Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (4) : 539-551    https://doi.org/10.1007/s11783-013-0498-z
RESEARCH ARTICLE
Selective pseudosolubilization capability of Pseudomonas sp. DG17 on n-alkanes and uptake mechanisms analysis
Fei HUA, Hongqi WANG()
College of Water Sciences, Beijing Normal University, Beijing 100875, China
 Download: PDF(345 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Pseudosolubilized ability of Pseudomonas sp. DG17 on n-alkanes, role of biosurfactants in n-octadecane uptake and trans-membrane transport mechanism of n-octadecane were studied by analyzing amount of pseudosolubilized oil components in water phase, and the fraction of radiolabeled 14C n-octadecane in the broth and cell pellet. GC-MS results showed that pseudosolubilized oil components were mainly C12 to C28 of n-alkanes. In n-octadecane broth, pseudosolubilized n-octadecane could be accumulated as long as pseudosolubilized rate was faster than mineralization rate of substrate, and the maximum concentration of pseudosolubilized n-octadecane achieved to 45.37 mg·L-1. All of these results showed that Pseudomonas sp. DG17 mainly utilized alkanes by directly contacting with pseudosolubilized small oil droplets in the water phase. Analysis of 14C amount in cell pellet revealed that an energy-dependent system mainly controlled the trans-membrane transport of n-octadecane.

Keywords Pseudomonas      alkane      uptake      pseudosolubilization      trans-membrane transport     
Corresponding Author(s): WANG Hongqi,Email:whongqi310@sohu.com   
Issue Date: 01 August 2013
 Cite this article:   
Fei HUA,Hongqi WANG. Selective pseudosolubilization capability of Pseudomonas sp. DG17 on n-alkanes and uptake mechanisms analysis[J]. Front Envir Sci Eng, 2013, 7(4): 539-551.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0498-z
https://academic.hep.com.cn/fese/EN/Y2013/V7/I4/539
No.retention time /minnamemolecular formulaMWstruture
19.606dodecaneC12H26170
212.415tetradecaneC14H30198
313.690pentadecaneC15H32212
414.465naphthalene, 2,3,6-trimethylC13H14170
614.903hexadecaneC16H34266
715.724heptadecane, 4-methylC18H38254
816.053heptadecaneC17H36240
1017.139octadecaneC18H38254
1117.880nonadecane, 2-methylC20H42282
1217.927erucic acidC22H42O2338
1318.182nonadecaneC19H40268
1418.8021-Hexadecanol, 2-methylC17H36O256
1519.173eicosaneC20H42296
1620.115heneicosaneC21H44296
1721.016docosaneC22H46282
1821.888tricosaneC23H48296
1922.719tetracosaneC24H50338
2023.516heneicosaneC25H52350
2123.8361,2-Benzenedicarboxylic acid, diisooctyl esterC24H38O4390
2224.285hexacosaneC26H54366
2325.026heptacosaneC27H56380
2425.827octacosaneC28H58394
Tab.1  Pseudosolubilizd crude oil components in the water phase by sp. DG17
retention time /minmolecular formula20d35d
areatotal /%areatotal /%
9.603C12H261.059E+ 72.4681.118 E+ 71.286
12.415C14H301.241 E+ 73.0241.243 E+ 71.467
13.821C15 H321.074E+ 72.5041.526E+ 71.903
14.899C16H344.292E+ 60.8061.966E+ 72.452
16.062C17H369.865E+ 62.2266.658E+ 78.304
17.193C18H382.672E+ 60.7214.732E+ 75.902
18.171C19H401.240E+ 60.2913.023E+ 73.771
19.157C20 H422.924E+ 60.9223.675E+ 74.584
20.103C21 H444.490E+ 61.0523.868E+ 74.824
21.873C23 H486.746E+ 61.5813.817E+ 74.761
22.704C24H508.715E+ 62.0433.507E+ 74.374
23.506C25 H521.077E+ 72.5252.975E+ 73.711
24.273C26 H541.002E+ 72.3462.226E+ 72.776
25.015C27 H561.207E+ 72.8292.218E+ 72.766
25.816C28 H587.968E+ 62.1062.175E+ 72.713
26.740C29 H607.804E+ 61.9471.704E+ 72.125
28.023C30 H627.527 E+ 61.7461.778E+ 72.217
Tab.2  Pseudosolubilized -alkanes components in the water phase under the effect of sp. DG17
retention time /minmolecular formularesidue crude oil componentsfresh crude oil components
areatotal /%areatotal /%
9.606C12H269.221E+ 082.4811.501E+ 091.973
11.233C13H281.858E+ 094.3243.403E+ 094.463
12.408C14 H302.114E+ 094.9233.841E+ 095.043
13.690C15 H321.982E+ 094.6163.657E+ 094.798
14.899C16H342.219E+ 095.1763.327E+ 094.374
16.053C17H362.937E+ 096.8465.045E+ 096.614
17.136C18H382.219E+ 095.1212.960E+ 093.887
18.177C19H403.39E+ 097.9033.318E+ 094.351
19.164C20 H421.204E+ 092.7952.529E+ 093.315
20.110C21 H441.363E+ 093.1592.552E+ 093.348
21.876C23 H481.201E+ 092.8012.584E+ 093.392
22.709C24H501.168E+ 092.7312.357E+ 093.094
23.507C25 H528.827E+ 082.0582.109E+ 092.768
24.235C26 H548.254E+ 081.6831.701E+ 092.233
25.017C27 H568.084E+ 081.3911.284E+ 091.676
25.827C28 H587.763 E+ 081.0818.421 E+ 081.134
26.740C29 H607.534E+ 080.8217.307E+ 080.959
28.023C30 H627.521E+ 080.8146.958E+ 080.914
Tab.3  -alkanes components changes in oil film by sp. DG17
Fig.1  Cell growth of sp. DG17 on -octadecane (open triangle) and surface tension changes of culture medium (open circle)
Fig.2  Content distribution of -octadecane in the medium. Total -octadecane in the broth (open triangle); pseudosolubilization of -octadecane (filled triangle); Control group(open diamond)
Fig.3  Phase-contrast micrograph of oil droplets size in the culture medium (a: crude oil droplets in the water phase after incubation for 35d-40 magnification; b: -octadecane droplets in the water phase at 48h-40 magnification). Bar represents 0.02 mm
Fig.4  Morphological changes of sp. DG17 (a) Cells grown on crude oil at 35d-30000 magnification; (b) Cells grown on 400 mg·L of octadecane at 120h-20000 magnification). Bar represents 2 μm
Fig.5  C -octadecane biodegradation by sp. DG17 in the aqueous phase (a) and cellular C (b) of sp. DG17. C in control group (open squares); Cells in the absence of NaN (open triangles); Cells in the presence of NaN (open diamonds)
Fig.6  Effect of different inhibitors on the transport of C -octadecane by sp. DG17. Cells in the absence of inhibitor (open diamonds), cells treated with 0.1 mmol·LCCCP (open squares), and cells treated with 30 mmol·L NaN (open triangles)
1 Wentzel A, Ellingsen T E, Kotlar H K, Zotchev S B, Throne-Holst M. Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol , 2007, 76(6): 1209-1221
doi: 10.1007/s00253-007-1119-1 pmid:17673997
2 Kim I S, Foght J M, Gray M R. Selective transport and accumulation of alkanes by Rhodococcus erythropolis S+14He. Biotechnol Bioeng , 2002, 80(6): 650-659
doi: 10.1002/bit.10421 pmid:12378606
3 Woo S H, Park J M. Microbial degradation and enhanced bioremediation of polycyclic aromatic hydrocarbons. J Ind Eng Chem , 2004, 10(1): 16-23
4 Al-Tahhan R, Sandrin T R, Bodour A A, Maier R M. Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol , 2000, 66(8): 3262-3268
doi: 10.1128/AEM.66.8.3262-3268.2000
5 Herman D C, Zhang Y, Miller R M. Rhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions. Appl Environ Microbiol , 1997, 63(9): 3622-3627
pmid:9293014
6 Zhang Y, Miller R M. Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol , 1994, 60(6): 2101-2106
pmid:8031099
7 Zhang Y M, Miller R M. Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes. Appl Environ Microbiol , 1995, 61(6): 2247-2251
pmid:16535047
8 Vasileva-T E, Gesheva V. Glycolipids produced by Antartic Nocardioides sp. during growth on n-paraffin. Process Biochem , 2005, 40(7): 2387-2391
doi: 10.1016/j.procbio.2004.09.018
9 Bouchez-Naitali M, Vandecasteele J P. Biosurfactants, an help in the biodegradation of hexadecane? The case of Rhodococcus and Pseudomonas strains. World J Microbiol Biotechnol , 2008, 24(9): 1901-1907
doi: 10.1007/s11274-008-9691-9
10 Rosenberg E. Exploiting microbial growth on hydrocarbon: New markets. Trends Biotechnol , 1993, 11(10): 419-424
doi: 10.1016/0167-7799(93)90005-T
11 Bouchez-Naitali M, Rakatozafy H, Marchal R, Leveau J Y, Vandecasteele J P. Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. J Appl Microbiol , 1999, 86(3): 421-428
doi: 10.1046/j.1365-2672.1999.00678.x pmid:10196747
12 Nakahara T, Erickson L E, Gutierrez J R. Characteristics of hydrocarbon uptake in cultures with two liquid phases. Biotechnol Bioeng , 1997, 19(1): 9-25
doi: 10.1002/bit.260190103 pmid:843616
13 Wick L Y, de Munain A R, Springael D, Harms H. Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl Microbiol Biotechnol , 2002, 58(3): 378-385
doi: 10.1007/s00253-001-0898-z pmid:11935191
14 Tecon R, van der Meer J R. Effect of two types of biosurfactants on phenanthrene availability to the bacterial bioreporter Burkholderia sartisoli strain RP037. Appl Microbiol Biotechnol , 2010, 85(4): 1131-1139
doi: 10.1007/s00253-009-2216-0 pmid:19730847
15 Sotirova A, Spasova D, Vasileva-Tonkova E, Galabova D. Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa. Microbiol Res , 2009, 164(3): 297-303
doi: 10.1016/j.micres.2007.01.005 pmid:17416508
16 Prabhu Y, Phale P S. Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Appl Microbiol Biotechnol , 2003, 61(4): 342-351
pmid:12743764
17 Cameotra S S, Singh P. Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species. Microb Cell Fact , 2009, 8(16): 1-7
pmid:19126236
18 Beal R, Betts W B. Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. J Appl Microbiol , 2000, 89(1): 158-168
doi: 10.1046/j.1365-2672.2000.01104.x pmid:10945793
19 Kallimanis A, Frillingos S, Drainas C, Koukkou A I. Taxonomic identification, phenanthrene uptake activity, and membrane lipid alterations of the PAH degrading Arthrobacter sp. strain Sphe3. Appl Microbiol Biotechnol , 2007, 76(3): 709-717
doi: 10.1007/s00253-007-1036-3 pmid:17583808
20 Bugg T, Foght J M, Pickard M A, Gray M R. Uptake and active efflux of polycyclic aromatic hydrocarbons by Pseudomonas fluorescens LP6a. Appl Environ Microbiol , 2000, 66(12): 5387-5392
doi: 10.1128/AEM.66.12.5387-5392.2000 pmid:11097918
21 Whitman B E, Lueking D R, Mihelcic J R. Naphthalene uptake by a Pseudomonas fluorescens isolate. Can J Microbiol , 1998, 44(11): 1086-1093
pmid:10030003
22 Miyata N, Iwahori K, Foght J M, Gray M R. Saturable, energy-dependent uptake of phenanthrene in aqueous phase by Mycobacterium sp. strain RJGII-135. Appl Environ Microbiol , 2004, 70(1): 363-369
doi: 10.1128/AEM.70.1.363-369.2004 pmid:14711664
23 Gray R M, Bugg T. Selective biocatalysis in bacteria controlled by active membrane transport. Ind Eng Chem Res , 2001, 40(23): 5126-5131
doi: 10.1021/ie001010b
24 Mihelcic J R, Lueking D R, Mitzell R J, Stapleton J M. Bioavailability of sorbed and separate phase chemicals. Biodegradation , 1993, 4(3): 141-153
doi: 10.1007/BF00695116
25 Shishido M, Toda M. Apparent zero-order kinetics of phenol biodegradation by substrate-inhibited microbes at low substrate concentrations. Biotechnol Bioeng , 1996, 50(6): 709-717
doi: 10.1002/(SICI)1097-0290(19960620)50:6<709::AID-BIT12>3.0.CO;2-9 pmid:18627080
26 Wen Y, Cheng H, Lu L J, Liu J, Feng Y, Guan W, Zhou Q, Huang X F. Analysis of biological demulsification process of water-in-oil emulsion by Alcaligenes sp. S-XJ-1. Bioresour Technol , 2010, 101(21): 8315-8322
doi: 10.1016/j.biortech.2010.05.088 pmid:20576429
27 Hua F, Wang H. Uptake modes of octadecane by Pseudomonas sp. DG17 and synthesis of biosurfactant. J Appl Microbiol , 2012, 112(1): 25-37
doi: 10.1111/j.1365-2672.2011.05178.x pmid:22008053
28 Ron E Z, Rosenberg E. Biosurfactants and oil bioremediation. Curr Opin Biotechnol , 2002, 13(3): 249-252
doi: 10.1016/S0958-1669(02)00316-6 pmid:12180101
29 Goswami P, Singh H D. Different modes of hydrocarbon uptake by two Pseudomonas species. Biotechnol Bioeng , 1991, 37(1): 1-11
doi: 10.1002/bit.260370103 pmid:18597301
30 Cubitto M A, Morán A C, Commendatore M, Chiarello M N, Baldini M D, Si?eriz F. Effects of Bacillus subtilis O9 biosurfactant on the bioremediation of crude oil-polluted soils. Biodegradation , 2004, 15(5): 281-287
doi: 10.1023/B:BIOD.0000042186.58956.8f pmid:15523911
31 de Carvalho C C C R, Poretti A, da Fonseca M M R. Cell adaptation to solvent, substrate and product: a successful strategy to overcome product inhibition in a bioconversion system. Appl Microbiol Biotechnol , 2005, 69(3): 268-275
doi: 10.1007/s00253-005-1967-5 pmid:15841371
32 Abalos A, Vinas M, Sabate J, Manresa M A, Solanas A M. Enhanced biodegradation of Casablanca crude oil by a microbial consortium in presence of a rhamnolipid produced by Pseudomonas aeruginosa AT10. Biodegradation , 2004, 15(4): 249-260
doi: 10.1023/B:BIOD.0000042915.28757.fb pmid:15473554
33 Ivshina I B, Kuyukina M S, Philp J C, Christofi N. Oil desorption from mineral and organic materials using biosurfactant complexes produced by Rhodococcus species. World J Microbiol Biotechnol , 1998, 14(5): 711-717
doi: 10.1023/A:1008885309221
34 Lindley N D, Heydeman M T. The uptake of n-alkanes from alkane mixtures during growth of the hydrocarbon-utilizing fungus Cladosporium resinae. Appl Microbiol Biotechnol , 1996, 23(5): 384-388
doi: 10.1007/BF00257038
35 Lee M H, Hwang M O, Choi S Y, Min K H. n-Alkane dissimilation by Rhodopseudomonas sphaeroides transferred OCT plasmid. Microb Ecol , 1993, 26(3): 219-226
doi: 10.1007/BF00176954
36 Vasileva-Tonkova E, Gesheva V. Biosurfactant production by antarctic facultative anaerobe Pantoea sp. during growth on hydrocarbons. Curr Microbiol , 2007, 54(2): 136-141
doi: 10.1007/s00284-006-0345-6 pmid:17211540
37 Perfumo A, Banat I M, Canganella F, Marchant R. Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1. Appl Microbiol Biotechnol , 2006, 72(1): 132-138
doi: 10.1007/s00253-005-0234-0 pmid:16344932
38 Rosenberg E, Gottlieb A, Rosenberg M. Inhibition of bacterial adherence to hydrocarbons and epithelial cells by emulsan. Infect Immun , 1983, 39(3): 1024-1028
pmid:6341225
39 Scott C C L, Finnerty W R. Characterization of intracytoplasmic hydrocarbon inclusions from the hydrocarbon-oxidizing Acinetobacter species HO1-N. J Bacteriol , 1976, 127(1): 481-489
pmid:179978
40 Heipieper H J, Meinhardt F, Segura A. The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol Lett , 2003, 229(1): 1-7
doi: 10.1016/S0378-1097(03)00792-4 pmid:14659535
41 Witholt B, de met M J, Kingma J, Vanbeilen J B, Kok M, Lageveen R G, Eggink G. Bioconversion of aliphatic hydrocarbons by Pseudomonas oleovorans in multiphase bioreactors: background and economic potential. Trends Biotechnol , 1990, 8: 46-52
doi: 10.1016/0167-7799(90)90133-I pmid:1366497
42 Chauhan A, Fazlurrahman, Oakeshott J G, Jain R K. Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation. Indian J Microbiol , 2008, 48(1): 95-113
doi: 10.1007/s12088-008-0010-9
43 Barabas G, Vargha G, Szabo I M, Penyige A, Damjanovich S, Szollosi J, Matko J, Hirano T, Matyus A, Szabó I. n-Alkane uptake and utilisation by Streptomyces strains. Antonie van Leeuwenhoek , 2001, 79(3-4): 269-276
doi: 10.1023/A:1012030309817 pmid:11816969
[1] Ying Cui, Feng Tan, Yan Wang, Suyu Ren, Jingwen Chen. Diffusive gradients in thin films using molecularly imprinted polymer binding gels for in situ measurements of antibiotics in urban wastewaters[J]. Front. Environ. Sci. Eng., 2020, 14(6): 111-.
[2] Hongqi Wang, Ruhan Jiang, Dekang Kong, Zili Liu, Xiaoxiong Wu, Jie Xu, Yi Li. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins[J]. Front. Environ. Sci. Eng., 2020, 14(1): 9-.
[3] Xin Xing, Yin Yu, Hongbo Xi, Guangqing Song, Yajiao Wang, Jiane Zuo, Yuexi Zhou. Reduction of wastewater toxicity and change of microbial community in a hydrolysis acidification reactor pre-treating trimethylolpropane wastewater[J]. Front. Environ. Sci. Eng., 2018, 12(6): 12-.
[4] Yueqiao Liu, Aizhong Ding, Yujiao Sun, Xuefeng Xia, Dayi Zhang. Impacts of n-alkane concentration on soil bacterial community structure and alkane monooxygenase genes abundance during bioremediation processes[J]. Front. Environ. Sci. Eng., 2018, 12(5): 3-.
[5] Bin MA, Shuying WANG, Guibing ZHU, Shijian GE, Junmin WANG, Nanqi Ren, Yongzhen PENG. Denitrification and phosphorus uptake by DPAOs using nitrite as an electron acceptor by step-feed strategies[J]. Front Envir Sci Eng, 2013, 7(2): 267-272.
[6] Jinbo ZHAO, Xuehua LIU. Organic and inorganic phosphorus uptake by bacteria in a plug-flow microcosm[J]. Front Envir Sci Eng, 2013, 7(2): 173-184.
[7] Dengqiang FU, Ying TENG, Yuanyuan SHEN, Mingming SUN, Chen TU, Yongming LUO, Zhengao LI, Peter CHRISTIE. Dissipation of polycyclic aromatic hydrocarbons and microbial activity in a field soil planted with perennial ryegrass[J]. Front Envir Sci Eng, 2012, 6(3): 330-335.
[8] Changyong WU, Xiaoling LI, Zhiqiang CHEN, Yongzhen PENG, . Effect of short-term atrazine addition on the performance of an anaerobic/anoxic/oxic process[J]. Front.Environ.Sci.Eng., 2010, 4(2): 150-156.
[9] LIU Hong, YAN Yixin, WANG Wenyan, YU Yongyong. Low intensity ultrasound stimulates biological activity of aerobic activated sludge[J]. Front.Environ.Sci.Eng., 2007, 1(1): 67-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed