Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (1) : 1    https://doi.org/10.1007/s11783-017-0893-y
FEATURE ARTICLE
Microbial mediated arsenic biotransformation in wetlands
Si-Yu Zhang1,2,Paul N. Williams3,Jinming Luo4,Yong-Guan Zhu1,5()
1. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
2. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
3. Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, BT9 7BN, UK
4. Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
5. Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
 Download: PDF(268 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Distribution and behavior of arsenic in wetland are summarized.

Macro-scale and micro-scale processes in wetland are reviewed.

Microbes act as the switch in determining wetland as a source or sink of arsenic.

Environmental factors affecting arsenic microbial biotransformation are summarized.

Arsenic (As) is a pervasive environmental toxin and carcinogenic metalloid. It ranks at the top of the US priority List of Hazardous Substances and causes worldwide human health problems. Wetlands, including natural and artificial ecosystems (i.e. paddy soils) are highly susceptible to As enrichment; acting not only as repositories for water but a host of other elemental/chemical moieties. While macro-scale processes (physical and geological) supply As to wetlands, it is the micro-scale biogeochemistry that regulates the fluxes of As and other trace elements from the semi-terrestrial to neighboring plant/aquatic/atmospheric compartments. Among these fine-scale events, microbial mediated As biotransformations contribute most to the element’s changing forms, acting as the ‘switch’ in defining a wetland as either a source or sink of As. Much of our understanding of these important microbial catalyzed reactions follows relatively recent scientific discoveries. Here we document some of these key advances, with focuses on the implications that wetlands and their microbial mediated transformation pathways have on the global As cycle, the chemistries of microbial mediated As oxidation, reduction and methylation, and future research priorities areas.

Keywords Arsenic      Wetland      Microbes      Switch     
PACS:     
Fund: 
Corresponding Author(s): Yong-Guan Zhu   
Issue Date: 25 November 2016
 Cite this article:   
Si-Yu Zhang,Paul N. Williams,Jinming Luo, et al. Microbial mediated arsenic biotransformation in wetlands[J]. Front. Environ. Sci. Eng., 2017, 11(1): 1.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0893-y
https://academic.hep.com.cn/fese/EN/Y2017/V11/I1/1
Fig.1  Sources of As introduced to wetland, microbial mediated As biotransformation in wetland, and genes responsible for AsV respiratory reduction, AsV detoxification reduction, AsIII oxidation, and AsIII methylation.
species structure of As speciation
Arsenite, AsIII

Aesenate, AsV

Methylarsonate, MMAsV

Dimethylarsinate, DMAsV

Thrimethylarsine oxide, TMAO

Aesenosugars

Arsenobetaine, AsB

Tab.1  Structure of prevalent As species in the environment.
sediment quality guidelines in various countries country level As concentration (mg·kg−1) references
Hongkong ISQVs China ISQV-low 8.2 [15]
ISQV-high 70
Sediment Quality Criteria China Class I 20 [16]
Class II 65
Canadian Environmental Quality Guideline Canada ISQGs 7.24 [17]
PEL 41.6
Tab.2  The quality guidelines for As contamination in wetlands from different countries.
wetland types country sampling location As concentration (mg·kg−1/mg·L−1) references
coastal wetlands China Yellow River delta 38 [18]
45
Yangtze River delta 10 [19]
inland wetlands US Massachusetts 20-2100 [20]
Spain Guadalquivir 20 [21]
Fatehpur 72-114
paddy soils Bangladesh Dhumrakandi 62-138 [22]
Paranpur 73-77
Faridpur 34
India De Ganga 17
China Chenzhou 60 [23]
Qiyang 79
Anqing 19
Jiaxing 20
Yingtan 16
Jingzhou 19
Changde 16
Jiangmen 25
Guilin 21
Guiyang 21
Zhanjiang 18
wetland waters Bangladesh Malahar 60 [24]
Gerajan 80
Dohuria 11-14
Behi 11
Porabait 26
Barakhaillah 20
Jora 11
Uhila 18
Barakuri 11
Jerukuri 11
Bigaira 11
Tab.3  Summary of recently detected arsenic contaminated wetlands.
1 Oremland R S, Stolz J F. The ecology of arsenic. Science, 2003, 300(5621): 939–944
https://doi.org/10.1126/science.1081903 pmid: 12738852
2 Zhu Y G, Yoshinaga M, Zhao F J, Rosen B P. Earth abides arsenic biotransformations. Annual Review of Earth and Planetary Sciences, 2014, 42(0): 443–467
https://doi.org/10.1146/annurev-earth-060313-054942 pmid: 26778863
3 Bhattacharya P, Welch A H, Stollenwerk K G, McLaughlin M J, Bundschuh J, Panaullah G. Arsenic in the environment: Biology and Chemistry. Science of the Total Environment, 2007, 379(2-3): 109–120
https://doi.org/10.1016/j.scitotenv.2007.02.037 pmid: 17434206
4 Bentley R, Chasteen T G. Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiology and Molecular Biology Reviews, 2002, 66(2): 250–271
https://doi.org/10.1128/MMBR.66.2.250-271.2002 pmid: 12040126
5 Silbergeld E K, Nachman K. The environmental and public health risks associated with arsenical use in animal feeds. Annals of the New York Academy of Sciences, 2008, 1140(1): 346–357
https://doi.org/10.1196/annals.1454.049 pmid: 18991934
6 Murray L A, Raab A, Marr I L, Feldmann J. Biotransformation of arsenate to arsenosugars by Chlorella vulgaris. Applied Organometallic Chemistry, 2003, 17(9): 669–674
https://doi.org/10.1002/aoc.498
7 Moore J W, Ramamoorthy S. Heavy metals in natural waters: applied monitoring and impact assessment. New York: Springer Science & Business Media, 2012
8 Zedler J B, Kercher S. Wetland resources: status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources, 2005, 30(1): 39–74
https://doi.org/10.1146/annurev.energy.30.050504.144248
9 Keddy P A. Wetland Ecology: Principles and Conservation. Cambridge: Cambridge University Press, 2010
10 Chmura G L, Anisfeld S C, Cahoon D R, Lynch J C. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 2003, 17(4): 1–12
https://doi.org/10.1029/2002GB001917
11 Wang S, Wang Y, Feng X, Zhai L, Zhu G. Quantitative analyses of ammonia-oxidizing Archaea and bacteria in the sediments of four nitrogen-rich wetlands in China. Applied Microbiology and Biotechnology, 2011, 90(2): 779–787
https://doi.org/10.1007/s00253-011-3090-0 pmid: 21253721
12 Qin J, Lehr C R, Yuan C, Le X C, McDermott T R, Rosen B P. Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(13): 5213–5217
https://doi.org/10.1073/pnas.0900238106 pmid: 19276121
13 Bhakta J N, Munekage Y. Spatial distribution and contamination status of arsenic, cadmium and lead in some coastal shrimp (Macrobrachium rosenbergii) farming ponds of Viet Nam. Pacific Journal of Science and Technology, 2009, 11: 606–615
14 Wang S, Mulligan C N. Occurrence of arsenic contamination in Canada: sources, behavior and distribution. Science of the Total Environment, 2006, 366(2-3): 701–721
https://doi.org/10.1016/j.scitotenv.2005.09.005 pmid: 16203025
15 Chapman P M, Wang F, Janssen C, Persoone G, Allen H E. Ecotoxicology of metals in aquatic sediments: binding and release, bioavailability, risk assessment, and remediation. Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55(10): 2221–2243
https://doi.org/10.1139/f98-145
16 National Standard of PR China. National Standard of PR China Marine Sediment Quality (GB 18668–2002). Beijing: Standards Press of China, 2002 (in Chinese)
17 Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. Canadian Environmental Quality Guidelines (1999). Canadian Council of Ministers of the Environment Winnipeg, 2001
18 Bai J, Xiao R, Zhang K, Gao H. Arsenic and heavy metal pollution in wetland soils from tidal freshwater and salt marshes before and after the flow-sediment regulation regime in the Yellow River Delta, China. Journal of Hydrology (Amsterdam), 2012, 450: 244–253
https://doi.org/10.1016/j.jhydrol.2012.05.006
19 Gorenc S, Kostaschuk R, Chen Z. Spatial variations in heavy metals on tidal flats in the Yangtze Estuary, China. Environmental Geology, 2004, 45(8): 1101–1108
https://doi.org/10.1007/s00254-004-0968-5
20 Wilkin R T, Ford R G. Arsenic solid-phase partitioning in reducing sediments of a contaminated wetland. Chemical Geology, 2006, 228(1): 156–174
https://doi.org/10.1016/j.chemgeo.2005.11.022
21 Kraus U, Wiegand J. Long-term effects of the Aznalcóllar mine spill-heavy metal content and mobility in soils and sediments of the Guadiamar River Valley (SW Spain). Science of the Total Environment, 2006, 367(2-3): 855–871
https://doi.org/10.1016/j.scitotenv.2005.12.027 pmid: 16500695
22 Stroud J L, Khan M A, Norton G J, Islam M R, Dasgupta T, Zhu Y G, Price A H, Meharg A A, McGrath S P, Zhao F J. Assessing the labile arsenic pool in contaminated paddy soils by isotopic dilution techniques and simple extractions. Environmental Science & Technology, 2011, 45(10): 4262–4269
https://doi.org/10.1021/es104080s pmid: 21504212
23 Zhang S Y, Zhao F J, Sun G X, Su J Q, Yang X R, Li H, Zhu Y G. Diversity and abundance of arsenic biotransformation genes in paddy soils from southern China. Environmental Science & Technology, 2015, 49(7): 4138–4146
https://doi.org/10.1021/acs.est.5b00028 pmid: 25738639
24 Alam M, Ali M, Al-Harbi N A, Choudhury T R. Contamination status of arsenic, lead, and cadmium of different wetland waters. Toxicological and Environmental Chemistry, 2011, 93(10): 1934–1945
https://doi.org/10.1080/02772248.2011.622073
25 Huq S I, Rahman A, Sultana N, Naidu R. Extent and Severity of Arsenic Contamination in Soils of Bangladesh. Fate of Arsenic in the Environment. Dhaka: Bangladesh University of Engineering and Technology, 2003, 69–84
26 Huq S I, Shoaib J U M. Soils and humans. The Soils of Bangladesh. 2013, 125–129
27 Lu Y, Adomako E E, Solaiman A R, Islam M R, Deacon C, Williams P N, Rahman G K, Meharg A A. Baseline soil variation is a major factor in arsenic accumulation in Bengal Delta paddy rice. Environmental Science & Technology, 2009, 43(6): 1724–1729
https://doi.org/10.1021/es802794w pmid: 19368163
28 Meharg A A, Rahman M M. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environmental Science & Technology, 2003, 37(2): 229–234
https://doi.org/10.1021/es0259842 pmid: 12564892
29 Williams P N, Zhang H, Davison W, Meharg A A, Hossain M, Norton G J, Brammer H, Islam M R. Organic matter-solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils. Environmental Science & Technology, 2011, 45(14): 6080–6087
https://doi.org/10.1021/es2003765 pmid: 21692537
30 Polizzotto M L, Kocar B D, Benner S G, Sampson M, Fendorf S. Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature, 2008, 454(7203): 505–508
https://doi.org/10.1038/nature07093 pmid: 18650922
31 Meharg A A.Venomous Earth: How Arsenic Caused the World's Worst Mass Poisoning. London: Palgrave Macmillan Ltd.,  2005
32 Meharg A A, Zhao F J. Biogeochemistry of Arsenic in Paddy Environments. In Arsenic & Rice. 2012, 71–101
33 Williams P N, Villada A, Deacon C, Raab A, Figuerola J, Green A J, Feldmann J, Meharg A A. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environmental Science & Technology, 2007, 41(19): 6854–6859
https://doi.org/10.1021/es070627i pmid: 17969706
34 Huang H, Jia Y, Sun G X, Zhu Y G. Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters. Environmental Science & Technology, 2012, 46(4): 2163–2168
https://doi.org/10.1021/es203635s pmid: 22295880
35 Jia Y, Huang H, Zhong M, Wang F H, Zhang L M, Zhu Y G. Microbial arsenic methylation in soil and rice rhizosphere. Environmental Science & Technology, 2013, 47(7): 3141–3148
pmid: 23469919
36 Williams P N, Lei M, Sun G, Huang Q, Lu Y, Deacon C, Meharg A A, Zhu Y G. Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China. Environmental Science & Technology, 2009, 43(3): 637–642
https://doi.org/10.1021/es802412r pmid: 19244995
37 Zhao F J, Harris E, Yan J, Ma J, Wu L, Liu W, McGrath S P, Zhou J, Zhu Y G. Arsenic methylation in soils and its relationship with microbial arsM abundance and diversity, and as speciation in rice. Environmental Science & Technology, 2013, 47(13): 7147–7154
pmid: 23750559
38 Zhang S Y, Zhao F J, Sun G X, Su J Q, Yang X R, Li H, Zhu Y G. Diversity and abundance of arsenic biotransformation genes in paddy soils from southern China. Environmental Science & Technology, 2015, 49(7): 4138–4146
https://doi.org/10.1021/acs.est.5b00028 pmid: 25738639
39 Mestrot A, Feldmann J, Krupp E M, Hossain M S, Roman-Ross G, Meharg A A. Field fluxes and speciation of arsines emanating from soils. Environmental Science & Technology, 2011, 45(5): 1798–1804
https://doi.org/10.1021/es103463d pmid: 21284382
40 Grimalt J O, Ferrer M, Macpherson E. The mine tailing accident in Aznalcollar. Science of the Total Environment, 1999, 242(1–3): 3–11
https://doi.org/10.1016/S0048-9697(99)00372-1 pmid: 10635575
41 Mateo R, Taggart M A, Green A J, Cristófol C, Ramis A, Lefranc H, Figuerola J, Meharg A A. Altered porphyrin excretion and histopathology of greylag geese (Anser anser) exposed to soil contaminated with lead and arsenic in the Guadalquivir Marshes, southwestern Spain. Environmental Toxicology and Chemistry, 2006, 25(1): 203–212
https://doi.org/10.1897/04-460R.1 pmid: 16494243
42 Yamaguchi N, Nakamura T, Dong D, Takahashi Y, Amachi S, Makino T. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere, 2011, 83(7): 925–932
https://doi.org/10.1016/j.chemosphere.2011.02.044 pmid: 21420713
43 Xu X Y, McGrath S P, Meharg A A, Zhao F J. Growing rice aerobically markedly decreases arsenic accumulation. Environmental Science & Technology, 2008, 42(15): 5574–5579
https://doi.org/10.1021/es800324u pmid: 18754478
44 Cummings D E, Caccavo F, Fendorf S, Rosenzweig R F. Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environmental Science & Technology, 1999, 33(5): 723–729
https://doi.org/10.1021/es980541c
45 Takahashi Y, Minamikawa R, Hattori K H, Kurishima K, Kihou N, Yuita K. Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environmental Science & Technology, 2004, 38(4): 1038–1044
https://doi.org/10.1021/es034383n pmid: 14998016
46 Harvey C F, Swartz C H, Badruzzaman A B, Keon-Blute N, Yu W, Ali M A, Jay J, Beckie R, Niedan V, Brabander D, Oates P M, Ashfaque K N, Islam S, Hemond H F, Ahmed M F. Arsenic mobility and groundwater extraction in Bangladesh. Science, 2002, 298(5598): 1602–1606
https://doi.org/10.1126/science.1076978 pmid: 12446905
47 Bostick B C, Chen C, Fendorf S. Arsenite retention mechanisms within estuarine sediments of Pescadero, CA. Environmental Science & Technology, 2004, 38(12): 3299–3304
https://doi.org/10.1021/es035006d pmid: 15260327
48 Lizama A K, Fletcher T D, Sun G. Removal processes for arsenic in constructed wetlands. Chemosphere, 2011, 84(8): 1032–1043
https://doi.org/10.1016/j.chemosphere.2011.04.022 pmid: 21549410
49 Morse J W. Interactions of trace metals with authigenic sulfide minerals: implications for their bioavailability. Marine Chemistry, 1994, 46(1): 1–6
https://doi.org/10.1016/0304-4203(94)90040-X
50 Saulnier I, Mucci A. Trace metal remobilization following the resuspension of estuarine sediments: Saguenay Fjord, Canada. Applied Geochemistry, 2000, 15(2): 191–210
https://doi.org/10.1016/S0883-2927(99)00034-7
51 Kirk G. The Biogeochemistry of Submerged Soils. London: John Wiley & Sons, 2004
52 Ye J, Rensing C, Rosen B P, Zhu Y G. Arsenic biomethylation by photosynthetic organisms. Trends in Plant Science, 2012, 17(3): 155–162
https://doi.org/10.1016/j.tplants.2011.12.003 pmid: 22257759
53 Maguffin S C, Kirk M F, Daigle A R, Hinkle S R, Jin Q. Substantial contribution of biomethylation to aquifer arsenic cycling. Nature Geoscience, 2015, 8(4): 290–293
https://doi.org/10.1038/ngeo2383
54 Drahota P, Falteisek L, Redlich A, Rohovec J, Matoušek T, Cepička I. Microbial effects on the release and attenuation of arsenic in the shallow subsurface of a natural geochemical anomaly. Environmental Pollution, 2013, 180: 84–91
https://doi.org/10.1016/j.envpol.2013.05.010 pmid: 23733013
55 Mumford A C, Barringer J L, Benzel W M, Reilly P A, Young L Y. Microbial transformations of arsenic: mobilization from glauconitic sediments to water. Water Research, 2012, 46(9): 2859–2868
https://doi.org/10.1016/j.watres.2012.02.044 pmid: 22494492
56 Ohtsuka T, Yamaguchi N, Makino T, Sakurai K, Kimura K, Kudo K, Homma E, Dong D T, Amachi S. Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium Geobacter sp. OR-1. Environmental Science & Technology, 2013, 47(12): 6263–6271
pmid: 23668621
57 Slyemi D, Bonnefoy V. How prokaryotes deal with Arsenic. Environmental Microbiology Reports, 2012, 4(6): 571–586
pmid: 23760928
58 Silver S, Phung L T. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Applied and Environmental Microbiology, 2005, 71(2): 599–608
https://doi.org/10.1128/AEM.71.2.599-608.2005 pmid: 15691908
59 Rosen B P, Liu Z. Transport pathways for arsenic and selenium: a minireview. Environment International, 2009, 35(3): 512–515
https://doi.org/10.1016/j.envint.2008.07.023 pmid: 18789529
60 Mukhopadhyay R, Rosen B P, Phung L T, Silver S. Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiology Reviews, 2002, 26(3): 311–325
https://doi.org/10.1111/j.1574-6976.2002.tb00617.x pmid: 12165430
61 Stolz J F, Basu P, Santini J M, Oremland R S. Arsenic and selenium in microbial metabolism. Annual Review of Microbiology, 2006, 60(1): 107–130
https://doi.org/10.1146/annurev.micro.60.080805.142053 pmid: 16704340
62 Jia Y, Huang H, Chen Z, Zhu Y G. Arsenic uptake by rice is influenced by microbe-mediated arsenic redox changes in the rhizosphere. Environmental Science & Technology, 2014, 48(2): 1001–1007
https://doi.org/10.1021/es403877s pmid: 24383760
63 Cai L, Yu K, Yang Y, Chen B W, Li X D, Zhang T. Metagenomic exploration reveals high levels of microbial arsenic metabolism genes in activated sludge and coastal sediments. Applied Microbiology and Biotechnology, 2013, 97(21): 9579–9588
https://doi.org/10.1007/s00253-012-4678-8 pmid: 23340578
64 Chang J S, Yoon I H, Lee J H, Kim K R, An J, Kim K W. Arsenic detoxification potential of aox genes in arsenite-oxidizing bacteria isolated from natural and constructed wetlands in the Republic of Korea. Environmental Geochemistry and Health, 2010, 32(2): 95–105
https://doi.org/10.1007/s10653-009-9268-z pmid: 19548094
65 Macur R E, Jackson C R, Botero L M, McDermott T R, Inskeep W P. Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil. Environmental Science & Technology, 2004, 38(1): 104–111
https://doi.org/10.1021/es034455a pmid: 14740724
66 Afkar E, Lisak J, Saltikov C, Basu P, Oremland R S, Stolz J F. The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. FEMS Microbiology Letters, 2003, 226(1): 107–112
https://doi.org/10.1016/S0378-1097(03)00609-8 pmid: 13129615
67 Saltikov C W, Newman D K. Genetic identification of a respiratory arsenate reductase. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(19): 10983–10988
https://doi.org/10.1073/pnas.1834303100 pmid: 12939408
68 Krafft T, Macy J M. Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. European Journal of Biochemistry, 1998, 255(3): 647–653
https://doi.org/10.1046/j.1432-1327.1998.2550647.x pmid: 9738904
69 van Lis R, Nitschke W, Duval S, Schoepp-Cothenet B. Arsenics as bioenergetic substrates. Biochimica et Biophysica Acta (BBA). Bioenergetics, 2013, 1827(2): 176–188
https://doi.org/10.1016/j.bbabio.2012.08.007
70 Malasarn D, Saltikov C W, Campbell K M, Santini J M, Hering J G, Newman D K. arrA is a reliable marker for As(V) respiration. Science, 2004, 306(5695): 455–455
https://doi.org/10.1126/science.1102374 pmid: 15486292
71 Hoeft S E, Kulp T R, Stolz J F, Hollibaugh J T, Oremland R S. Dissimilatory arsenate reduction with sulfide as electron donor: experiments with Mono lake water and isolation of strain MLMS-1, a chemoautotrophic arsenate respirer. Applied and Environmental Microbiology, 2004, 70(5): 2741–2747
https://doi.org/10.1128/AEM.70.5.2741-2747.2004 pmid: 15128527
72 Bhattacharjee H, Rosen B P. Arsenic Metabolism in Prokaryotic and Eukaryotic Microbes. Molecular Microbiology of Heavy Metals. In: Nies D H, Silver S, eds. Heidelberg: Springer, 2002, 371–406
73 Islam F S, Gault A G, Boothman C, Polya D A, Charnock J M, Chatterjee D, Lloyd J R. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature, 2004, 430(6995): 68–71
https://doi.org/10.1038/nature02638 pmid: 15229598
74 Fendorf S, Michael H A, van Geen A. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science, 2010, 328(5982): 1123–1127
https://doi.org/10.1126/science.1172974 pmid: 20508123
75 Song B, Chyun E, Jaffé P R, Ward B B. Molecular methods to detect and monitor dissimilatory arsenate-respiring bacteria (DARB) in sediments. FEMS Microbiology Ecology, 2009, 68(1): 108–117
https://doi.org/10.1111/j.1574-6941.2009.00657.x pmid: 19291024
76 Héry M, Van Dongen B E, Gill F, Mondal D, Vaughan D J, Pancost R D, Polya D A, Lloyd J R. Arsenic release and attenuation in low organic carbon aquifer sediments from West Bengal. Geobiology, 2010, 8(2): 155–168
https://doi.org/10.1111/j.1472-4669.2010.00233.x pmid: 20156294
77 Oremland R S, Stolz J F. Arsenic, microbes and contaminated aquifers. Trends in Microbiology, 2005, 13(2): 45–49
https://doi.org/10.1016/j.tim.2004.12.002 pmid: 15680760
78 Tufano K J, Reyes C, Saltikov C W, Fendorf S. Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction. Environmental Science & Technology, 2008, 42(22): 8283–8289
https://doi.org/10.1021/es801059s pmid: 19068807
79 Sri Lakshmi Sunita M, Prashant S, Bramha Chari P V, Nageswara Rao S, Balaravi P, Kavi Kishor P B. Molecular identification of arsenic-resistant estuarine bacteria and characterization of their ars genotype. Ecotoxicology (London, England), 2012, 21(1): 202–212
https://doi.org/10.1007/s10646-011-0779-x pmid: 21879358
80 Vilo C, Galetovic A, Araya J E, Gómez-Silva B, Dong Q. Draft genome sequence of a Bacillus bacterium from the Atacama Desert wetlands metagenome. Genome Announcements, 2015, 3(4): 1–2
https://doi.org/10.1128/genomeA.00955-15 pmid: 26294639
81 Qin J, Rosen B P, Zhang Y, Wang G, Franke S, Rensing C. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(7): 2075–2080
https://doi.org/10.1073/pnas.0506836103 pmid: 16452170
82 Wang P P, Sun G X, Zhu Y G. Identification and characterization of arsenite methyltransferase from an archaeon, Methanosarcina acetivorans C2A. Environmental Science & Technology, 2014, 48(21): 12706–12713
https://doi.org/10.1021/es503869k pmid: 25295694
83 Yin X X, Chen J, Qin J, Sun G X, Rosen B P, Zhu Y G. Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiology, 2011, 156(3): 1631–1638
https://doi.org/10.1104/pp.111.178947 pmid: 21562336
84 Zhang S Y, Sun G X, Yin X X, Rensing C, Zhu Y G. Biomethylation and volatilization of arsenic by the marine microalgae Ostreococcus tauri. Chemosphere, 2013, 93(1): 47–53
https://doi.org/10.1016/j.chemosphere.2013.04.063 pmid: 23726009
85 Williams P N, Santner J, Larsen M, Lehto N J, Oburger E, Wenzel W, Glud R N, Davison W, Zhang H. Localized flux maxima of arsenic, lead, and iron around root apices in flooded lowland rice. Environmental Science & Technology, 2014, 48(15): 8498–8506
https://doi.org/10.1021/es501127k pmid: 24967508
86 Guan D X, Williams P N, Luo J, Zheng J L, Xu H C, Cai C, Ma L Q. Novel precipitated zirconia-based DGT technique for high-resolution imaging of oxyanions in waters and sediments. Environmental Science & Technology, 2015, 49(6): 3653–3661
https://doi.org/10.1021/es505424m pmid: 25655234
87 Oburger E, Schmidt H. New methods to unravel rhizosphere processes. Trends in Plant Science, 2016, 21(3): 243–255
https://doi.org/10.1016/j.tplants.2015.12.005 pmid: 26776474
[1] Yanxiao Si, Fang Zhang, Hong Chen, Guanghe Li, Haichuan Zhang, Dun Liu. Effect of current density on groundwater arsenite removal performance using air cathode electrocoagulation[J]. Front. Environ. Sci. Eng., 2021, 15(6): 112-.
[2] Yue Hu, Ding Dong, Kun Wan, Chao Chen, Xin Yu, Huirong Lin. Potential shift of bacterial community structure and corrosion-related bacteria in drinking water distribution pipeline driven by water source switching[J]. Front. Environ. Sci. Eng., 2021, 15(2): 28-.
[3] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
[4] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Yameng Li, Ziyu Liang. The coupling of sand with ZVI/oxidants achieved proportional and highly efficient removal of arsenic[J]. Front. Environ. Sci. Eng., 2020, 14(6): 94-.
[5] Wenrui Guo, Yue Wen, Yi Chen, Qi Zhou. Sulfur cycle as an electron mediator between carbon and nitrate in a constructed wetland microcosm[J]. Front. Environ. Sci. Eng., 2020, 14(4): 57-.
[6] Xiaoming Wan, Mei Lei, Tongbin Chen. Review on remediation technologies for arsenic-contaminated soil[J]. Front. Environ. Sci. Eng., 2020, 14(2): 24-.
[7] Zhihao Si, Xinshan Song, Xin Cao, Yuhui Wang, Yifei Wang, Yufeng Zhao, Xiaoyan Ge, Awet Arefe Tesfahunegn. Nitrate removal to its fate in wetland mesocosm filled with sponge iron: Impact of influent COD/N ratio[J]. Front. Environ. Sci. Eng., 2020, 14(1): 4-.
[8] Zhenfeng Han, Ying Miao, Jing Dong, Zhiqiang Shen, Yuexi Zhou, Shan Liu, Chunping Yang. Enhanced nitrogen removal and microbial analysis in partially saturated constructed wetland for treating anaerobically digested swine wastewater[J]. Front. Environ. Sci. Eng., 2019, 13(4): 52-.
[9] Mei Lei, Ziping Dong, Ying Jiang, Philip Longhurst, Xiaoming Wan, Guangdong Zhou. Reaction mechanism of arsenic capture by a calcium-based sorbent during the combustion of arsenic-contaminated biomass: A pilot-scale experience[J]. Front. Environ. Sci. Eng., 2019, 13(2): 24-.
[10] Xiaohui Wang, Shuai Du, Tao Ya, Zhiqiang Shen, Jing Dong, Xiaobiao Zhu. Removal of tetrachlorobisphenol A and the effects on bacterial communities in a hybrid sequencing biofilm batch reactor-constructed wetland system[J]. Front. Environ. Sci. Eng., 2019, 13(1): 14-.
[11] Yaobin Lu, Songli He, Dantong Wang, Siyuan Luo, Aiping Liu, Haiping Luo, Guangli Liu, Renduo Zhang. A pulsed switching peroxi-coagulation process to control hydroxyl radical production and to enhance 2,4-Dichlorophenoxyacetic acid degradation[J]. Front. Environ. Sci. Eng., 2018, 12(5): 9-.
[12] Ping He, Guangxue Wu, Rui Tang, Peilun Ji, Shoujun Yuan, Wei Wang, Zhenhu Hu. Influence of arsanilic acid, Cu2+, PO43 and their interaction on anaerobic digestion of pig manure[J]. Front. Environ. Sci. Eng., 2018, 12(2): 9-.
[13] Mengchuan Shui, Feng Ji, Rui Tang, Shoujun Yuan, Xinmin Zhan, Wei Wang, Zhenhu Hu. Impact of roxarsone on the UASB reactor performance and its degradation[J]. Front. Environ. Sci. Eng., 2016, 10(6): 4-.
[14] Sanne Skov NIELSEN, Peter KJELDSEN, Rasmus JAKOBSEN. Full scale amendment of a contaminated wood impregnation site with iron water treatment residues[J]. Front. Environ. Sci. Eng., 2016, 10(4): 3-.
[15] Jianguo LIU,Wen ZHANG,Peng QU,Mingxin WANG. Cadmium tolerance and accumulation in fifteen wetland plant species from cadmium-polluted water in constructed wetlands[J]. Front. Environ. Sci. Eng., 2016, 10(2): 262-269.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed