Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2010, Vol. 4 Issue (3) : 280-285    https://doi.org/10.1007/s11783-010-0235-9
Research articles
Bioreduction of nitrate in groundwater using a pilot-scale hydrogen-based membrane biofilm reactor
Youneng TANG1,Michal ZIV-EL1,Chen ZHOU1,Jung Hun SHIN1,Chang Hoon AHN1,Bruce E. RITTMANN1,Kerry MEYER2,Daniel CANDELARIA2,David FRIESE3,Ryan OVERSTREET3,Rick SCOTT4,
1.Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, Tempe, AZ 85287, USA; 2.CH2M Hill, Englewood, CO 80112, USA; 3.Applied Process Technology, Inc., Pleasant Hill, CA 94523, USA; 4.City of Glendale, Glendale, AZ 85303, USA;
 Download: PDF(225 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A long-term pilot-scale H2-based membrane biofilm reactor (MBfR) was tested for removal of nitrate from actual groundwater. A key feature of this second-generation pilot MBfR is that it employed lower cost polyester hollow fibers and still achieved high loading rate. The steady-state maximum nitrate surface loading at which the effluent nitrate and nitrite concentrations were below the Maximum Contaminant Level (MCL) was at least 5.9 g·N·(m2·d)−1, which corresponds to a maximum volumetric loading of at least 7.7 kg·N·(m3·d) −1. The steady-state maximum nitrate surface area loading was higher than the highest nitrate surface loading reported in the first-generation MBfRs using composite fibers (2.6 g·N·(m2·d)−1). This work also evaluated the H2-utilization efficiency in MBfR. The measured H2 supply rate was only slightly higher than the stoichiometric H2-utilization rate. Thus, H2 utilization was controlled by diffusion and was close to 100% efficiency, as long as biofilm accumulated on the polyester-fiber surface and the fibers had no leaks.
Keywords denitrification      groundwater treatment      hydrogen      membrane biofilm reactor (MBfR)      polyester fiber      
Issue Date: 05 September 2010
 Cite this article:   
Youneng TANG,Michal ZIV-EL,Chen ZHOU, et al. Bioreduction of nitrate in groundwater using a pilot-scale hydrogen-based membrane biofilm reactor[J]. Front.Environ.Sci.Eng., 2010, 4(3): 280-285.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0235-9
https://academic.hep.com.cn/fese/EN/Y2010/V4/I3/280
Gros H, Schnoor G, Rutten P. Biological denitrificationprocess with hydrogen-oxidizing bacteria for drinking water treatment. Water Supply, 1998, 6: 193―198
Lee K C, Rittmann B E. Applying a novel autohydrogenotrophic hollow-fiber membrane biofilmreactor for denitrification of drinking water. Water Research, 2002, 36(8): 2040―2052

doi: 10.1016/S0043-1354(01)00425-0
Rittmann B E. The membrane biofilm reactor: the natural partnershipof membranes and biofilm. Water Scienceand Technology, 2006, 53(3): 219―225

doi: 10.2166/wst.2006.096
Chung J, Rittmann B E, Wright W F, Bowman R H. Simultaneous bio-reduction of nitrate, perchlorate, selenate,chromate, arsenate, and dibromochloropropane using a hydrogen-basedmembrane biofilm reactor. Biodegradation, 2007, 18(2): 199―209

doi: 10.1007/s10532-006-9055-9
Nerenberg R, Rittmann B E, Najm I. Perchlorate reduction ina hydrogen-based membrane-biofilm reactor. Journal of American Water Works Association, 2002, 94(11): 103―114
Shin J H, Sang B I, Chung Y C, Choung Y K. A novel CSTR-type of hollow fiber membrane biofilm reactor for consecutivenitrification and denitrification. Desalination, 2008, 221(1―3): 526―533

doi: 10.1016/j.desal.2007.01.113
Nerenberg R, Rittmann B E. Hydrogen-based, hollow-fiber membrane biofilm reactor for reductionof perchlorate and other oxidized contaminants. Water Science and Technology, 2004, 49(11―12): 223―230
Rittmann B E, Nerenberg R, Lee K C, Najm I, Gillogly T E, Lehman G E, Adam S S. The hydrogen-based hollow-fiber membrane biofilm reactor(HFMBfR) for reducing oxidized contaminants. Water Science & Technology: Water Supply, 2004, 4(1): 127―133
Adham S, Gillogly T, Lehman G, Rittmann B E, Nerenberg R. MembraneBiofilm Reactor Process for Nitrate and Perchlorate Removal. AwwaRF, Denver,Colorado, USA, 2004
Lee K C, Rittmann B E. Effects of pH and precipitation on autohydrogenotrophic denitrificationusing the hollow-fiber membrane-biofilm reactor. Water Research, 2003, 37(7): 1551―1556

doi: 10.1016/S0043-1354(02)00519-5
Standard Methods for the Examinationof Water and Wastewater. 20th ed. Washington DC: American Public Health Association/American Water Works Association/WaterEnvironment Federation, 1988
Method 300.1 Determinationof inorganic anions in drinking water by ion chromatography. Washington DC: U.S. Environmental Protection Agency, 1993
Rittmann B E, McCarty P L. Environmental Biotechnology: Principles and Applications. New York: McGraw-Hill Companies, Inc, 2001
Snoeyink V L, Jenkins D. WaterChemistry. New York: Wiley, Inc, 1980
Ziv-El M, Rittmann B E. Systematic evaluation of nitrate and perchlorate bioreduction kineticsin groundwater using a hydrogen-based membrane biofilm reactor. Water Research, 2009, 43(1): 173―181

doi: 10.1016/j.watres.2008.09.035
[1] Yi Qian, Weichuan Qiao, Yunhao Zhang. Toxic effect of sodium perfluorononyloxy-benzenesulfonate on Pseudomonas stutzeri in aerobic denitrification, cell structure and gene expression[J]. Front. Environ. Sci. Eng., 2021, 15(5): 100-.
[2] Boyi Cheng, Yi Wang, Yumei Hua, Kate V. Heal. The performance of nitrate-reducing Fe(II) oxidation processes under variable initial Fe/N ratios: The fate of nitrogen and iron species[J]. Front. Environ. Sci. Eng., 2021, 15(4): 73-.
[3] Sanjena Narayanasamydamodaran, Jian’e Zuo, Haiteng Ren, Nawnit Kumar. Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture[J]. Front. Environ. Sci. Eng., 2021, 15(4): 66-.
[4] Yuxin Li, Jiayin Ling, Pengcheng Chen, Jinliang Chen, Ruizhi Dai, Jinsong Liao, Jiejing Yu, Yanbin Xu. Pseudomonas mendocina LYX: A novel aerobic bacterium with advantage of removing nitrate high effectively by assimilation and dissimilation simultaneously[J]. Front. Environ. Sci. Eng., 2021, 15(4): 57-.
[5] Ling Wang, Chunxue Yang, Sangeetha Thangavel, Zechong Guo, Chuan Chen, Aijie Wang, Wenzong Liu. Enhanced hydrogen production in microbial electrolysis through strategies of carbon recovery from alkaline/thermal treated sludge[J]. Front. Environ. Sci. Eng., 2021, 15(4): 56-.
[6] Yang Li, Yixin Zhang, Guangshen Xia, Juhong Zhan, Gang Yu, Yujue Wang. Evaluation of the technoeconomic feasibility of electrochemical hydrogen peroxide production for decentralized water treatment[J]. Front. Environ. Sci. Eng., 2021, 15(1): 1-.
[7] Binbin Sheng, Depeng Wang, Xianrong Liu, Guangxing Yang, Wu Zeng, Yiqing Yang, Fangang Meng. Taxonomic and functional variations in the microbial community during the upgrade process of a full-scale landfill leachate treatment plant – from conventional to partial nitrification-denitrification[J]. Front. Environ. Sci. Eng., 2020, 14(6): 93-.
[8] Wenrui Guo, Yue Wen, Yi Chen, Qi Zhou. Sulfur cycle as an electron mediator between carbon and nitrate in a constructed wetland microcosm[J]. Front. Environ. Sci. Eng., 2020, 14(4): 57-.
[9] Zhihao Si, Xinshan Song, Xin Cao, Yuhui Wang, Yifei Wang, Yufeng Zhao, Xiaoyan Ge, Awet Arefe Tesfahunegn. Nitrate removal to its fate in wetland mesocosm filled with sponge iron: Impact of influent COD/N ratio[J]. Front. Environ. Sci. Eng., 2020, 14(1): 4-.
[10] Shihao Sun, Tipei Jia, Kaiqi Chen, Yongzhen Peng, Liang Zhang. Simultaneous removal of hydrogen sulfide and volatile organic sulfur compounds in off-gas mixture from a wastewater treatment plant using a two-stage bio-trickling filter system[J]. Front. Environ. Sci. Eng., 2019, 13(4): 60-.
[11] Zhenfeng Han, Ying Miao, Jing Dong, Zhiqiang Shen, Yuexi Zhou, Shan Liu, Chunping Yang. Enhanced nitrogen removal and microbial analysis in partially saturated constructed wetland for treating anaerobically digested swine wastewater[J]. Front. Environ. Sci. Eng., 2019, 13(4): 52-.
[12] Giovanni Cagnetta, Kunlun Zhang, Qiwu Zhang, Jun Huang, Gang Yu. Augmented hydrogen production by gasification of ball milled polyethylene with Ca(OH)2 and Ni(OH)2[J]. Front. Environ. Sci. Eng., 2019, 13(1): 11-.
[13] Yujiao Sun, Juanjuan Zhao, Lili Chen, Yueqiao Liu, Jiane Zuo. Methanogenic community structure in simultaneous methanogenesis and denitrification granular sludge[J]. Front. Environ. Sci. Eng., 2018, 12(4): 10-.
[14] Mengqian Lu, Bin-Le Lin, Kazuya Inoue, Zhongfang Lei, Zhenya Zhang, Kiyotaka Tsunemi. PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan[J]. Front. Environ. Sci. Eng., 2018, 12(2): 13-.
[15] Maocong Hu, Yin Liu, Zhenhua Yao, Liping Ma, Xianqin Wang. Catalytic reduction for water treatment[J]. Front. Environ. Sci. Eng., 2018, 12(1): 3-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed