Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2021, Vol. 15 Issue (1) : 2    https://doi.org/10.1007/s11783-020-1294-1
RESEARCH ARTICLE
Degradation of refractory organics in concentrated leachate by the Fenton process: Central composite design for process optimization
Senem Yazici Guvenc(), Gamze Varank
Department of Environmental Engineering, Yıldız Technical University, Davutpaşa Campus, Esenler, Istanbul 34220, Turkey
 Download: PDF(2190 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• 90% total COD, 95.3% inert COD and 97.2% UV254 were removed.

• High R2 values (over 95%) for all responses were obtained with CCD.

• Operational cost was calculated to be 0.238 €/g CODremoved for total COD removal.

• Fenton oxidation was highly-efficient method for inert COD removal.

• BOD5/COD ratio of leachate concentrate raised from 0.04 to 0.4.

The primary aim of this study is inert COD removal from leachate nanofiltration concentrate because of its high concentration of resistant organic pollutants. Within this framework, this study focuses on the treatability of leachate nanofiltration concentrate through Fenton oxidation and optimization of process parameters to reach the maximum pollutant removal by using response surface methodology (RSM). Initial pH, Fe2+ concentration, H2O2/Fe2+ molar ratio and oxidation time are selected as the independent variables, whereas total COD, color, inert COD and UV254 removal are selected as the responses. According to the ANOVA results, the R2 values of all responses are found to be over 95%. Under the optimum conditions determined by the model (pH: 3.99, Fe2+: 150 mmol/L, H2O2/Fe2+: 3.27 and oxidation time: 84.8 min), the maximum COD removal efficiency is determined as 91.4% by the model. The color, inert COD and UV254 removal efficiencies are determined to be 99.9%, 97.2% and 99.5%, respectively, by the model, whereas the total COD, color, inert COD and UV254 removal efficiencies are found respectively to be 90%, 96.5%, 95.3% and 97.2%, experimentally under the optimum operating conditions. The Fenton process improves the biodegradability of the leachate NF concentrate, increasing the BOD5/COD ratio from the value of 0.04 to the value of 0.4. The operational cost of the process is calculated to be 0.238 €/g CODremoved. The results indicate that the Fenton oxidation process is an efficient and economical technology in improvement of the biological degradability of leachate nanofiltration concentrate and in removal of resistant organic pollutants.

Keywords Concentrated leachate      Fenton oxidation      Central composite design      Biodegradability      Inert COD     
Corresponding Author(s): Senem Yazici Guvenc   
Issue Date: 24 July 2020
 Cite this article:   
Senem Yazici Guvenc,Gamze Varank. Degradation of refractory organics in concentrated leachate by the Fenton process: Central composite design for process optimization[J]. Front. Environ. Sci. Eng., 2021, 15(1): 2.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-020-1294-1
https://academic.hep.com.cn/fese/EN/Y2021/V15/I1/2
Parameter Range Average value
pH 7.34–7.44 7.38
Conductivity (mS/cm) 17.26–17.67 17.44
Chloride (mg/L) 7450–7700 7550
UV254 (mg/L) 3820–3890 3860
COD (mg/L) 6800–7200 7000
CODbi (mg/L) 865–900 880
Inert COD (mg/L) 5950–6250 6120
Color (Pt/Co) 11500–11300 11400
TSS (mg/L) 110–150 130
Tab.1  Characterization of concentrated leachate
Factor Independent variables Coded Levels
–1 0 +1
X1 pH 2 3 4
X2 Fe2+ (mmol/L) 30 90 150
X3 H2O2/Fe2+ 0.5 2 3.5
X4 Oxidation time (min) 30 70 110
Run Independent variables Experimental responses
X1 X2 X3 X4 COD removal (%)
(Y1)
Color removal (%)
(Y2)
Inert COD removal (%)
(Y3)
UV254 removal (%)
(Y4)
1 2 30 0.5 30 14.0 17.2 14.9 11.2
2 4 30 0.5 30 20.4 28.0 26.7 29.5
3 2 150 0.5 30 49.2 62.0 56.8 67.9
4 4 150 0.5 30 63.6 73.8 69.3 62.5
5 2 30 3.5 30 35.9 45.5 41.2 48.6
6 4 30 3.5 30 47.2 58.9 52.7 47.9
7 2 150 3.5 30 75.3 83.9 82.7 92.4
8 4 150 3.5 30 82.3 88.5 89.4 89.8
9 2 30 0.5 110 24.0 29.3 25.6 26.0
10 4 30 0.5 110 35.5 41.7 36.2 37.4
11 2 150 0.5 110 62.3 70.9 68.0 66.5
12 4 150 0.5 110 69.0 79.3 74.1 70.3
13 2 30 3.5 110 40.1 42.2 42.8 44.7
14 4 30 3.5 110 54.0 59.4 56.7 63.5
15 2 150 3.5 110 84.4 94.7 82.0 93.1
16 4 150 3.5 110 88.3 98.2 91.8 90.8
17 2 90 2 70 64.9 72.6 72.2 75.0
18 4 90 2 70 69.0 80.2 77.5 81.6
19 3 30 2 70 29.7 34.9 40.9 36.0
20 3 150 2 70 79.3 88.2 84.5 90.4
21 3 90 0.5 70 42.1 51.9 42.6 43.2
22 3 90 3.5 70 64.9 77.7 75.2 80.9
23 3 90 2 30 51.4 59.9 58.6 63.4
24 3 90 2 110 59.7 64.9 78.0 68.6
25 3 90 2 70 61.8 72.8 75.2 70.5
26 3 90 2 70 61.6 74.2 76.4 72.0
27 3 90 2 70 62.1 74.8 77.5 75.7
28 3 90 2 70 61.8 73.8 76.2 74.3
29 3 90 2 70 61.5 73.1 77.7 73.9
30 3 90 2 70 62.2 74.5 76.8 75.4
Tab.2  Independent variables and their coded levels for CCD experimental design and experimental responses
COD removal SS MS F value P value Color removal SS MS F value P value
Model 10291.8 735.1 77 2.27×10?11 Model 11951.6 853.6 46.7 8.67×10?10
X1 348.48 348.48 36.52 <0.0001 X1 447.005 447.005 24.45 0.0002
X2 6918.8 6918.8 725.12 <0.0001 X2 8123.88 8123.88 444.32 <0.0001
X3 2054.41 2054.41 215.31 <0.0001 X3 2110.33 2110.33 115.42 <0.0001
X4 338 338 35.42 <0.0001 X4 219.801 219.801 12.02 0.0034
X1X1 138.767 138.767 14.54 0.0017 X1X1 141.408 141.408 7.73 0.014
X2X2 68.2267 68.2267 7.15 0.0173 X2X2 144.276 144.276 7.89 0.0132
X3X3 97.4085 97.4085 10.21 0.006 X4X4 113.28 113.28 6.2 0.025
Total error 143.123 9.54156 Total error 274.259 18.284
Total (corr.) 10435 Total (corr.) 12225.9
R2 98.63 R2 97.75
Adj. R2 97.34 Adj. R2 95.66
Inert COD removal SS MS F value P value UV254 removal SS MS F value P value
Model 12128.1 866.3 40.3 2.48×10–9 Model 13015.2 929.6 44.6 1.2×10–9
X1 432.18 432.18 20.13 0.0004 X1 127.467 127.467 6.12 0.0258
X2 7236.05 7236.05 337.09 <0.0001 X2 7975.84 7975.84 382.72 <0.0001
X3 2228.89 2228.89 103.83 <0.0001 X3 3125.77 3125.77 149.99 <0.0001
X4 219.801 219.801 10.24 0.006 X4 126.405 126.405 6.07 0.0264
X2X2 155.018 155.018 7.22 0.0169 X1X1 147.242 147.242 7.07 0.0179
X3X3 344.742 344.742 16.06 0.0011 X1X2 184.281 184.281 8.84 0.0095
Total error 321.995 21.4663 X2X2 148.135 148.135 7.11 0.0176
Total (corr.) 12450.1 X3X3 196.62 196.62 9.43 0.0078
R2 97.41 Total error 312.601 20.8401
Adj. R2 94.99 Total (corr.) 13327.8
R2 97.65
Adj. R2 95.46
Tab.3  ANOVA results of quadratic models
Fig.1  Plots of actual values versus predicted values for COD (a), Color (b), Inert COD (c) and UV254 (d) removal responses.
Fig.2  Response surface plots on the effects of pH and Fe2+ (a), pH and H2O2/ Fe2+ (b), pH and Oxidation time (c), H2O2/Fe2+ and Oxidation time (d) for COD removal.
Fig.3  Response surface plots on the effects of pH and Fe2+ (a), pH and H2O2/Fe2+ (b), pH and Oxidation time (c), H2O2/Fe2+ and Oxidation time (d) for Color removal.
Fig.4  Response surface plots on the effects of pH and Fe2+ (a), pH and H2O2/ Fe2+ (b), pH and Oxidation time (c), H2O2/Fe2+ and Oxidation time (d) for inert COD removal.
Fig.5  Response surface plots on the effects of pH and Fe2+ (a), pH and H2O2/Fe2+ (b), pH and Oxidation time (c), H2O2/Fe2+ and Oxidation time (d) for UV254 removal.
Wastewater type Process type Characterization of WW Independent variables Optimum conditions Max. Removal Efficiency (%) Operation Cost Reference
Leachate Nanofiltration Concentrate Only Fenton UV254: 3860 mg/L
COD: 7000 mg/L
Inert COD: 6120 mg/L
Color: 11400 Pt/Co
pH: 2–4, Fe2+: 30–150 mmol/L, H2O2/Fe2+: 0.5–3.5 and oxidation time: 30?110 min pH: 3.99,
Fe2+: 150 mmol/L, H2O2/Fe2+: 3.27 oxidation time: 84.8 min
COD: 90 0.238 €/g CODremoved This study
Leachate Nanofiltration concentrate Only Fenton COD: 4500 mg/L
TOC: 1600 mg/L
Chromaticity: 250
Initial pH: 2?5
H2O2 (mol/L): 0.10–1.00
Fe2+ concentration (mmol/L): 10–25
Initial pH: 2
H2O2: 1 mol/L
Fe+2:17.5 mmol/L
COD: 69.6
TOC: 68.9
Chromaticity: 100
NA Xu et al. (2017)
Leachate Nanofiltration concentrate Fenton and UV-Fenton COD:2172 mg/L Color: 5600 PtCo pH: 2–3
H2O2: 4%(v/v)
FeSO4·7H2O: 2 g/L
Time: 120 min
NA COD: 89.68 NA Wang et
al. (2016b)
Leachate Nanofiltration concentrate (A),
Leachate Nanofiltration concentrate (B)
Fenton-Photo Fenton COD(A): 1330 mg/L
COD(B): 3450 mg/L
TOC(A): 715 mg/L
TOC(B): 1426 mg/L
Color (Dilution)(A): 400
Color (Diluation)(B): 500
Total PAHs (A): 18.57 µg/L
Total PAHs (B): 5.40 µg/L
pH: 2–7
H2O2: 0–60 mmol/L
Fe+2: 3–10 mmol/L
Time: 2 h
pH:5
H2O2:10 mmol/L
Fe+2: 4 mmol/L
Time: 2 h
COD: 70
PAHs-2 ring (A):58
PAHs-2 ring (B): 45
PAHs-3 ring (A): 30
PAHs-3 ring (B): 44
NA Li et al. (2016)
Leachate Nanofiltration concentrate Fenton-UV Fenton COD: 724 mg/L
BOD5: 43 mg/L
NH4-N: 11.3 mg/L
Conductivity: 11.3 mS/cm
Cl: 2925.7 mg/L
Suspended solids: 128 mg/L
pH: 2–3
H2O2: (4%? v/v)
FeSO4·7H2O: (2 g/L)
Time: 0–120 min
NA COD: 80.1 NA Wang et al. (2016a)
Leachate UF and NF concentrate Fenton COD: 3060 mg/L
BOD5: 288 mg/L
pH range of 2–6.5
H2O2/Fe2+: 1–15
Fe2+: 100–1000 mg/L
Time: 20?200 min
Temperature: ~20°C
Fe2+ :400 mg/L
pH:3
Time:2 h
H2O2/Fe2+: 9
COD:>60 NA He et al. (2015)
Leachate RO concentrate Microwave (MW)-Fenton COD: 2494 mg/L
BOD5/COD: 0.13
pH: 5.0
Fe2+: 0.04 mol/L
H2O2/Fe2+ ratio:8
Time: 3 h
pH:5.0
Fe2+: 0.04 mol/L
H2O2/Fe2+: 8
Time: 3 h
MW power: 390 W-8 min
COD: 75
BOD5/COD: 0.62
NA Zhang et al. (2018)
Leachate NF concentrate Fenton
UV-Fenton
UV-H2O2
COD: 1280 mg/L
BOD5: 121 mg/L
pH: 2.0–7.5
FeSO4.7H2O:1.8–14.4 mmol/L,
H2O2:100–400 mmol/L
Time:0–180 min.
Temperature:15°C–45°C
pH:3.0,
FeSO4.7H2O: 7.2 mmol/L,
H2O2 dosage: 400 mmol/L
Temperature: 25°C
COD: 92.7
BOD5/COD: 0.44
NA Zhao et al. (2020)
Concentrated Leachate MW-Fe0
/H2O2
COD: 1501 mg/L
BOD5: 23.4 mg/L
BOD/COD: 0.02
initial pH: 2–8
Fe0: 0.10 to 0.50 g/L
H2O2: 1 to 25 mL/L
MW: 200 to 700 W
Temperature: 85°C,
initial pH of 2.0,
Fe0: 0.5 g/L,
H2O2: 20 mL/L
MW: 400 W
Time: 14 min
COD:58.70
UV254:85.69
CN:88.30
BOD5/COD:0.41
0.56 CNY/t Chen et al. (2018)
Memebrane Concentrate Landfill Leachate Fenton COD: 3300 mg/L
TOC: 1080 mg/L
BOD5: 48.4 mg/L
H2O2: 1–18 mL
Time: 0–120 min
pH: 2?6
H2O2/Fe(II) molar ratio 1?5
H2O2 = 9.0 mL/200 mL H2O2/Fe(II) molar ratio: 3.0
pH= 3.0 time= 40 min
COD: 78.9±1.3
TOC: 70.2±1.4 UV254: 90.64±1.6
NA Teng et al. (2020)
Tab.4  Treatment applications of leachate membrane concentrates based Fenton oxidation
1 N Abedinzadeh, M Shariat, S M Monavari, A Pendashteh (2018). Evaluation of color and COD removal by Fenton from biologically (SBR) pre-treated pulp and paper wastewater. Process Safety and Environmental Protection, 116: 82–91
https://doi.org/10.1016/j.psep.2018.01.015
2 M C S Amaral, W G Moravia, L C Lange, M R Zico, N C Magalhães, B C Ricci, B G Reis (2016). Pilot aerobic membrane bioreactor and nanofiltration for municipal landfill leachate treatment. Journal of Environmental Science and Health Part A, 51: 640–649
https://doi.org/10.1080/10934529.2016.1159874
3 S S A Amr, H A Aziz, M N Adlan, S Q Aziz (2013). Effect of Ozone and Ozone/Fenton in the advanced oxidation process on biodegradable characteristics of semi-aerobic stabilized leachate. Clean- Soil, Air. Water (Basel), 41(2): 148–152
4 APHA (2005). Standard Methods for the Examination of Water and Wastewater,21st ed. Washington, DC: American Public Health Association
5 S Bajpai, S K Gupta, A Dey, M K Jha, V Bajpai, S Joshi, A Gupta (2012). Application of central composite design approach for removal of chromium(VI) from aqueous solution using weakly anionic resin: modelling, optimization, and study of interactive variables. Journal of Hazardous Materials, 227–228: 436–444
https://doi.org/10.1016/j.jhazmat.2012.05.016
6 N Biglarijoo, S A Mirbagheri, M Ehteshami, S M Ghaznavi (2016). Optimization of Fenton process using response surface methodology and analytic hierarchy process for landfill leachate treatment. Process Safety and Environmental Protection, 104: 150–160
https://doi.org/10.1016/j.psep.2016.08.019
7 N Borràs, R Oliver, C Arias, E Brillas (2010). Degradation of atrazine by electrochemical advanced oxidation processes using a boron-doped diamond anode. Journal of Physical Chemistry A, 114(24): 6613–6621
https://doi.org/10.1021/jp1035647
8 F Boumechhour, K Rabah, C Lamine, B M Said (2013). Treatment of landfill leachate using Fenton process and coagulation/flocculation. Water and Environment Journal : the Journal / the Chartered Institution of Water and Environmental Management, 27(1): 114–119
https://doi.org/10.1111/j.1747-6593.2012.00332.x
9 P S Calabrò, S Sbaffoni, S Orsi, E Gentili, C Meoni (2010). The landfill reinjection of concentrated leachate: Findings from a monitoring study at an Italian site. Journal of Hazardous Materials, 181(1-3): 962–968
https://doi.org/10.1016/j.jhazmat.2010.05.107
10 W Chen, A Zhang, Z Gu, Q Li (2018). Enhanced degradation of refractory organics in concentrated landfill leachate by Fe0/H2O2 coupled with microwave irradiation. Chemical Engineering Journal, 354: 680–691
https://doi.org/10.1016/j.cej.2018.08.012
11 S Cortez, P Teixeira, R Oliveira, M Mota (2011). Evaluation of Fenton and ozone-based advanced oxidation processes as mature landfill leachate pre-treatments. Journal of Environmental Management, 92: 749–755
https://doi.org/10.1016/j.jenvman.2010.10.035
12 Y H Cui, W J Xue, S Q Yang, J L Tu, X L Guo, Z Q Liu (2018). Electrochemical/peroxydisulfate/Fe3+ treatment of landfill leachate nanofiltration concentrate after ultrafiltration. Chemical Engineering Journal, 353: 208–217
https://doi.org/10.1016/j.cej.2018.07.101
13 A Fernandes, L Labiadh, L Ciríaco, M J Pacheco, A Gadri, S Ammar, A Lopes (2017). Electro-Fenton oxidation of reverse osmosis concentrate from sanitary landfill leachate: Evaluation of operational parameters. Chemosphere, 184: 1223–1229
https://doi.org/10.1016/j.chemosphere.2017.06.088
14 O García-Rodríguez, J A Bañuelos, A El-Ghenymy, L A Godínez, E Brillas, F J Rodríguez-Valadez (2016). Use of a carbon felt-iron oxide air-diffusion cathode for the mineralization of Malachite Green dye by heterogeneous electro-Fenton and UVA photo electro-Fenton processes. Journal of Electroanalytical Chemistry, 767: 40–48
https://doi.org/10.1016/j.jelechem.2016.01.035
15 I Gulkaya, G A Surucu, F B Dilek (2006). Importance of H2O2/Fe2+ ratio in Fenton’s treatment of a carpet dyeing wastewater. Journal of Hazardous Materials, 136(3): 763–769
https://doi.org/10.1016/j.jhazmat.2006.01.006
16 R He, B H Tian, Q Q Zhang, H T Zhang (2015). Effect of Fenton oxidation on biodegradability, biotoxicity and dissolved organic matter distribution of concentrated landfill leachate derived from a membrane process. Waste Management (New York, N.Y.), 38: 232–239
https://doi.org/10.1016/j.wasman.2015.01.006
17 G Hodaifa, J M Ochando-Pulido, S Rodriguez-Vives, A Martinez-Ferez (2013). Optimization of continuous reactor at pilot scale for olive-oil mill wastewater treatment by Fenton-like process. Chemical Engineering Journal, 220: 117–124
https://doi.org/10.1016/j.cej.2013.01.065
18 C L Hsueh, Y H Huang, C C Wang, C Y Chen (2005). Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere, 58(10): 1409–1414
https://doi.org/10.1016/j.chemosphere.2004.09.091
19 C J Hu, D L Huang, G M Zeng, M Cheng, X M Gong, R Z Wang, W J Xue, Z X Hu, Y N Liu (2018a). The combination of Fenton process and phanerochaete chrysosporium for the removal of bisphenol A in river sediments: mechanism related to extracellular enzyme, organic acid and iron. Chemical Engineering Journal, 338: 432–439
https://doi.org/10.1016/j.cej.2018.01.068
20 X Hu, X Wang, Y Ban, B Ren (2011). A comparative study of UV-Fenton, UV–H2O2 and Fenton reaction treatment of landfill leachate. Environmental Technology, 32(9): 945–951
https://doi.org/10.1080/09593330.2010.521953
21 Y Hu, Y Lu, G Liu, H Luo, R Zhang, X Cai (2018b). Effect of the structure of stacked electro-Fenton reactor on treating nanofiltration concentrate of landfill leachate. Chemosphere, 202: 191–197
https://doi.org/10.1016/j.chemosphere.2018.03.103
22 S M Iskander, J T Novak, Z He (2019). Reduction of reagent requirements and sludge generation in Fenton’s oxidation of landfill leachate by synergistically incorporating forward osmosis and humic acid recovery. Water Research, 151: 310–317
https://doi.org/10.1016/j.watres.2018.11.089
23 X Jing, Y Cao, X Zhang, D Wang, X Wu, H Xu (2011). Biosorption of Cr(VI) from simulated wastewater using a cationic surfactant modified spent mushroom. Desalination, 269(1-3): 120–127
https://doi.org/10.1016/j.desal.2010.10.050
24 K H Kang, H S Shin, H Park (2002). Characterization of humic substances present in landfill leachates with different landfill ages and its implications. Water Research, 36(16): 4023–4032
https://doi.org/10.1016/S0043-1354(02)00114-8
25 P Kjeldsen, M A Barlaz, A P Rooker, A Baun, A Ledin, T H Christensen (2002). Present and long-term composition of MSW landfill leachate: A review. Critical Reviews in Environmental Science and Technology, 32(4): 297–336
https://doi.org/10.1080/10643380290813462
26 S Kliś, M Thomas, K Barbusiński, K Gołombek, Ł Krzemiński, M Chyc (2019). Removal of Azo Dye Acid Red 27 from aqueous solutions using classical and modified Fenton reagent with zero-valent iron. Fibres & Textiles in Eastern Europe, 137: 100–106
27 J Li, L Zhao, L Qin, X Tian, A Wang, Y Zhou, L Meng, Y Chen (2016). Removal of refractory organics in nanofiltration concentrates of municipal solid waste leachate treatment plants by combined Fenton oxidative-coagulation with photo-Fenton processes. Chemosphere, 146: 442–449
https://doi.org/10.1016/j.chemosphere.2015.12.069
28 X H Li, S Chen, I Angelidaki, Y F Zhang (2018). Bio-electro-Fenton processes for wastewater treatment: Advances and prospects. Chemical Engineering Journal, 354: 492–506
https://doi.org/10.1016/j.cej.2018.08.052
29 Y Long, J Xu, D Shen, Y Du, H Feng (2017). Effective removal of contaminants in landfill leachate membrane concentrates by coagulation. Chemosphere, 167: 512–519
https://doi.org/10.1016/j.chemosphere.2016.10.016
30 A Mojiri, L Ziyang, W Hui, Z Ahmad, R M Tajuddin, Abu S S Amr, T Kindaichi, H A Aziz, H Farraji (2017). Concentrated landfill leachate treatment with a combined system including electro-ozonation and composite adsorbent augmented sequencing batch reactor process. Process Safety and Environmental Protection, 111: 253–262
https://doi.org/10.1016/j.psep.2017.07.013
31 P H Nakhate, H G Patil, K V Marathe (2018). Intensification of landfill leachate treatment by advanced Fenton process using classical and statistical approach. Chemical Engineering & Processing: Process Intensification, 133: 148–159
https://doi.org/10.1016/j.cep.2018.10.004
32 L M Nieto, G Hodaifa, S Rodríguez, J A Giménez, J Ochando (2011). Degradation of organic matter in olive-oil mill wastewater through homogeneous Fenton-like reaction. Chemical Engineering Journal, 173(2): 503–510
https://doi.org/10.1016/j.cej.2011.08.022
33 T Ölmez (2009). The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology. Journal of Hazardous Materials, 162(2–3): 1371–1378
https://doi.org/10.1016/j.jhazmat.2008.06.017
34 P Oulego, S Collado, A Laca, M Díaz (2016). Impact of leachate composition on the advanced oxidation treatment. Water Research, 88: 389–402
https://doi.org/10.1016/j.watres.2015.09.048
35 N Panda, H Sahoo, S Mohapatra (2011). Decolourization of methyl orange using Fenton-like mesoporous Fe2O3-SiO2 composite. Journal of Hazardous Materials, 185(1): 359–365
https://doi.org/10.1016/j.jhazmat.2010.09.042
36 M Panizza, G Cerisola (2009). Electro-Fenton degradation of synthetic dyes. Water Research, 43(2): 339–344
https://doi.org/10.1016/j.watres.2008.10.028
37 Y Peng (2017). Perspectives on technology for landfill leachate treatment. Arabian Journal of Chemistry, 10: S2567-S2574
https://doi.org/10.1016/j.arabjc.2013.09.031
38 S G Poulopoulos, M Nikolaki, D Karampetsos, C J Philippopoulos (2008). Photochemical treatment of 2-chlorophenol aqueous solutions using ultraviolet radiation, hydrogen peroxide and photo-Fenton reaction. Journal of Hazardous Materials, 153(1-2): 582–587
https://doi.org/10.1016/j.jhazmat.2007.09.002
39 S Ramaswami, J Behrendt, R Otterpohl (2018). Comparison of NF-RO and RO-NF for the treatment of mature landfill leachates: A guide for landfill operators. Membranes, 8(2): 17
https://doi.org/10.3390/membranes8020017
40 S Renou, J G Givaudan, S Poulain, F Dirassouyan, P Moulin (2008). Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 150(3): 468–493
https://doi.org/10.1016/j.jhazmat.2007.09.077
41 F J Rivas, F J Beltran, J Frades, P Buxeda (2001). Oxidation of p-hydroxybenzoic acid by Fenton’s reagent. Water Research, 35(2): 387–396
https://doi.org/10.1016/S0043-1354(00)00285-2
42 M R Sabour, A Amiri (2017). Comparative study of ANN and RSM for simultaneous optimization of multiple targets in Fenton treatment of landfill leachate. Waste Management (New York, N.Y.), 65: 54–62
https://doi.org/10.1016/j.wasman.2017.03.048
43 R Saini, P Kumar (2016). Optimization of chlorpyrifos degradation by Fenton oxidation using CCD and ANFIS computing technique. Journal of Environmental Chemical Engineering, 4(3): 2952–2963
https://doi.org/10.1016/j.jece.2016.06.003
44 M F Sevimli (2005). Post-treatment of pulp and paper industry wastewater by advanced oxidation processes. Ozone Science and Engineering, 27(1): 37–43
https://doi.org/10.1080/01919510590908968
45 S K Singh, W Z Tang, G Tachiev (2013). Fenton treatment of landfill leachate under different COD loading factors. Waste Management, 33: 2116–2122 doi: 10.1016/j.wasman.2013.06.019
46 Y Smaoui, S Mseddi, N Ayadi, S Sayadi, J Bouzid (2019). Evaluation of influence of coagulation/flocculation and Fenton oxidation with iron on landfill leachate treatment. Environment Protection Engineering, 45(1): 139–153
https://doi.org/10.37190/epe190111
47 T Sruthi, R Gandhimathi, S T Ramesh, P V Nidheesh (2018). Stabilized landfill leachate treatment using heterogeneous Fenton and electro-Fenton processes. Chemosphere, 210: 38–43
https://doi.org/10.1016/j.chemosphere.2018.06.172
48 R Subramaniam, D D Gang, J Nie, R Bajpai, R Dufreche, J Baudier, R Sharp, M E Zappi (2017). Application of response surface methodology for optimization of treatment for an aged landfill leachate using Fenton’s oxidation reagent. Environmental Engineering Science, 34: 731–739
https://doi.org/10.1089/ees.2016.0613
49 C Teng, K Zhou, Z Zhang, C Peng, W Chen (2020). Elucidating the structural variation of membrane concentrated landfill leachate during Fenton oxidation process using spectroscopic analyses. Environmental Pollution, 256: 113467
https://doi.org/10.1016/j.envpol.2019.113467
50 M Thomas, B Białecka, D Zdebik (2017). Removal of organic compounds from wastewater originating from the production of printed circuit boards by UV-Fenton method. Archives of Environmental Protection, 43(4): 39–49
https://doi.org/10.1515/aep-2017-0044
51 M Thomas, D Zdebik (2019). Treatment of real textile wastewater by using potassium Ferrate(VI) and Fe(III)/H2O2: Application of Aliivibrio fischeri and Brachionus plicatilis tests for toxicity assessment. Fibres & Textiles in Eastern Europe, 27: 78–84
https://doi.org/10.5604/01.3001.0013.0746
52 M Thomas, D Zdebik, E Niewiara (2018). Removing phenols from post-processing wastewater originating from underground coal gasification using coagulation-flocculation and the H2O2/UV process. Polish Journal of Environmental Studies, 27(6): 2757–2763
https://doi.org/10.15244/pjoes/81270
53 G Wang, G Lu, J Zhao, P Yin, L Zhao (2016a). Evaluation of toxicity and estrogenicity of the landfill-concentrated leachate during advanced oxidation treatment: Chemical analyses and bioanalytical tools. Environmental Science and Pollution Research International, 23: 16015–16024
https://doi.org/10.1007/s11356-016-6669-2
54 G Wang, G Lu, P Yin, L Zhao, Q Jimmy Yu (2016b). Genotoxicity assessment of membrane concentrates of landfill leachate treated with Fenton reagent and UV-Fenton reagent using human hepatoma cell line. Journal of Hazardous Materials, 307: 154–162
https://doi.org/10.1016/j.jhazmat.2015.12.069
55 H Wang, Y Wang, X Li, Y Sun, H Wu, D Chen (2016c). Removal of humic substances from reverse osmosis (RO) and nanofiltration (NF) concentrated leachate using continuously ozone generation-reaction treatment equipment. Waste Management (New York, N.Y.), 56: 271–279
https://doi.org/10.1016/j.wasman.2016.07.040
56 Q Wang, S L Tian, P Ning (2014). Degradation mechanism of methylene blue in a heterogeneous Fenton-like reaction catalyzed by ferrocene. Industrial & Engineering Chemistry Research, 53(2): 643–649
https://doi.org/10.1021/ie403402q
57 Y Wu, S Zhou, F Qin, H Peng, Y Lai, Y Lin (2010). Removal of humic substances from landfill leachate by Fenton oxidation and coagulation. Process Safety and Environmental Protection, 88(4): 276–284
https://doi.org/10.1016/j.psep.2010.03.002
58 J Xu, Y Long, D Shen, H Feng, T Chen (2017). Optimization of Fenton treatment process for degradation of refractory organics in pre-coagulated leachate membrane concentrates. Journal of Hazardous Materials, 323: 674–680
https://doi.org/10.1016/j.jhazmat.2016.10.031
59 W J Xue, Y H Cui, Z Q Liu, S Q Yang, J Y Li, X L Guo (2020). Treatment of landfill leachate nanofiltration concentrate after ultrafiltration by electrochemically assisted heat activation of peroxydisulfate. Separation and Purification Technology, 231: 115928
https://doi.org/10.1016/j.seppur.2019.115928
60 T Yılmaz, A Aygun, A Berktay, B Nas (2010). Removal of COD and colour from young municipal landfill leachate by Fenton process. Environmental Technology, 31: 1635–1640
61 A Zhang, Z Gu, W Chen, Q Li, G Jiang (2018). Removal of refractory organic pollutants in reverse-osmosis concentrated leachate by Microwave–Fenton process. Environmental Science and Pollution Research International, 25(29): 28907–28916
https://doi.org/10.1007/s11356-018-2900-7
62 L Zhang, A M Li, Y F Lu, L Yan, S Zhong, C L Deng (2009). Characterization and removal of dissolved organic matter (DOM) from landfill leachate rejected by nanofiltration. Waste Management (New York, N.Y.), 29(3): 1035–1040
https://doi.org/10.1016/j.wasman.2008.08.020
63 M Zhang, H Dong, L Zhao, D Wang, D Meng (2019). A review on Fenton process for organic wastewater treatment based on optimization perspective. Science of the Total Environment, 670: 110–121
https://doi.org/10.1016/j.scitotenv.2019.03.180
64 Q Q Zhang, B H Tian, X Zhang, A Ghulam, C R Fang, R He (2013). Investigation on characteristics of leachate and concentrated leachate in three landfill leachate treatment plants. Waste Management (New York, N.Y.), 33(11): 2277–2286
https://doi.org/10.1016/j.wasman.2013.07.021
65 X Zhang, J Fu, Y Zhang, L Lei (2008). A nitrogen functionalized carbon nanotube cathode for highly efficient electrocatalytic generation of H2O2 in Electro-Fenton system. Separation and Purification Technology, 64(1): 116–123
https://doi.org/10.1016/j.seppur.2008.07.020
66 J Zhao, F Ouyang, Y Yang, W Tang (2020). Degradation of recalcitrant organics in nanofiltration concentrate from biologically pretreated landfill leachate by ultraviolet-Fenton method. Separation and Purification Technology, 235: 116076
https://doi.org/10.1016/j.seppur.2019.116076
67 B Zhou, Z Yu, Q Wei, H Y Long, Y Xie, Y Wang (2016). Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode. Applied Surface Science, 377: 406–415
https://doi.org/10.1016/j.apsusc.2016.03.045
[1] Ying Xu, Hui Gong, Xiaohu Dai. High-solid anaerobic digestion of sewage sludge: achievements and perspectives[J]. Front. Environ. Sci. Eng., 2021, 15(4): 71-.
[2] Songwei Lin, Yaobin Lu, Bo Ye, Cuiping Zeng, Guangli Liu, Jieling Li, Haiping Luo, Renduo Zhang. Pesticide wastewater treatment using the combination of the microbial electrolysis desalination and chemical-production cell and Fenton process[J]. Front. Environ. Sci. Eng., 2020, 14(1): 12-.
[3] G. S. Muthu Iswarya, B. Nirkayani, A. Kavithakani, V. C. Padmanaban. Statistical modeling of radiolytic (60Co g) degradation of Ofloxacin, antibiotic: Synergetic effect, kinetic studies & assessment of its degraded metabolites[J]. Front. Environ. Sci. Eng., 2019, 13(3): 42-.
[4] Liang SUN, Can WANG, Min JI, Fen WANG. Achieving biodegradability enhancement and acute biotoxicity removal through the treatment of pharmaceutical wastewater using a combined internal electrolysis and ultrasonic irradiation technology[J]. Front Envir Sci Eng Chin, 2011, 5(3): 481-487.
[5] HE Yiliang, ZHAO Bin, HUGHES Joseph B., HAN Sung Soo. Fenton oxidation of 2,4- and 2,6-dinitrotoluene and acetone inhibition[J]. Front.Environ.Sci.Eng., 2008, 2(3): 326-332.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed