J Lehotay, D Stajnbaher, F J Schenck (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. Journal of AOAC International, 86(2): 412–431
pmid: 12723926
2 M Benedetti, L Cafiero, D D Angelis, A Dell’Era, M Pasquali, S Stendardo, R Tuffi, S V Ciprioti (2017). Pyrolysis of WEEE plastics using catalysts produced from fly ash of coal gasification. Frontiers of Environmental Science & Engineering, 11(5): 11
3 J M Bonmatin, C Giorio, V Girolami, D Goulson, D P Kreutzweiser, C Krupke, M Liess, E Long, M Marzaro, E A Mitchell, D A Noome, N Simon-Delso, A Tapparo (2015). Environmental fate and exposure; neonicotinoids and fipronil. Environmental Science and Pollution Research International, 22(1): 35–67
https://doi.org/10.1007/s11356-014-3332-7 pmid: 25096486
4 J Cooper, H Dobson (2007). The benefits of pesticides to mankind and the environment. Crop Protection, 26(9): 1337–1348
https://doi.org/10.1016/j.cropro.2007.03.022
5 J Dai, H Dong (2014). Intensive cotton farming technologies in China: Achievements, challenges and countermeasures. Field Crops Research, 155: 99–110
https://doi.org/10.1016/j.fcr.2013.09.017
6 R E Engler (2012). The complex interaction between marine debris and toxic chemicals in the ocean. Environmental Science & Technology, 46(22): 12302–12315
https://doi.org/10.1021/es3027105 pmid: 23088563
7 T Harner, T F Bidleman, L M Jantunen, D Mackay (2001). Soil-air exchange model of persistent pesticides in the United States cotton belt. Environmental Toxicology and Chemistry, 20(7): 1612–1621
pmid: 11434306
8 J N Huckins, G K Manuweera, J D Petty, D Mackay, J A Lebo (1993). Lipid-containing semipermeable membrane devices for monitoring organic contaminants in water. Environmental Science & Technology, 27(12): 2489–2496
https://doi.org/10.1021/es00048a028
9 J R Jambeck, R Geyer, C Wilcox, T R Siegler, M Perryman, A Andrady, R Narayan, K L Law (2015). Plastic waste inputs from land into the ocean. Science, 347(6223): 768–771
https://doi.org/10.1126/science.1260352 pmid: 25678662
10 Y Liu, A Ding, Y Sun, X Xia, D Zhang (2018). Impacts of n-alkane concentration on soil bacterial community structure and alkane monooxygenase genes abundance during bioremediation processes. Frontiers of Environmental Science & Engineering, 12(6): 1
https://doi.org/10.1007/s11783-018-1036-9
11 C Nerín, R Batlle (1999). Assessing the suitability of recycled plastics used as agricultural soil covers: Migration study and experimental harvest. Journal of Agricultural and Food Chemistry, 47(1): 285–293
https://doi.org/10.1021/jf9804950 pmid: 10563887
12 C Nerín, A R Tornés, C Domeño, J Cacho (1996). Absorption of pesticides on plastic films used as agricultural soil covers. Journal of Agricultural and Food Chemistry, 44(12): 4009–4014
13 G A Querejeta, L M Ramos, A P Flores, E A Hughes, A Zalts, J M Montserrat (2012). Environmental pesticide distribution in horticultural and floricultural periurban production units. Chemosphere, 87(5): 566–572
https://doi.org/10.1016/j.chemosphere.2011.12.074 pmid: 22285036
14 L Ramos, G Berenstein, E A Hughes, A Zalts, J M Montserrat (2015). Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina. Science of Total Environment, 523: 74–81
https://doi.org/10.1016/j.scitotenv.2015.03.142 pmid: 25862993
15 J B Regitano, W C Koskinen, M J Sadowsky (2006). Influence of soil aging on sorption and bioavailability of simazine. Journal of Agricultural and Food Chemistry, 54(4): 1373–1379
https://doi.org/10.1021/jf052343s pmid: 16478262
16 C Rivard, L Moens, K Roberts, J Brigham, S Kelley (1995). Starch esters as biodegradable plastics: Effects of ester group chain length and degree of substitution on anaerobic biodegradation. Enzyme and Microbial Technology, 17(9): 848–852
https://doi.org/10.1016/0141-0229(94)00120-G
17 C M Rochman, M A Browne, B S Halpern, B T Hentschel, E Hoh, H K Karapanagioti, L M Rios-Mendoza, H Takada, S Teh, R C Thompson (2013). Classify plastic waste as hazardous. Nature, 494(7436): 169–171
https://doi.org/10.1038/494169a pmid: 23407523
18 S Sharma, S Chatterjee (2017). Microplastic pollution, a threat to marine ecosystem and human health: A short review. Environmental Science and Pollution Research International, 24(27): 21530–21547
https://doi.org/10.1007/s11356-017-9910-8 pmid: 28815367
19 N B O Statistics (2016). China Rural Statistical Yearbook. China Statistics Press (in Chinese)
20 C G Summers, J J Stapleton (2002). Use of UV reflective mulch to delay the colonization and reduce the severity of Bemisia argentifolii (Homoptera: Aleyrodidae) infestations in cucurbits. Crop Protection (Guildford, Surrey), 21(10): 921–928
https://doi.org/10.1016/S0261-2194(02)00067-4
21 J M Tarara (2000). Microclimate modification with plastic mulch. HortScience, 35(2): 169–180
https://doi.org/10.21273/HORTSCI.35.2.169
22 C Yan, W He, Y Xue, E Liu, Q Liu (2016). Application of biodegradable plastic film to reduce plastic film residual pollution in Chinese agriculture.  Chinese Journal of Biotechnology, 32(6): 748–760 (in Chinese)
pmid: 29019184
23 C Yan, X Mei, W He (2010). Present situation of residue pollution of mulching plastic film and controlling measures. Transactions of the Chinese Society of Agricultural Engineering (Beijing), 22: 269–272 (in Chinese)
[1] FSE-19073-OF-GBY_suppl_1 Download
[1] Chengjie Xue, Juan Wu, Kuang Wang, Yunqiang Yi, Zhanqiang Fang, Wen Cheng, Jianzhang Fang. Effects of different types of biochar on the properties and reactivity of nano zero-valent iron in soil remediation[J]. Front. Environ. Sci. Eng., 2021, 15(5): 101-.
[2] Kehui Liu, Jie Xu, Chenglong Dai, Chunming Li, Yi Li, Jiangming Ma, Fangming Yu. Exogenously applied oxalic acid assists in the phytoremediation of Mn by Polygonum pubescens Blume cultivated in three Mn-contaminated soils[J]. Front. Environ. Sci. Eng., 2021, 15(5): 86-.
[3] Junlian Qiao, Yang Liu, Hongyi Yang, Xiaohong Guan, Yuankui Sun. Remediation of arsenic contaminated soil by sulfidated zero-valent iron[J]. Front. Environ. Sci. Eng., 2021, 15(5): 83-.
[4] Haiyan Mou, Wenchao Liu, Lili Zhao, Wenqing Chen, Tianqi Ao. Stabilization of hexavalent chromium with pretreatment and high temperature sintering in highly contaminated soil[J]. Front. Environ. Sci. Eng., 2021, 15(4): 61-.
[5] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
[6] Hanli Wan, Jianmin Bian, Han Zhang, Yihan Li. Assessment of future climate change impacts on water-heat-salt migration in unsaturated frozen soil using CoupModel[J]. Front. Environ. Sci. Eng., 2021, 15(1): 10-.
[7] Kehui Liu, Xiaolu Liang, Chunming Li, Fangming Yu, Yi Li. Nutrient status and pollution levels in five areas around a manganese mine in southern China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 100-.
[8] Zhengqing Cai, Xiao Zhao, Jun Duan, Dongye Zhao, Zhi Dang, Zhang Lin. Remediation of soil and groundwater contaminated with organic chemicals using stabilized nanoparticles: Lessons from the past two decades[J]. Front. Environ. Sci. Eng., 2020, 14(5): 84-.
[9] Meng Zhu, Yongming Luo, Ruyi Yang, Shoubiao Zhou, Juqin Zhang, Mengyun Zhang, Peter Christie, Elizabeth L. Rylott. Diphenylarsinic acid sorption mechanisms in soils using batch experiments and EXAFS spectroscopy[J]. Front. Environ. Sci. Eng., 2020, 14(4): 58-.
[10] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[11] Jun Yang, Jingyun Wang, Pengwei Qiao, Yuanming Zheng, Junxing Yang, Tongbin Chen, Mei Lei, Xiaoming Wan, Xiaoyong Zhou. Identifying factors that influence soil heavy metals by using categorical regression analysis: A case study in Beijing, China[J]. Front. Environ. Sci. Eng., 2020, 14(3): 37-.
[12] Xiaoming Wan, Mei Lei, Tongbin Chen. Review on remediation technologies for arsenic-contaminated soil[J]. Front. Environ. Sci. Eng., 2020, 14(2): 24-.
[13] Kubra Ulucan-Altuntas, Eyup Debik. Dechlorination of dichlorodiphenyltrichloroethane (DDT) by Fe/Pd bimetallic nanoparticles: Comparison with nZVI, degradation mechanism, and pathways[J]. Front. Environ. Sci. Eng., 2020, 14(1): 17-.
[14] Mohsen Jalali, Ziba Hurseresht. Assessment of mobile and potential mobile trace elements extractability in calcareous soils using different extracting agents[J]. Front. Environ. Sci. Eng., 2020, 14(1): 7-.
[15] Nan Wu, Weiyu Zhang, Shiyu Xie, Ming Zeng, Haixue Liu, Jinghui Yang, Xinyuan Liu, Fan Yang. Increasing prevalence of antibiotic resistance genes in manured agricultural soils in northern China[J]. Front. Environ. Sci. Eng., 2020, 14(1): 1-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed