Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2020, Vol. 14 Issue (1) : 12    https://doi.org/10.1007/s11783-019-1191-7
RESEARCH ARTICLE
Pesticide wastewater treatment using the combination of the microbial electrolysis desalination and chemical-production cell and Fenton process
Songwei Lin, Yaobin Lu, Bo Ye, Cuiping Zeng, Guangli Liu(), Jieling Li, Haiping Luo, Renduo Zhang
Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
 Download: PDF(1819 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• MEDCC combined with Fenton process was developed to treat real pesticide wastewater.

• Pesticide removal was attributable to desalination in the MEDCC.

• High COD removal was attributable to organic distributions in different chambers.

The combination of the microbial electrolysis desalination and chemical-production cell (MEDCC) and Fenton process for the pesticide wastewater treatment was investigate in this study. Real wastewater with several toxic pesticides, 1633 mg/L COD, and 200 in chromaticity was used for the investigation. Results showed that desalination in the desalination chamber of MEDCC reached 78%. Organics with low molecular weights in the desalination chamber could be removed from the desalination chamber, resulting in 28% and 23% of the total COD in the acid-production and cathode chambers, respectively. The desalination in the desalination chamber and organic transfer contributed to removal of pesticides (e.g., triadimefon), which could not be removed with other methods, and of the organics with low molecular weights. The COD in the effluent of the MEDCC combined the Fenton process was much lower than that in the perixo-coagulaiton process (<150 vs. 555 mg/L). The combined method consumed much less energy and acid for the pH adjustment than that the Fenton.

Keywords Pesticide wastewater      COD removal      Microbial electrolysis desalination and chemical-production cell      Energy consumption      Fenton oxidation     
Corresponding Author(s): Guangli Liu   
Issue Date: 14 November 2019
 Cite this article:   
Songwei Lin,Yaobin Lu,Bo Ye, et al. Pesticide wastewater treatment using the combination of the microbial electrolysis desalination and chemical-production cell and Fenton process[J]. Front. Environ. Sci. Eng., 2020, 14(1): 12.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-019-1191-7
https://academic.hep.com.cn/fese/EN/Y2020/V14/I1/12
Fig.1  The schematic diagram of the combination of microbial electrolysis desalination and chemical-production cell (MEDCC) and the Fenton process.
Fig.2  COD removals using (a) coagulation; and (b) peroxi-coagulaiton processes in the raw pesticide wastewater; and (c) the Fenton process in the pretreated pesticide wastewater with different ratios of Fe2+ to H2O2 molar concentrations (pH= 3.0, [H2O2] = 60 mmol/L).
Fig.3  (a) Current densities, (b) conductivities, and (c) pH values in different chambers of the MEDCC fed with pesticide wastewater pretreated using coagulation.
Fig.4  Concentrations of (a) Na+, (b) K+, (c) Ca2+, (d) Cl-, (e) SO42-, and (f) desalination in the desalination chamber of MEDCC.
Chamber MEDCC Fenton
Influent (mg/L) Effluent (mg/L) Removal efficiency (%) Effluent (mg/L) Removal efficiency (%)
Acid-production 0 513±21 125±23 76±8
Desalination 1015±11 434±15 57±6 112±11 74±8
Cathode 0 417±30 95±17 77±9
Tab.1  The COD values and removal efficiencies in different chambers in the MEDCC and Fenton oxidation
Time (h) Electricity consumption
(kWh/m3)
Bioenergy consumption
(kWh/m3)
Total energy consumption
(kWh/m3)
4 1.00±0.15 1.60±0.20 2.60±0.30
8 1.81±0.20 2.33±0.25 4.14±0.43
12 2.26±0.21 2.38±0.24 4.64±0.47
16 2.57±0.23 3.04±0.31 5.61±0.55
20 2.81±0.29 3.49±0.35 6.30±0.62
Tab.2  Energy consumption in the MEDCC to treat pesticide wastewater
Fig.5  Scanning electron microscopy images of (a) anion exchange membrane (AEM) and (b) cation exchange membrane (CEM), and the energy dispersive spectrometer results of (c) AEM and (d) CEM in the MEDCC.
Fig.6  (a) Gas chromatography – mass spectrometry (GC-MS) spectra on the raw pesticide wastewater; and MS spectra on (b) chlorpyrifos, (c) triadimefon, (d) flusilazole, (e) N-dimethyldecanamide, (f) tebuconazole, (g) fenpropathrin, (h) cypermethrin, and (i) prochloraz.
Fig.7  Mass spectrometry results of the gas chromatography – mass spectrometry analysis on (a) effluent from coagulation, (b) effluent from the desalination chamber of MEDCC, (c) effluent from the acid-production chamber of MEDCC, (d) effluent from the alkali-production chamber of MEDCC, and (e) effluent from the Fenton oxidation process.
Sample Retention time (min) Molecular formula Molecular weight Name Similarity (%)
Raw pesticide wastewater 19.99 C9H11Cl3NO3PS 349 Chlorpyrifos 91
20.41 C14H16ClN3O2 293 Triadimefon 92
22.12 C16H15F2N3Si 315 Flusilazole 89
22.54 C12H25NO 199 N-dimethyldecanamide 90
23.78 C16H22ClN3O 307 Tebuconazole 92
24.58 C22H23NO3 349 Fenpropathrin 86
27.05 C22H19Cl2NO3 415 Cypermethrin 85
30.31 C15H16Cl3N3O2 375 Prochloraz 93
Effluent from coagulation 20.33 C14H16ClN3O2 293 Triadimefon 95
23.78 C16H22ClN3O 307 Tebuconazole 92
Effluent from the desalination chamber 20.26 C14H16ClN3O2 293 Triadimefon 91
Effluent from the acid-production chamber 18.77 C4H6Cl2 125 1,1-Dichlorobutene 83
19.90 C6H5Cl 112.5 1-(1,1-dimethylethyl)-4-methyl-Chlorobenzene 88
Effluent from the cathode chamber 19.26 C6H12O2 116 2-(dichloromethyl)- Benzene 92
Effluent from Fenton oxidation 13.57 C8H12O2 140 3-(3-hydroxy-1-propenyl)cyclopentanone 85
14.48 C5H12O 88 3-Pentanol 90
Tab.3  Organic compounds in the wastewater identified based on the gas chromatography – mass spectrometry analysis
Fig.8  Fates of pesticides and COD in the MEDCC combined with Fenton process.
1 R M Agudelo, G Peñuela, N J Aguirre, J Morató, M L Jaramillo (2010). Simultaneous removal of chlorpyrifos and dissolved organic carbon using horizontal sub-surface flow pilot wetlands. Ecological Engineering, 36(10): 1401–1408
https://doi.org/10.1016/j.ecoleng.2010.06.019
2 S Akbar, S Sultan (2016). Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement. Brazilian Journal of Microbiology, 47(3): 563–570
https://doi.org/10.1016/j.bjm.2016.04.009 pmid: 27266625
3 M I Badawy, M Y Ghaly, T A Gad-Allah (2006). Advanced oxidation processes for the removal of organophosphorus pesticides from wastewater. Desalination, 194(1–3): 166–175
https://doi.org/10.1016/j.desal.2005.09.027
4 M M Ballesteros Martín, J A Sánchez Pérez, J L García Sánchez, J L Casas López, S Malato Rodríguez (2009). Effect of pesticide concentration on the degradation process by combined solar photo-Fenton and biological treatment. Water Research, 43(15): 3838–3848
https://doi.org/10.1016/j.watres.2009.05.021 pmid: 19560181
5 S Chen, G Liu, R Zhang, B Qin, Y Luo (2012a). Development of the microbial electrolysis desalination and chemical-production cell for desalination as well as acid and alkali productions. Environmental Science & Technology, 46(4): 2467–2472
https://doi.org/10.1021/es203332g pmid: 22242642
6 S Chen, G Liu, R Zhang, B Qin, Y Luo, Y Hou (2012b). Improved performance of the microbial electrolysis desalination and chemical-production cell using the stack structure. Bioresource Technology, 116: 507–511
https://doi.org/10.1016/j.biortech.2012.03.073 pmid: 22608915
7 P C W Cheung, D R Williams (2015). Separation of transition metals and chelated complexes in wastewaters. Environmental Progress & Sustainable Energy, 34(3): 761–783
https://doi.org/10.1002/ep.12065
8 L S Clesceri, A E Greenberg, A D Eaton (1998). Standard Methods for the Examination of Water and Wastewater. Washington, DC: APHA
9 J Farner Budarz, E M Cooper, C Gardner, E Hodzic, P L Ferguson, C K Gunsch, M R Wiesner (2019). Chlorpyrifos degradation via photoreactive TiO2 nanoparticles: Assessing the impact of a multi-component degradation scenario. Journal of Hazardous Materials, 372: 61–68
https://doi.org/10.1016/j.jhazmat.2017.12.028 pmid: 29254886
10 N García-Mancha, V M Monsalvo, D Puyol, J J Rodriguez, A F Mohedano (2017). Enhanced anaerobic degradability of highly polluted pesticides-bearing wastewater under thermophilic conditions. Journal of Hazardous Materials, 339: 320–329
https://doi.org/10.1016/j.jhazmat.2017.06.032 pmid: 28658641
11 S R Geed, B S Shrirame, R S Singh, B N Rai (2017). Assessment of pesticides removal using two-stage Integrated Aerobic Treatment Plant (IATP) by Bacillus sp. isolated from agricultural field. Bioresource Technology, 242: 45–54
https://doi.org/10.1016/j.biortech.2017.03.080 pmid: 28347623
12 X Huang, K Xiao, Y Shen (2010). Recent advances in membrane bioreactor technology for wastewater treatment in China. Frontiers of Environmental Science & Engineering in China, 4(3): 245–271
https://doi.org/10.1007/s11783-010-0240-z
13 D H Jonge, J L Wollesen de (1999). Influence of pH and solution composition on the sorption of glyphosate and prochloraz to a sandy loam soil. Chemosphere, 39(5): 753–763
https://doi.org/10.1016/S0045-6535(99)00011-9
14 M Köck-Schulmeyer, M Villagrasa, M López de Alda, R Céspedes-Sánchez, F Ventura, D Barceló (2013). Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Science of the Total Environment, 458–460: 466–476
https://doi.org/10.1016/j.scitotenv.2013.04.010 pmid: 23692851
15 J Lan, Y Ren, Y Lu, G Liu, H Luo, R Zhang (2019). Combined microbial desalination and chemical-production cell with Fenton process for treatment of electroplating wastewater nanofiltration concentrate. Chemical Engineering Journal, 359: 1139–1149
https://doi.org/10.1016/j.cej.2018.11.067
16 R Li, C Yang, H Chen, G Zeng, G Yu, J Guo (2009). Removal of triazophos pesticide from wastewater with Fenton reagent. Journal of Hazardous Materials, 167(1–3): 1028–1032
https://doi.org/10.1016/j.jhazmat.2009.01.090 pmid: 19233558
17 X Li, Y Lu, H Luo, G Liu, R Zhang (2017). Microbial stratification structure within cathodic biofilm of the microbial fuel cell using the freezing microtome method. Bioresource Technology, 241: 384–390
https://doi.org/10.1016/j.biortech.2017.05.137 pmid: 28578279
18 Z Li, W Yuan (2015). Industrial waste utilization method: Producing poly-ferric sulfate (PFS) from sodium-jarosite residue. Frontiers of Environmental Science & Engineering, 9(4): 731–737
https://doi.org/10.1007/s11783-014-0687-4
19 P Lin, X Zhang, H Yang, Y Li, C Chen (2015). Applying chemical sedimentation process in drinking water treatment plant to address the emergent arsenic spills in water sources. Frontiers of Environmental Science & Engineering, 9(1): 50–57
https://doi.org/10.1007/s11783-014-0733-2
20 Q Lin, X Yang, X Huang, S Wang, Y Chao, R Qiu (2016). Subcellular distribution and uptake mechanism of di-n-butyl phthalate in roots of pumpkin (Cucurbita moschata) seedlings. Environmental Science and Pollution Research International, 23(1): 329–337
https://doi.org/10.1007/s11356-015-5247-3 pmid: 26304812
21 G Liu, H Luo, Y Tang, S Chen, R Zhang, Y Hou (2014a). Tetramethylammonium hydroxide production using the microbial electrolysis desalination and chemical-production cell. Chemical Engineering Journal, 258: 157–162
https://doi.org/10.1016/j.cej.2014.07.025
22 G Liu, H Luo, H Wang, B Wang, R Zhang, S Chen (2014b). Malic acid production using a biological electrodialysis with bipolar membrane. Journal of Membrane Science, 471: 179–184
https://doi.org/10.1016/j.memsci.2014.08.014
23 G Liu, Y Zhou, H Luo, X Cheng, R Zhang, W Teng (2015). A comparative evaluation of different types of microbial electrolysis desalination cells for malic acid production. Bioresource Technology, 198: 87–93
https://doi.org/10.1016/j.biortech.2015.08.149 pmid: 26367771
24 Y Liu, X Li, B Wang, S Liu (2008). Performance of landfill leachate treatment system with disc-tube reverse osmosis units. Frontiers of Environmental Science & Engineering in China, 2(1): 24–31
https://doi.org/10.1007/s11783-008-0024-x
25 Y Lu, S He, D Wang, S Luo, A Liu, H Luo, G Liu, R Zhang (2018). A pulsed switching peroxi-coagulation process to control hydroxyl radical production and to enhance 2,4-Dichlorophenoxyacetic acid degradation. Frontiers of Environmental Science & Engineering, 12(5): 9
https://doi.org/10.1007/s11783-018-1070-7
26 Y Lu, H Luo, K Yang, G Liu, R Zhang, X Li, B Ye (2017). Formic acid production using a microbial electrolysis desalination and chemical-production cell. Bioresource Technology, 243: 118–125
https://doi.org/10.1016/j.biortech.2017.06.059 pmid: 28651131
27 H Luo, X Cheng, G Liu, Y Zhou, Y Lu, R Zhang, X Li, W Teng (2017a). Citric acid production using a biological electrodialysis with bipolar membrane. Journal of Membrane Science, 523: 122–128
https://doi.org/10.1016/j.memsci.2016.09.063
28 H Luo, H Li, Y Lu, G Liu, R Zhang (2017b). Treatment of reverse osmosis concentrate using microbial electrolysis desalination and chemical production cell. Desalination, 408: 52–59
https://doi.org/10.1016/j.desal.2017.01.003
29 X Luo, D Zhang, X Zhou, S Zhang, Y Liu (2019). Biodegradation of fenpropathrin by Rhodopseudomonas sp. strain PSB07-21 cultured under three different growth modes. Journal of Basic Microbiology, 59(6): 591–598
https://doi.org/10.1002/jobm.201800490 pmid: 30900743
30 J Mao, X Quan, J Wang, C Gao, S Chen, H Yu, Y Zhang (2018). Enhanced heterogeneous Fenton-like activity by Cu-doped BiFeO3 perovskite for degradation of organic pollutants. Frontiers of Environmental Science & Engineering, 12(6): 10
https://doi.org/10.1007/s11783-018-1060-9
31 D F Mercado, L L B Bracco, A Arques, M C Gonzalez, P Caregnato (2018). Reaction kinetics and mechanisms of organosilicon fungicide flusilazole with sulfate and hydroxyl radicals. Chemosphere, 190: 327–336
https://doi.org/10.1016/j.chemosphere.2017.09.134 pmid: 28992485
32 F C Moreira, V J P Vilar, A C C Ferreira, F R A Dos Santos, M Dezotti, M A Sousa, C Gonçalves, R A R Boaventura, M F Alpendurada (2012). Treatment of a pesticide-containing wastewater using combined biological and solar-driven AOPs at pilot scale. Chemical Engineering Journal, 209: 429–441
https://doi.org/10.1016/j.cej.2012.08.009
33 C H Nguyen, C C Fu, R S Juang (2018). Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways. Journal of Cleaner Production, 202: 413–427
https://doi.org/10.1016/j.jclepro.2018.08.110
34 X Ou, J Yan, F Zhang, C Zhang (2018). Accelerated degradation of orange G over a wide pH range in the presence of FeVO4. Frontiers of Environmental Science & Engineering, 12(1): 7
https://doi.org/10.1007/s11783-018-1013-3
35 D Pant, G Van Bogaert, L Diels, K Vanbroekhoven (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technology, 101(6): 1533–1543
https://doi.org/10.1016/j.biortech.2009.10.017 pmid: 19892549
36 P V L Reddy, K H Kim (2015). A review of photochemical approaches for the treatment of a wide range of pesticides. Journal of Hazardous Materials, 285: 325–335
https://doi.org/10.1016/j.jhazmat.2014.11.036 pmid: 25528231
37 R Salazar, M S Ureta-Zañartu (2012). Mineralization of triadimefon fungicide in water by electro-Fenton and photo electro-Fenton. Water, Air, and Soil Pollution, 223(7): 4199–4207
https://doi.org/10.1007/s11270-012-1184-7
38 N Stamatis, M Antonopoulou, I Konstantinou (2015). Photocatalytic degradation kinetics and mechanisms of fungicide tebuconazole in aqueous TiO2 suspensions. Catalysis Today, 252: 93–99
https://doi.org/10.1016/j.cattod.2014.09.023
39 C Su, W Li, X Liu, X Huang, X Yu (2016). Fe-Mn-sepiolite as an effective heterogeneous Fenton-like catalyst for the decolorization of reactive brilliant blue. Frontiers of Environmental Science & Engineering, 10(1): 37–45
https://doi.org/10.1007/s11783-014-0729-y
40 X Sun, G Yang, X Cao, Z Lin (2008). Photochemical degradation of triadimefon in seawater. Journal of Ocean University of China, 7(2): 171–176
https://doi.org/10.1007/s11802-008-0171-5
41 P N Tallur, S I Mulla, V B Megadi, M P Talwar, H Z Ninnekar (2015). Biodegradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1. Brazilian Journal of Microbiology, 46(3): 667–672
https://doi.org/10.1590/S1517-838246320130557 pmid: 26413046
42 A T K Tran, P Mondal, J Y Lin, B Meesschaert, L Pinoy, B Van der Bruggen (2015). Simultaneous regeneration of inorganic acid and base from a metal washing step wastewater by bipolar membrane electrodialysis after pretreatment by crystallization in a fluidized pellet reactor. Journal of Membrane Science, 473: 118–127
https://doi.org/10.1016/j.memsci.2014.09.006
43 J Urzúa, C González-Vargas, F Sepúlveda, M S Ureta-Zañartu, R Salazar (2013). Degradation of conazole fungicides in water by electrochemical oxidation. Chemosphere, 93(11): 2774–2781
https://doi.org/10.1016/j.chemosphere.2013.09.035 pmid: 24140400
44 E Volodina, N Pismenskaya, V Nikonenko, C Larchet, G Pourcelly (2005). Ion transfer across ion-exchange membranes with homogeneous and heterogeneous surfaces. Journal of Colloid and Interface Science, 285(1): 247–258
https://doi.org/10.1016/j.jcis.2004.11.017 pmid: 15797420
45 W Wang, Y Lu, H Luo, G Liu, R Zhang (2017). Effect of an improved gas diffusion cathode on carbamazepine removal using the electro-Fenton process. RSC Advances, 7(41): 25627–25633
https://doi.org/10.1039/C7RA03793G
46 B Ye, Y Lu, H Luo, G Liu, R Zhang (2018). Tetramethyl ammonium hydroxide production using the microbial electrolysis desalination and chemical-production cell with long anode. Bioresource Technology, 251: 403–406
https://doi.org/10.1016/j.biortech.2017.12.049 pmid: 29276112
47 B Ye, H Luo, Y Lu, G Liu, R Zhang, X Li (2017). Improved performance of the microbial electrolysis desalination and chemical-production cell with enlarged anode and high applied voltages. Bioresource Technology, 244(Pt 1): 913–919
https://doi.org/10.1016/j.biortech.2017.08.049 pmid: 28847080
48 A Zapata, I Oller, C Sirtori, A Rodríguez, J A Sánchez-Pérez, A López, M Mezcua, S Malato (2010). Decontamination of industrial wastewater containing pesticides by combining large-scale homogeneous solar photocatalysis and biological treatment. Chemical Engineering Journal, 160(2): 447–456
https://doi.org/10.1016/j.cej.2010.03.042
49 H Zhang, S Chen, H Zhang, X Fan, C Gao, H Yu, X Quan (2019). Carbon nanotubes-incorporated MIL-88B-Fe as highly efficient Fenton-like catalyst for degradation of organic pollutants. Frontiers of Environmental Science & Engineering, 13(2): 18
https://doi.org/10.1007/s11783-019-1101-z
50 L Zhang, J L Xie (2013). Pretreatment of herbicides production wastewater by spherical micro-electrolysis media. Applied Mechanics and Materials, 295–298: 1079–1083
https://doi.org/10.4028/www.scientific.net/AMM.295-298.1079
51 Y Zhang, K Pagilla (2010). Treatment of malathion pesticide wastewater with nanofiltration and photo-Fenton oxidation. Desalination, 263(1–3): 36–44
https://doi.org/10.1016/j.desal.2010.06.031
52 L Zhao, C Wang, H Gu, C Yue (2018). Market incentive, government regulation and the behavior of pesticide application of vegetable farmers in China. Food Control, 85: 308–317
https://doi.org/10.1016/j.foodcont.2017.09.016
[1] FSE-19089-OF-LSW_suppl_1 Download
[1] Yanxiao Si, Fang Zhang, Hong Chen, Guanghe Li, Haichuan Zhang, Dun Liu. Effect of current density on groundwater arsenite removal performance using air cathode electrocoagulation[J]. Front. Environ. Sci. Eng., 2021, 15(6): 112-.
[2] Senem Yazici Guvenc, Gamze Varank. Degradation of refractory organics in concentrated leachate by the Fenton process: Central composite design for process optimization[J]. Front. Environ. Sci. Eng., 2021, 15(1): 2-.
[3] Luxi Zou, Huaibo Li, Shuo Wang, Kaikai Zheng, Yan Wang, Guocheng Du, Ji Li. Characteristic and correlation analysis of influent and energy consumption of wastewater treatment plants in Taihu Basin[J]. Front. Environ. Sci. Eng., 2019, 13(6): 83-.
[4] Yaobin Lu, Songli He, Dantong Wang, Siyuan Luo, Aiping Liu, Haiping Luo, Guangli Liu, Renduo Zhang. A pulsed switching peroxi-coagulation process to control hydroxyl radical production and to enhance 2,4-Dichlorophenoxyacetic acid degradation[J]. Front. Environ. Sci. Eng., 2018, 12(5): 9-.
[5] Sanath KONDAVEETI,Kwang Soon CHOI,Ramesh KAKARLA,Booki MIN. Microalgae Scenedesmus obliquus as renewable biomass feedstock for electricity generation in microbial fuel cells (MFCs)[J]. Front.Environ.Sci.Eng., 2014, 8(5): 784-791.
[6] I-Shin CHANG, Jing WU. Integration of climate change considerations into environmental impact assessment — implementation, problems and recommendations for China[J]. Front Envir Sci Eng, 2013, 7(4): 598-607.
[7] HE Yiliang, ZHAO Bin, HUGHES Joseph B., HAN Sung Soo. Fenton oxidation of 2,4- and 2,6-dinitrotoluene and acetone inhibition[J]. Front.Environ.Sci.Eng., 2008, 2(3): 326-332.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed