Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2020, Vol. 14 Issue (1) : 6    https://doi.org/10.1007/s11783-019-1185-5
RESEARCH ARTICLE
Surface modification of mesoporous silica nanoparticle with 4-triethoxysilylaniline to enhance seawater desalination properties of thin-film nanocomposite reverse osmosis membranes
Jian Wang1, Qun Wang2, Xueli Gao3, Xinxia Tian1, Yangyang Wei1, Zhen Cao1, Chungang Guo1, Huifeng Zhang1, Zhun Ma2(), Yushan Zhang1()
1. The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (Tianjin), Tianjin 300192, China
2. College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
3. Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), Ocean University of China, Qingdao 266100, China
 Download: PDF(6012 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Mesoporous silica nanoparticle was modified with 4-triethoxysilylaniline.

• AMSN-based TFN-RO membranes were prepared for seawater desalination.

• Water transport capability of the AMSN was limited by polyamide.

• Polyamide still plays a key role in permeability of the TFN RO membranes.

Mesoporous silica nanoparticles (MSN), with higher water permeability than NaA zeolite, were used to fabricate thin-film nanocomposite (TFN) reverse osmosis (RO) membranes. However, only aminoalkyl-modified MSN and low-pressure (less than 2.1 MPa) RO membrane were investigated. In this study, aminophenyl-modified MSN (AMSN) were synthesized and used to fabricate high-pressure (5.52 MPa) RO membranes. With the increasing of AMSN dosage, the crosslinking degree of the aromatic polyamide decreased, while the hydrophilicity of the membranes increased. The membrane morphology was maintained to show a ridge-and-valley structure, with only a slight increase in membrane surface roughness. At the optimum conditions (AMSN dosage of 0.25 g/L), when compared with the pure polyamide RO membrane, the water flux of the TFN RO membrane (55.67 L/m2/h) was increased by about 21.6%, while NaCl rejection (98.97%) was slightly decreased by only 0.29%. However, the water flux of the membranes was much lower than expected. We considered that the enhancement of RO membrane permeability is attributed to the reduction of the effective thickness of the PA layer.

Keywords Thin film nanocomposite membrane      Reverse osmosis      Seawater desalination      Aminophenyl-functionalized mesoporous silica nanoparticles     
Corresponding Author(s): Zhun Ma,Yushan Zhang   
Issue Date: 08 November 2019
 Cite this article:   
Jian Wang,Qun Wang,Xueli Gao, et al. Surface modification of mesoporous silica nanoparticle with 4-triethoxysilylaniline to enhance seawater desalination properties of thin-film nanocomposite reverse osmosis membranes[J]. Front. Environ. Sci. Eng., 2020, 14(1): 6.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-019-1185-5
https://academic.hep.com.cn/fese/EN/Y2020/V14/I1/6
Fig.1  The FTIR spectra of TESA, MSN, and AMSN.
Fig.2  High-resolution TEM image of MSN (a) and AMSN (c), and and pore size distribution of MSN (b) and (d) calculated from N2 adsorption-desorption isothermal.
Fig.3  (a) ATR-FTIR spectra of the RO membranes; (b) peak ratio of Si-O-Si to -O- group (black square) and-COOH group to-CONH group (blue triangle) of the RO membranes prepared with different concentrations of AMSN.
Fig.4  SEM images of the RO membranes fabricated with different concentrations of AMSN: (a) PA, (b) PA/AMSN010, (c) PA/AMSN025, (d) PA/AMSN040, (e) PA/AMSN055, (f) PA/AMSN075 and (g) PA/AMSN100.
Fig.5  AFM topographic images of the TFN-RO membranes fabricated with different concentrations of AMSN: (a) PA, (b) PA/AMSN010, (c) PA/AMSN025, (d) PA/AMSN040, (e) PA/AMSN055, (f) PA/AMSN077 and (g) PA/AMSN100.
RO membrane Ra (nm) Rm (nm) Specific surface area CA (°)
PA 57.0 70.6 1.28 83.7
PA/AMSN010 60.1 77.3 1.30 75.6
PA/AMSN025 59.5 73.5 1.29 62.9
PA/AMSN040 63.2 78.4 1.32 54.3
PA/AMSN055 59.7 73.9 1.28 48.3
PA/AMSN075 60.5 75.1 1.30 32.6
PA/AMSN100 78.7 99.1 1.36 49.8
Tab.1  Surface properties of the RO membranes fabricated with different concentrations of AMSN
Fig.6  Permeability and selectivity of the TFN-RO membranes fabricated with different concentrations of AMSN.
Particle/pore size (nm) Functionalization Loading amount Water flux
(L/m2/h)
NaCl rejection Reference
~100/3.03 ? ~0.50 g/L in aqueous 46.6 # 97.9% Yin et al. (2012)
120?240/2.47 * ? ~0.27 g/L in oil 36 ### 97.5% Bao et al. (2013)
115/1.5 ? ~0.14 g/L in oil 50 ## 96.7% Li et al. (2016)
50?175/2.3 ? ~0.27 g/L in oil 36 ### 99% Liu et al. (2016)
50?70/2.25 ? ~0.3 g/L in aqueous 23.5 ## 86% Zargar et al. (2016)
160?290/2.6 * APTES ~0.80 g/L in aqueous 44 ### 96% Zhu et al. (2016)
50/none APTMS
GPMS**
~0.5 g/L in aqueous 16.5 ##
17.5 ##
94%
89%
Zargar et al. (2017)
40?60/2?3 TESA 0.25 g/L in aqueous
0.40 g/L in aqueous
55.6
57.4
98.97%
98.74%
This work
Tab.2  Comparison of AMSN doped TFN RO membrane with other MSN.
1 G Amy, N Ghaffour, Z Li, L Francis, R V Linares, T Missimer, S Lattemann (2017). Membrane-based seawater desalination: Present and future prospects. Desalination, 401: 16–21
https://doi.org/10.1016/j.desal.2016.10.002
2 M I Baig, P G Ingole, W K Choi, J Jeon, B Jang, J H Moon, H K Lee (2017). Synthesis and characterization of thin film nanocomposite membranes incorporated with surface functionalized silicon nanoparticles for improved water vapor permeation performance. Chemical Engineering Journal, 308: 27–39
https://doi.org/10.1016/j.cej.2016.09.033
3 M Bao, G Zhu, L Wang, M Wang, C Gao (2013). Preparation of monodispersed spherical mesoporous nanosilica–polyamide thin film composite reverse osmosis membranes via interfacial polymerization. Desalination, 309: 261–266
https://doi.org/10.1016/j.desal.2012.10.028
4 H Chae, C Lee, P Park, I Kim, J Kim (2017). Synergetic effect of graphene oxide nanosheets embedded in the active and support layers on the performance of thin-film composite membranes. Journal of Membrane Science, 525: 99–106
https://doi.org/10.1016/j.memsci.2016.10.034
5 H Chen, Z Sun, J Shao (2011). Investigation on FT-IR spectroscopy for eight different sources of SiO2. Bulletin of the Chinese Ceramic Society, 30(04): 934–937
6 D Cohen-Tanugi, R K McGovern, S H Dave, J H Lienhard, J C Grossman (2014). Quantifying the potential of ultra-permeable membranes for water desalination. Energy & Environmental Science, 7(3): 1134–1141
https://doi.org/10.1039/C3EE43221A
7 R Das, M E Ali, S B A Hamid, S Ramakrishna, Z Z Chowdhury (2014). Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination, 336: 97–109
https://doi.org/10.1016/j.desal.2013.12.026
8 J Farahbakhsh, M Delnavaz, V Vatanpour (2017). Investigation of raw and oxidized multiwalled carbon nanotubes in fabrication of reverse osmosis polyamide membranes for improvement in desalination and antifouling properties. Desalination, 410: 1–9
https://doi.org/10.1016/j.desal.2017.01.031
9 X Guo, C Li, C Li, T Wei, L Tong, H Shao, Q Zhou, L Wang, Y Liao (2019). G-CNTs/PVDF mixed matrix membranes with improved antifouling properties and filtration performance. Frontiers of Environmental Science & Engineering, 13(6): 81–91
https://doi.org/10.1007/s11783-019-1165-9
10 Y Han, Y Jiang, C Gao (2015). High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes. ACS Applied Materials & Interfaces, 7(15): 8147–8155
https://doi.org/10.1021/acsami.5b00986 pmid: 25837883
11 Y Han, Z Xu, C Gao (2013). Ultrathin graphene nanofiltration membrane for water purification. Advanced Functional Materials, 23(29): 3693–3700
https://doi.org/10.1002/adfm.201202601
12 L Huang, M Zhang, C Li, G Shi (2015). Graphene-Based Membranes for Molecular Separation. The Journal of Physical Chemistry Letters, 6(14): 2806–2815
https://doi.org/10.1021/acs.jpclett.5b00914 pmid: 26266866
13 B Jeong, E M V Hoek, Y Yan, A Subramani, X Huang, G Hurwitz, A K Ghosh, A Jawor (2007). Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes. Journal of Membrane Science, 294(1-2): 1–7
https://doi.org/10.1016/j.memsci.2007.02.025
14 M Kadhom, J Yin, B Deng (2016). A thin film nanocomposite membrane with MCM-41 silica nanoparticles for brackish water purification. Membranes, 6(4): 50
https://doi.org/10.3390/membranes6040050 pmid: 27929406
15 E S Kim, G Hwang, Gamal M G El-Din, Y Liu (2012). Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. Journal of Membrane Science, 394–395: 37–48
https://doi.org/10.1016/j.memsci.2011.11.041
16 H J Kim, K Choi, Y Baek, D G Kim, J Shim, J Yoon, J C Lee (2014). High-performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions. ACS Applied Materials & Interfaces, 6(4): 2819–2829
https://doi.org/10.1021/am405398f pmid: 24467487
17 S G Kim, D H Hyeon, J H Chun, B Chun, S H Kim (2013). Nanocomposite poly (arylene ether sulfone) reverse osmosis membrane containing functional zeolite nanoparticles for seawater desalination. Journal of Membrane Science, 443: 10–18
https://doi.org/10.1016/j.memsci.2013.03.065
18 W J Lau, S Gray, T Matsuura, D Emadzadeh, Paul J Chen, A F Ismail (2015). A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches. Water Research, 80: 306–324
https://doi.org/10.1016/j.watres.2015.04.037 pmid: 26011136
19 H S Lee, S J Im, J H Kim, H J Kim, J P Kim, B R Min (2008). Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination, 219(1–3): 48–56
https://doi.org/10.1016/j.desal.2007.06.003
20 J Lee, J H Jang, H R Chae, S H Lee , C H Lee, P K Park, Y J Won, I C Kim (2015). A facile route to enhance the water flux of thin-film composite reverse osmosis membrane: Incorporating thickness-controlled graphene oxide in highly porous support layer. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 3(44): 22053–22060
https://doi.org/10.1039/C5TA04042F
21 L Li, N Liu, B McPherson, R Lee (2008). Influence of counter ions on the reverse osmosis through MFI zeolite membranes: Implications for produced water desalination. Desalination, 228(1-3): 217–225
https://doi.org/10.1016/j.desal.2007.10.010
22 Q Li, H Yu, F Wu, J Song, X Pan, M Zhang (2016). Fabrication of semi-aromatic polyamide/spherical mesoporous silica nanocomposite reverse osmosis membrane with superior permeability. Applied Surface Science, 363: 338–345
https://doi.org/10.1016/j.apsusc.2015.12.028
23 M L Lind, A K Ghosh, A Jawor, X Huang, W Hou, Y Yang, E M V Hoek (2009). Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes. Langmuir, 25(17): 10139–10145
https://doi.org/10.1021/la900938x pmid: 19527039
24 M L Lind, D E Suk, T V Nguyen, E Hoek (2010). Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance. Environmental Science & Technology, 44(21): 8230–8235
25 L Liu, G Zhu, Z Liu, C Gao (2016). Effect of MCM-48 nanoparticles on the performance of thin film nanocomposite membranes for reverse osmosis application. Desalination, 394: 72–82
https://doi.org/10.1016/j.desal.2016.04.028
26 Q Liu, G Xu (2016). Graphene oxide (GO) as functional material in tailoring polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes. Desalination, 394: 162–175
https://doi.org/10.1016/j.desal.2016.05.017
27 S Lu, D Wang, S P Jiang, Y Xiang, J Lu, J Zeng (2010). HPW/MCM-41 phosphotungstic acid/mesoporous silica composites as novel proton-exchange membranes for elevated-temperature fuel cells. Advanced Materials, 22(9): 971–976
https://doi.org/10.1002/adma.200903091 pmid: 20217822
28 K A Mahmoud, B Mansoor, A Mansour, M Khraisheh (2015). Functional graphene nanosheets: The next generation membranes for water desalination. Desalination, 356: 208–225
https://doi.org/10.1016/j.desal.2014.10.022
29 Y Manawi, V Kochkodan, M A Hussein, M A Khaleel, M Khraisheh, N Hilal (2016). Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination? Desalination, 391: 69–88
https://doi.org/10.1016/j.desal.2016.02.015
30 N Niksefat, M Jahanshahi, A Rahimpour (2014). The effect of SiO2 nanoparticles on morphology and performance of thin film composite membranes for forward osmosis application. Desalination, 343: 140–146
https://doi.org/10.1016/j.desal.2014.03.031
31 R Pang, K Zhang (2018). Fabrication of hydrophobic fluorinated silica-polyamide thin film nanocomposite reverse osmosis membranes with dramatically improved salt rejection. Journal of Colloid and Interface Science, 510: 127–132
https://doi.org/10.1016/j.jcis.2017.09.062 pmid: 28942162
32 H B Park, J Kamcev, L M Robeson, M Elimelech, B D Freeman (2017a). Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science, 356(6343): eaab0530
https://doi.org/10.1126/science.aab0530 pmid: 28619885
33 H M Park, K Y Jee, Y T Lee (2017b). Preparation and characterization of a thin-film composite reverse osmosis membrane using a polysulfone membrane including metal-organic frameworks. Journal of Membrane Science, 541: 510–518
https://doi.org/10.1016/j.memsci.2017.07.034
34 K T Park, S G Kim, B Chun, J Bang, S H Kim (2010). Sulfonated poly (arylene ether sulfone) thin-film composite reverse osmosis membrane containing SiO2 nano-particles. Desalination and Water Treatment, 15(1–3): 69–75
https://doi.org/10.5004/dwt.2011.1669
35 M M Pendergast, E M V Hoek (2011). A review of water treatment membrane nanotechnologies. Energy & Environmental Science, 4(6): 1946–1971
https://doi.org/10.1039/c0ee00541j
36 B Rajaeian, A Rahimpour, M O Tade, S Liu (2013). Fabrication and characterization of polyamide thin film nanocomposite (TFN) nanofiltration membrane impregnated with TiO2 nanoparticles. Desalination, 313: 176–188
https://doi.org/10.1016/j.desal.2012.12.012
37 X Tian, J Wang, H Zhang, Z Cao, M Zhao, Y Guan, Y Zhang (2018). Establishment of transport channels with carriers for water in reverse osmosis membrane by incorporating hydrotalcite into the polyamide layer. RSC Advances, 8(22): 12439–12448
https://doi.org/10.1039/C7RA13562A
38 V Vatanpour, M Safarpour, A Khataee, H Zarrabi, M E Yekavalangi, M Kavian (2017). A thin film nanocomposite reverse osmosis membrane containing amine-functionalized carbon nanotubes. Separation and Purification Technology, 184: 135–143
https://doi.org/10.1016/j.seppur.2017.04.038
39 F Virgili, T Pankratz (2016). IDA desalination yearbook 2016–2017, Media Analytics Ltd., Oxford.
40 J Wang, D S Dlamini, A K Mishra, M T M Pendergast, M C Y Wong, B B Mamba, V Freger, A R D Verliefde, E M V Hoek (2014). A critical review of transport through osmotic membranes. Journal of Membrane Science, 454: 516–537
https://doi.org/10.1016/j.memsci.2013.12.034
41 J R Werber, C O Osuji, M Elimelech (2016). Materials for next-generation desalination and water purification membranes. Nature Reviews. Materials, 1(5): 16018
https://doi.org/10.1038/natrevmats.2016.18
42 H Wu, B Tang, P Wu (2013). Optimizing polyamide thin film composite membrane covalently bonded with modified mesoporous silica nanoparticles. Journal of Membrane Science, 428: 341–348
https://doi.org/10.1016/j.memsci.2012.10.053
43 Z Yang, J Yin, B Deng (2016). Enhancing water flux of thin-film nanocomposite (TFN) membrane by incorporation of bimodal silica nanoparticles. AIMS Environmental Science, 3(2): 185–198
https://doi.org/10.3934/environsci.2016.2.185
44 J Yin, E Kim, J Yang, B Deng (2012). Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification. Journal of Membrane Science, 423–424: 238–246
https://doi.org/10.1016/j.memsci.2012.08.020
45 J Yin, G Zhu, B Deng (2016). Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination, 379: 93–101
https://doi.org/10.1016/j.desal.2015.11.001
46 M Zargar, Y Hartanto, B Jin, S Dai (2016). Hollow mesoporous silica nanoparticles: A peculiar structure for thin film nanocomposite membranes. Journal of Membrane Science, 519: 1–10
https://doi.org/10.1016/j.memsci.2016.07.052
47 M Zargar, Y Hartanto, B Jin, S Dai (2017). Understanding Functionalized Silica Nanoparticles Incorporation in Thin Film Composite Membranes: Interactions and Desalination Performance. Journal of Membrane Science, 521: 53–64
https://doi.org/10.1016/j.memsci.2016.08.069
48 B Zhu, Z Hong, N Milne, C M Doherty, L Zou, Y S Lin, A J Hill, X Gu, M Duke (2014). Desalination of seawater ion complexes by MFI-type zeolite membranes: Temperature and long term stability. Journal of Membrane Science, 453: 126–135
https://doi.org/10.1016/j.memsci.2013.10.071
49 G Zhu, M Bao, Z Liu, C Gao (2016). Preparation of spherical mesoporous aminopropyl-functionalized MCM-41 and its application in polyamide thin film nanocomposite reverse osmosis membranes. Desalination and Water Treatment, 57(53): 25411–25420
https://doi.org/10.1080/19443994.2016.1156028
[1] Jiandong Lu, Shijie You, Xiuheng Wang. Forward osmosis coupled with lime-soda ash softening for volume minimization of reverse osmosis concentrate and CaCO3 recovery: A case study on the coal chemical industry[J]. Front. Environ. Sci. Eng., 2021, 15(1): 9-.
[2] Xuehao Zhao, Yinhu Wu, Xue Zhang, Xin Tong, Tong Yu, Yunhong Wang, Nozomu Ikuno, Kazuki Ishii, Hongying Hu. Ozonation as an efficient pretreatment method to alleviate reverse osmosis membrane fouling caused by complexes of humic acid and calcium ion[J]. Front. Environ. Sci. Eng., 2019, 13(4): 55-.
[3] Xiao Quan, Kai Huang, Mei Li, Meichao Lan, Baoan Li. Nitrogen removal performance of municipal reverse osmosis concentrate with low C/N ratio by membrane-aerated biofilm reactor[J]. Front. Environ. Sci. Eng., 2018, 12(6): 5-.
[4] Xiaomao WANG,Hongwei YANG,Zhenyu LI,Shaoxia YANG,Yuefeng XIE. Pilot study for the treatment of sodium and fluoride-contaminated groundwater by using high-pressure membrane systems[J]. Front. Environ. Sci. Eng., 2015, 9(1): 155-163.
[5] WANG Baozhen, LIU Shuo, LIU Yanping, LI Xiujin. Performance of landfill leachate treatment system with disc-tube reverse osmosis units[J]. Front.Environ.Sci.Eng., 2008, 2(1): 24-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed