Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2020, Vol. 14 Issue (1) : 11    https://doi.org/10.1007/s11783-019-1190-8
REVIEW ARTICLE
Pollution and biodegradation of hexabromocyclododecanes: A review
Ling Huang, Syed Bilal Shah, Haiyang Hu, Ping Xu, Hongzhi Tang()
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(753 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Bioremediation is the most cost-effective approach for degradation of HBCDs.

• Bacteria or bacterial consortia are used in the cases of bio-augmentation.

• Microbes combined with phytoremediation increase the remediation efficiency.

Hexabromocyclododecanes (HBCDs) are the most common brominated flame-retardants after polybrominated diphenyl ethers. HBCDs can induce cancer by causing inappropriate antidiuretic hormone syndrome. Environmental contamination with HBCDs has been detected globally, with concentrations ranging from ng to mg. Methods to degrade HBCDs include physicochemical methods, bioremediation, and phytoremediation. The photodegradation of HBCDs using simulated sunlight or ultraviolet lamps, or chemical catalysts are inefficient and expensive, as is physicochemical degradation. Consequently, bioremediation is considered as the most cost-effective and clean approach. To date, five bacterial strains capable of degrading HBCDs have been isolated and identified: Pseudomonas sp. HB01, Bacillus sp. HBCD-sjtu, Achromobacter sp. HBCD-1, Achromobacter sp. HBCD-2, and Pseudomonas aeruginosa HS9. The molecular mechanisms of biodegradation of HBCDs are discussed in this review. New microbial resources should be explored to increase the resource library in order to identify more HBCD-degrading microbes and functional genes. Synthetic biology methods may be exploited to accelerate the biodegradation capability of existing bacteria, including modification of the degrading strains or functional enzymes, and artificial construction of the degradation microflora. The most potentially useful method is combining micro-degradation with physicochemical methods and phytoremediation. For example, exogenous microorganisms might be used to stimulate the adsorption capability of plants for HBCDs, or to utilize an interaction between exogenous microorganisms and rhizosphere microorganisms to form a new rhizosphere microbial community to enhance the biodegradation and absorption of HBCDs.

Keywords Hexabromocyclododecane      Biodegradation      Bioremediation      Phytoremediation      Bacterium     
Corresponding Author(s): Hongzhi Tang   
Issue Date: 14 November 2019
 Cite this article:   
Ling Huang,Syed Bilal Shah,Haiyang Hu, et al. Pollution and biodegradation of hexabromocyclododecanes: A review[J]. Front. Environ. Sci. Eng., 2020, 14(1): 11.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-019-1190-8
https://academic.hep.com.cn/fese/EN/Y2020/V14/I1/11
Fig.1  Schematic representation of the most wildly used three enantiomeric diastereomers of 1,2,5,6,9,10-hexabromocyclododecane.
Fig.2  Proposed process of HBCDs toxicity to human, via dermal absorption, absorption from food, hormonal disruption, and induced cancer.
Fig.3  Mechanisms of HBCDs degradation. (a) Physicochemical methods for HBCDs degradation; (b) A direct removal of a bromide ion progress; (c) A complex progress of debrominating and hydroxylating.
Fig.4  Phytoremediation and bio-stimulation mechanism of HBCDs in soil.
1 M A Abdallah, S Harrad (2011). Tetrabromobisphenol-A, hexabromocyclododecane and its degradation products in UK human milk: Relationship to external exposure. Environment International, 37(2): 443–448
2 S Arita, K Yamaguchi, S Motokucho, H Nakatani (2017). Selective decomposition of hexabromocyclododecane in polystyrene with a photo and thermal hybrid treatment system. Polymer Degradation & Stability, 143: 130–135
https://doi.org/10.1016/j.polymdegradstab.2017.07.003
3 L C Batty, M Anslow (2008). Effect of a polycyclic aromatic hydrocarbon on the phytoremediation of zinc by two plant species (Brassica juncea and Festuca arundinacea). International Journal of Phytoremediation, 10(3): 236–249
https://doi.org/10.1080/15226510801997549 pmid: 18710098
4 H R Brett, L Marc, P Daniel, R B Robert, H K John, E H Paul (1998). The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant and Soil, 203(1): 47–56
https://doi.org/10.1023/A:1004328816645
5 R R Brooks (1977). Copper and cobalt uptake by Haumaniastrum species. Plant and Soil, 48(2): 541–544
https://doi.org/10.1007/BF02187261
6 C C Carignan, M A Abdallah, N Wu, W Heiger-Bernays, M D McClean, S Harrad, T F Webster (2012). Predictors of tetrabromobisphenol-A (TBBP-A) and hexabromocyclododecanes (HBCD) in milk from Boston mothers. Environmental Science & Technology, 46(21): 12146–12153
https://doi.org/10.1021/es302638d pmid: 22998345
7 J Chen, C Wang, Y Pan, S S Farzana, N F Tam (2018). Biochar accelerates microbial reductive debromination of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) in anaerobic mangrove sediments. Journal of Hazardous Materials, 341: 177–186
https://doi.org/10.1016/j.jhazmat.2017.07.063 pmid: 28777963
8 X Chi, Y Zhang, D Wang, F Wang, W Liang (2018). The greater roles of indigenous microorganisms in removing nitrobenzene from sediment compared with the exogenous Phragmites australis and strain JS45. Frontiers of Environmental Science & Engineering, 12(1): 11
https://doi.org/10.1007/s11783-018-1016-0
9 J W Davis, S Gonsior, G Marty, J Ariano (2005). The transformation of hexabromocyclododecane in aerobic and anaerobic soils and aquatic sediments. Water Research, 39(6): 1075–1084
10 J W Davis, S J Gonsior, D A Markham, U Friederich, R W Hunziker, J M Ariano (2006). Biodegradation and product identification of [14C]hexabromocyclododecane in wastewater sludge and freshwater aquatic sediment. Environmental Science & Technology, 40(17): 5395–5401 doi:10.1021/es060009m
pmid: 16999116
11 D Drage, J F Mueller, G Birch, G Eaglesham, L K Hearn, S Harrad (2015). Historical trends of PBDEs and HBCDs in sediment cores from Sydney estuary, Australia. Science of the Total Environment, 512–513: 177–184
https://doi.org/10.1016/j.scitotenv.2015.01.034 pmid: 25617997
12 M Ema, S Fujii, M Hirata-Koizumi, M Matsumoto (2008). Two-generation reproductive toxicity study of the flame retardant hexabromocyclododecane in rats. Reproductive Toxicology (Elmsford, N.Y.), 25(3): 335–351
https://doi.org/10.1016/j.reprotox.2007.12.004 pmid: 18262388
13 D E Fennell, I Nijenhuis, S F Wilson, S H Zinder, M M Häggblom (2004). Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environmental Science & Technology, 38(7): 2075–2081
https://doi.org/10.1021/es034989b pmid: 15112809
14 Y Fery, I Buschauer, C Salzig, P Lang, D Schrenk (2009). Technical pentabromodiphenyl ether and hexabromocyclododecane as activators of the pregnane-X-receptor (PXR). Toxicology, 264(1–2): 45–51
https://doi.org/10.1016/j.tox.2009.07.009 pmid: 19631710
15 V M Fonseca, V J F Jr, A S Araujo, L H Carvalho, A G Souza (2005). Effect of halogenated flame-retardant additives in the pyrolysis and thermal degradation of polyester/sisal composites. Journal of Thermal Analysis and Calorimetry, 79(2): 429–433
https://doi.org/10.1007/s10973-005-0079-x
16 N Garg, K Bala, R Lal (2012). Sphingobium lucknowense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from HCH-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 62(3): 618–623
https://doi.org/10.1099/ijs.0.028886-0 pmid: 21551337
17 B R Glick (2003). Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnology Advances, 21(5): 383–393
https://doi.org/10.1016/S0734-9750(03)00055-7 pmid: 14499121
18 N T H Ha, M Sakakibara, , S Sano (2010). Phytoremediation of Sb, As, Cu, and Zn from contaminated water by the aquatic macrophyte eleocharis acicularis. Clean- Soil Air Water, 37(9): 720–725
19 J He, K M Ritalahti, K L Yang, S S Koenigsberg, F E Löffler (2003). Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature, 424(6944): 62–65
https://doi.org/10.1038/nature01717 pmid: 12840758
20 N V Heeb, S A Wyss, B Geueke, T Fleischmann, H E Kohler, P Lienemann (2014). LinA2, a HCH-converting bacterial enzyme that dehydrohalogenates HBCDs. Chemosphere, 107: 194–202
https://doi.org/10.1016/j.chemosphere.2013.12.035 pmid: 24444415
21 K F Ho, S S H Ho, S C Lee, J Cheng, J Watson, P K K Louie, L Tian (2009). Emissions of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs) in the Shing Mun Tunnel, Hong Kong. Atmospheric Environment, 43(40): 6343–6351
https://doi.org/10.1016/j.atmosenv.2009.09.025
22 L Huang, W Wang, S B Shah, H Hu, P Xu, H Tang (2019). The HBCDs biodegradation using a Pseudomonas strain and its application in soil phytoremediation. Journal of Hazardous Materials, 380: 120833
https://doi.org/10.1016/j.jhazmat.2019.120833 pmid: 31446271
23 G B Kim, H M Stapleton (2010). PBDEs, methoxylated PBDEs and HBCDs in Japanese common squid (Todarodes pacificus) from Korean offshore waters. Marine Pollution Bulletin, 60(6): 935–940 PMID:20394952
https://doi.org/10.1016/j.marpolbul.2010.03.025
24 Z Košnář, T Částková, L Wiesnerová, L Praus, I Jablonský, M Koudela, P Tlustoš (2019). Comparing the removal of polycyclic aromatic hydrocarbons in soil after different bioremediation approaches in relationto the extracellular enzyme activities. Journal of Environmental Sciences-China, 76(2): 249–258
https://doi.org/10.1016/j.jes.2018.05.007 pmid: 30528015
25 L K Lee, C Ding, K L Yang, J He (2011). Complete debromination of tetra- and penta-brominated diphenyl ethers by a coculture consisting of dehalococcoides and desulfovibrio species. Environmental Science & Technology, 45(19): 8475–8482
https://doi.org/10.1021/es201559g pmid: 21859110
26 L Li, R Weber, J Liu, J Hu (2016). Long-term emissions of hexabromocyclododecane as a chemical of concern in products in China. Environment International, 91: 291–300
https://doi.org/10.1016/j.envint.2016.03.007 pmid: 26999514
27 Y Li, L Wang, X Zhu, Y Gao, J Chen (2017). Determination of hexabromocyclododecanes in ambient air by high performance liquid chromatography- electrospray ionization-mass spectrometry. Se Pu, 35(10): 1080–1085 (in Chinese)
https://doi.org/10.3724/SP.J.1123.2017.06026 pmid: 29048806
28 Q Liu, M Li, R Liu, Q Zhang, D Wu, D N Zhu, X H Shen, C P Feng, F W Zhang, X Liu (2019). Removal of trimethoprim and sulfamethoxazole in artificial composite soil treatment systems and diversity of microbial communities. Frontiers of Environmental Science & Engineering, 13(2): 28 doi.org/10.1007/s11783-019-1112-9
29 Q Liu, M Li, X Liu, Q Zhang, R Liu, Z Wang, X Shi, J Quan, X Shen, F Zhang (2018). Removal of sulfamethoxazole and trimethoprim from reclaimed water and the biodegradation mechanism. Frontiers of Environmental Science & Engineering, 12(6): 6 doi.org/10.1007/s11783-018-1048-5
30 W W Liu, R Yin, X G Lin, J Zhang, X M Chen, X Z Li, T Yang (2010). Interaction of biosurfactant-microorganism to enhance phytoremediation of aged polycyclic aromatic hydrocarbons (PAHS) contaminated soils with alfalfa (Medicago sativa L.). Environmental Science, 31(4): 1079–1084 (in Chinese)
pmid: 20527195
31 J F Lu, M J He, Z H Yang, S Q Wei (2018). Occurrence of tetrabromobisphenol a (TBBPA) and hexabromocyclododecane (HBCD) in soil and road dust in Chongqing, western China, with emphasis on diastereoisomer profiles, particle size distribution, and human exposure. Environmental Pollution, 242(A): 219–228
https://doi.org/10.1016/j.envpol.2018.06.087 pmid: 29980040
32 M L G C Luijten, J de Weert, H Smidt, H T S Boschker, W M de Vos, G Schraa, A J M Stams (2003). Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov. International Journal of Systematic and Evolutionary Microbiology, 53(3): 787–793
https://doi.org/10.1099/ijs.0.02417-0 pmid: 12807201
33 X Maymó-Gatell, Y Chien, J M Gossett, S H Zinder (1997). Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science, 276(5318): 1568–1571
https://doi.org/10.1126/science.276.5318.1568 pmid: 9171062
34 N H Minh, T Isobe, D Ueno, K Matsumoto, M Mine, N Kajiwara, S Takahashi, S Tanabe (2007). Spatial distribution and vertical profile of polybrominated diphenyl ethers and hexabromocyclododecanes in sediment core from Tokyo Bay, Japan. Environmental Pollution, 148(2): 409–417
35 C Munschy, P Marchand, A Venisseau, B Veyrand, Z Zendong (2013). Levels and trends of the emerging contaminants HBCDs (hexabromocyclododecanes) and PFCs (perfluorinated compounds) in marine shellfish along French coasts. Chemosphere, 91(2): 233–240
https://doi.org/10.1016/j.chemosphere.2012.12.063 pmid: 23375822
36 I G S Muthu, B Nirkayani, A Kavithakani, V C Padmanaban (2019). Statistical modeling of radiolytic (60Coγ) degradation of ofloxacin, antibiotic: Synergetic effect, kinetic studies & assessment of its degraded metabolites. Frontiers of Environmental Science & Engineering, 13(3): 42
https://doi.org/doi.org/10.1007/s11783-019-1126-3
37 H G Ni, H Zeng (2013). HBCD and TBBPA in particulate phase of indoor air in Shenzhen, China. Science of the Total Environment, 458– 460: 15–19
https://doi.org/10.1016/j.scitotenv.2013.04.003 pmid: 23639907
38 V P Palace, K Pleskach, T Halldorson, R Danell, K Wautier, B Evans, M Alaee, C Marvin, G T Tomy (2008). Biotransformation enzymes and thyroid axis disruption in juvenile rainbow trout (Oncorhynchus mykiss) exposed to hexabromocyclododecane diastereoisomers. Environmental Science & Technology, 42(6): 1967–1972
https://doi.org/10.1021/es702565h pmid: 18409622
39 X Peng, X Huang, F Jing, Z Zhang, D Wei, X Jia (2015). Study of novel pure culture HBCD-1, effectively degrading Hexabromocyclododecane, isolated from an anaerobic reactor. Bioresource Technology, 185: 218–224
https://doi.org/10.1016/j.biortech.2015.02.093 pmid: 25770469
40 X Peng, D Wei, Q Huang, X Jia (2018). Debromination of hexabromocyclododecane by anaerobic consortium and characterization of functional bacteria. Frontiers in Microbiology, 9: 1515
https://doi.org/10.3389/fmicb.2018.01515 pmid: 30042751
41 POPRC (2011). Report of the persisitent organic pollutants review committee on the work of its seventh meeting: Risk management evaluation on hexabromocyclododecane. Geneva: POPRC
42 H Scholz-Muramatsu, A Neumann, M Messmer, E Moore, G Diekert (1995). Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Archives of Microbiology, 163(1): 4856
https://doi.org/10.1007/BF00262203
43 S B Shah, F Ali, L Huang, W Wang, P Xu, H Tang (2018). Complete genome sequence of Bacillus sp. HBCD-sjtu, an efficient HBCD-degrading bacterium. 3Biotech, 8(7): 291
44 S B Shah, H Y Hu, W W Wang, Y F Liu, F Ali, P Xu, H Z Tang (2019a). Evaluation of plant growth promoting (PGP) activity of strain HBCD-sjtu. Journal of Biological Regulators and Homeostatic Agents, 33: 129–134
45 S B Shah, A C Kaushik, F Ali, L Huang, X Lu, L Sartaj, P Xu, H Tang (2019b). Computational and in vitro analysis of an HBCD degrading gene DehHZ1 from strain HBCD-sjtu. Journal of Biological Regulators and Homeostatic Agents, 33(1): 157–162
pmid: 30764604
46 H Stiborova, J Vrkoslavova, J Pulkrabova, J Poustka, J Hajslova, K Demnerova (2015). Dynamics of brominated flame retardants removal in contaminated wastewater sewage sludge under anaerobic conditions. Science of the Total Environment, 533: 439–445
https://doi.org/10.1016/j.scitotenv.2015.06.131 pmid: 26179781
47 J Su, Y Lu, Z Liu, S Gao, X Zeng, Z Yu, G Sheng, J M Fu (2015). Distribution of polybrominated diphenyl ethers and HBCD in sediments of the Hunhe River in Northeast China. Environmental Science and Pollution Research International, 22(21): 16781–16790
https://doi.org/10.1007/s11356-015-4779-x pmid: 26092356
48 R Sun, X Luo, X Zheng, K Cao, P Peng, Q X Li, B Mai (2018). Hexabromocyclododecanes (HBCDs) in fish: Evidence of recent HBCD input into the coastal environment. Marine Pollution Bulletin, 126: 357–362
https://doi.org/10.1016/j.marpolbul.2017.11.040 pmid: 29421112
49 D T Szabo, J J Diliberto, H Hakk, J K Huwe, L S Birnbaum (2011). Toxicokinetics of the flame retardant hexabromocyclododecane alpha: effect of dose, timing, route, repeated exposure, and metabolism. Toxicological Sciences, 121(2): 234–244
https://doi.org/10.1093/toxsci/kfr059 pmid: 21441408
50 L T Van der Ven, A Verhoef, T van de Kuil, W Slob, P E Leonards, T J Visser, T Hamers, M Herlin, H Håkansson, H Olausson, A H Piersma, J G Vos (2006). A 28-day oral dose toxicity study enhanced to detect endocrine effects of hexabromocyclododecane in Wistar rats. Toxicological Sciences, 94(2): 281–292
https://doi.org/10.1093/toxsci/kfl113 pmid: 16984958
51 T Wu, H Huang, S Zhang (2016). Accumulation and phytotoxicity of technical hexabromocyclododecane in maize. Journal of Environmental Sciences-China, 42(4): 97–104
https://doi.org/10.1016/j.jes.2015.06.018 pmid: 27090699
52 T Wu, S Wang, H Huang, S Zhang (2012). Diastereomer-specific uptake, translocation, and toxicity of hexabromocyclododecane diastereoisomers to maize. Journal of Agricultural and Food Chemistry, 60(34): 8528–8534
https://doi.org/10.1021/jf302682p pmid: 22881704
53 J Xia, H Wang, R L Stanford, G Pan, S L Yu (2018). Hydrologic and water quality performance of a laboratory scale bioretention unit. Frontiers of Environmental Science & Engineering, 12(1): 14
https://doi.org/doi.org/10.1007/s11783-018-1011-5
54 Q Xian, K Ramu, T Isobe, A Sudaryanto, X Liu, Z Gao, S Takahashi, H Yu, S Tanabe (2008). Levels and body distribution of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs) in freshwater fishes from the Yangtze River, China. Chemosphere, 71(2): 268–276
https://doi.org/10.1016/j.chemosphere.2007.09.032 pmid: 17980898
55 T Yamada, Y Takahama, Y Yamada (2009). Isolation of Pseudomonas sp. strain HB01 which degrades the persistent brominated flame retardant g-hexabromocyclododecane. Nippon Nogeikagaku Kaishi, 73(7): 1674–1678
https://doi.org/10.1271/bbb.90104 pmid: 19584526
56 S Yi, J G Liu, J Jin, J Zhu (2016). Assessment of the occupational and environmental risks of hexabromocyclododecane (HBCD) in China. Chemosphere, 150: 431–437
https://doi.org/10.1016/j.chemosphere.2016.01.047 pmid: 26810304
57 H Zhang, Y Y Kuo, A C Gerecke, J Wang (2012a). Co-release of hexabromocyclododecane (HBCD) and Nano- and microparticles from thermal cutting of polystyrene foams. Environmental Science & Technology, 46(20): 10990–10996
https://doi.org/10.1021/es302559v pmid: 23013539
58 K Zhang, J Huang, H Wang, K Liu, G Yu, S Deng, B Wang (2014). Mechanochemical degradation of hexabromocyclododecane and approaches for the remediation of its contaminated soil. Chemosphere, 116: 40–45
https://doi.org/10.1016/j.chemosphere.2014.02.006 pmid: 24613442
59 X Zhang, H Yang, Z Cui (2017). Alleviating effect and mechanism of flavonols in Arabidopsis resistance under Pb-HBCD stress. ACS Sustainable Chemistry & Engineering, 5(11): 11034–11041
https://doi.org/10.1021/acssuschemeng.7b02971
60 Y Zhang, Y Ruan, H Sun, L Zhao, Z Gan (2013). Hexabromocyclododecanes in surface sediments and a sediment core from Rivers and Harbor in the northern Chinese city of Tianjin. Chemosphere, 90(5): 1610–1616
https://doi.org/10.1016/j.chemosphere.2012.08.037 pmid: 23062943
61 Y Zhang, H Wang, Z Yu, X Geng, C Chen, D Li, X Zhu, H Zhen, W Huang, D E Fennell, L Y Young, P Peng (2018). Diastereoisomer-specific biotransformation of hexabromocyclododecanes by a mixed culture containing Dehalococcoides mccartyi strain 195. Frontiers in Microbiology, 9: 1713
https://doi.org/10.3389/fmicb.2018.01713 pmid: 30131775
62 Z Zhang, Z Rengel, H Chang, K Meney, L Pantelic, R Tomanovc (2012b). Phytoremediation potential of Juncus subsecundus in soils contaminated with cadmium and polynuclear aromatic hydrocarbons (PAHs). Geoderma, 175–176: 1–8
https://doi.org/10.1016/j.geoderma.2012.01.020
63 X Zheng, L Qiao, R Sun, X Luo, J Zheng, Q Xie, Y Sun, B Mai (2017). Alteration of diastereoisomeric and enantiomeric profiles of hexabromocyclododecanes (HBCDs) in adult chicken tissues, eggs, and hatchling chickens. Environmental Science & Technology, 51(10): 5492–5499
https://doi.org/10.1021/acs.est.6b06557 pmid: 28440626
64 D Zhou, Y Wu, X Feng, Y Chen, Z Wang, T Tao, D Wei (2014). Photodegradation of hexabromocyclododecane (HBCD) by Fe(III) complexes/H2O2 under simulated sunlight. Environmental Science and Pollution Research International, 21(9): 6228–6233
https://doi.org/10.1007/s11356-014-2553-0 pmid: 24488521
[1] Kehui Liu, Jie Xu, Chenglong Dai, Chunming Li, Yi Li, Jiangming Ma, Fangming Yu. Exogenously applied oxalic acid assists in the phytoremediation of Mn by Polygonum pubescens Blume cultivated in three Mn-contaminated soils[J]. Front. Environ. Sci. Eng., 2021, 15(5): 86-.
[2] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
[3] Karla Ilić Đurđić, Raluca Ostafe, Olivera Prodanović, Aleksandra Đurđević Đelmaš, Nikolina Popović, Rainer Fischer, Stefan Schillberg, Radivoje Prodanović. Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls[J]. Front. Environ. Sci. Eng., 2021, 15(2): 19-.
[4] Paul Olusegun Bankole, Kirk Taylor Semple, Byong-Hun Jeon, Sanjay Prabhu Govindwar. Enhanced enzymatic removal of anthracene by the mangrove soil-derived fungus, Aspergillus sydowii BPOI[J]. Front. Environ. Sci. Eng., 2020, 14(6): 113-.
[5] Yiquan Wu, Ying Xu, Ningyi Zhou. A newly defined dioxygenase system from Mycobacterium vanbaalenii PYR-1 endowed with an enhanced activity of dihydroxylation of high-molecular-weight polyaromatic hydrocarbons[J]. Front. Environ. Sci. Eng., 2020, 14(1): 14-.
[6] Bin Liang, Deyong Kong, Mengyuan Qi, Hui Yun, Zhiling Li, Ke Shi, E Chen, Alisa S. Vangnai, Aijie Wang. Anaerobic biodegradation of trimethoprim with sulfate as an electron acceptor[J]. Front. Environ. Sci. Eng., 2019, 13(6): 84-.
[7] Zuotao Zhang, Chongyang Wang, Jianzhong He, Hui Wang. Anaerobic phenanthrene biodegradation with four kinds of electron acceptors enriched from the same mixed inoculum and exploration of metabolic pathways[J]. Front. Environ. Sci. Eng., 2019, 13(5): 80-.
[8] Mei Lei, Ziping Dong, Ying Jiang, Philip Longhurst, Xiaoming Wan, Guangdong Zhou. Reaction mechanism of arsenic capture by a calcium-based sorbent during the combustion of arsenic-contaminated biomass: A pilot-scale experience[J]. Front. Environ. Sci. Eng., 2019, 13(2): 24-.
[9] Qinqin Liu, Miao Li, Rui Liu, Quan Zhang, Di Wu, Danni Zhu, Xuhui Shen, Chuanping Feng, Fawang Zhang, Xiang Liu. Removal of trimethoprim and sulfamethoxazole in artificial composite soil treatment systems and diversity of microbial communities[J]. Front. Environ. Sci. Eng., 2019, 13(2): 28-.
[10] Qinqin Liu, Miao Li, Xiang Liu, Quan Zhang, Rui Liu, Zhenglu Wang, Xueting Shi, Jin Quan, Xuhui Shen, Fawang Zhang. Removal of sulfamethoxazole and trimethoprim from reclaimed water and the biodegradation mechanism[J]. Front. Environ. Sci. Eng., 2018, 12(6): 6-.
[11] Bingjie Xu, Gang Xue, Xing Yang. Isolation and application of an ibuprofen-degrading bacterium to a biological aerated filter for the treatment of micro-polluted water[J]. Front. Environ. Sci. Eng., 2018, 12(5): 15-.
[12] Yueqiao Liu, Aizhong Ding, Yujiao Sun, Xuefeng Xia, Dayi Zhang. Impacts of n-alkane concentration on soil bacterial community structure and alkane monooxygenase genes abundance during bioremediation processes[J]. Front. Environ. Sci. Eng., 2018, 12(5): 3-.
[13] Lifeng Cao, Weihua Sun, Yuting Zhang, Shimin Feng, Jinyun Dong, Yongming Zhang, Bruce E. Rittmann. Competition for electrons between reductive dechlorination and denitrification[J]. Front. Environ. Sci. Eng., 2017, 11(6): 14-.
[14] Shunan Shan, Yuting Zhang, Yining Zhang, Lanjun Hui, Wen Shi, Yongming Zhang, Bruce E. Rittmann. Comparison of sequential with intimate coupling of photolysis and biodegradation for benzotriazole[J]. Front. Environ. Sci. Eng., 2017, 11(6): 8-.
[15] Qingliang Zhao, Hang Yu, Weixian Zhang, Felix Tetteh Kabutey, Junqiu Jiang, Yunshu Zhang, Kun Wang, Jing Ding. Microbial fuel cell with high content solid wastes as substrates: a review[J]. Front. Environ. Sci. Eng., 2017, 11(2): 13-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed