Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (1) : 6    https://doi.org/10.1007/s11783-017-0897-7
VIEWS & COMMENTS
Microplastics pollution and reduction strategies
Wei-Min Wu1(),Jun Yang2,Craig S. Criddle1
1. Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, CA 94305-4020, USA
2. School of Chemistry and Environment, Beihang University, Beijing 100191, China
 Download: PDF(377 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Microplastic particles smaller than 5 mm in size are of increasing concern, especially in aquatic environments, such as the ocean. Primary source is microbeads (<1 mm) used in cosmetics and cleaning agents and fiber fragments from washing of clothes, and secondary source such as broken down plastic litter and debris. These particles are mostly made from polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET) and polyesters. They are ingested by diverse marine fauna, including zooplanktons, mussel, oyster, shrimp, fish etc. and can enter human food chains via several pathways. Strategy for control of microplastics pollution should primarily focus on source reduction and subsequently on the development of cost-effective clean up and remediation technologies. Recent research results on biodegradation of plastics have revealed a potential for microbial biodegradation and bioremediation of plastic pollutants, such as PE, PS and PET under appropriate conditions.

Keywords microplastics      plastic microbeads      environmental pollution      biodegradation     
Corresponding Author(s): Wei-Min Wu   
Issue Date: 30 December 2016
 Cite this article:   
Wei-Min Wu,Jun Yang,Craig S. Criddle. Microplastics pollution and reduction strategies[J]. Front. Environ. Sci. Eng., 2017, 11(1): 6.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0897-7
https://academic.hep.com.cn/fese/EN/Y2017/V11/I1/6
Fig.1  (Left) Microplastic pollution in aquatic environments and impacts on food chains. (Right) PE microbeads in personal care products
Polymer type Short Chemical
formula
Density
(g·cm-3)
Biodegradation Molecular structure Recycle
ID code
High density polyethylene HDPE (C2H4)n 0.917–0.965 Not reported <InlineMediaObject OutputMedium="All"><ImageObject FileRef="FSE-16064-WWM.doc_Images\FSE-16064-WWM-tb1fig1.tif" ScaleToFit="1" ScaleToFitWidth="10cm"/></InlineMediaObject> <InlineMediaObject OutputMedium="All"><ImageObject FileRef="FSE-16064-WWM.doc_images\FSE-16064-WWM-tb1Fig2.tif" ScaleToFit="1" ScaleToFitWidth="10cm"/></InlineMediaObject>
Low density polyethylene LDPE Bacteria, fungi, waxworms, mealworms <InlineMediaObject OutputMedium="All"><ImageObject FileRef="FSE-16064-WWM.doc_images\FSE-16064-WWM-tb1Fig3.tif" ScaleToFit="1" ScaleToFitWidth="10cm"/></InlineMediaObject>
Linear low density
Polyethylene
LLDPE
Polypropylene PP (C3H6)n 0.90–0.91 Not reported <InlineMediaObject OutputMedium="All"><ImageObject FileRef="FSE-16064-WWM.doc_images\FSE-16064-WWM-tb1Fig4.tif" ScaleToFit="1" ScaleToFitWidth="10cm"/></InlineMediaObject> <InlineMediaObject OutputMedium="All"><ImageObject FileRef="FSE-16064-WWM.doc_images\FSE-16064-WWM-tb1Fig5.tif" ScaleToFit="1" ScaleToFitWidth="10cm"/></InlineMediaObject>
Polystyrene PS (C8H8)n 1.04–1.1 Bacteria, mealworms <InlineMediaObject OutputMedium="All"><ImageObject FileRef="FSE-16064-WWM.doc_images\FSE-16064-WWM-tb1Fig6.tif" ScaleToFit="1" ScaleToFitWidth="10cm"/></InlineMediaObject> <InlineMediaObject OutputMedium="All"><ImageObject FileRef="FSE-16064-WWM.doc_images\FSE-16064-WWM-tb1Fig7.tif" ScaleToFit="1" ScaleToFitWidth="10cm"/></InlineMediaObject>
Polyvinylchloride PVC (C2H3Cl)n 1.16–1.58 Fungi <InlineMediaObject OutputMedium="All"><ImageObject FileRef="FSE-16064-WWM.doc_images\FSE-16064-WWM-tb1Fig8.tif" ScaleToFit="1" ScaleToFitWidth="10cm"/></InlineMediaObject> <InlineMediaObject OutputMedium="All"><ImageObject FileRef="FSE-16064-WWM.doc_images\FSE-16064-WWM-tb1Fig9.tif" ScaleToFit="1" ScaleToFitWidth="10cm"/></InlineMediaObject>
Polymethylacrylate PMA (C4H6O2)n 1.17–1.2 Cyanobacteria <InlineMediaObject OutputMedium="All"><ImageObject FileRef="FSE-16064-WWM.doc_images\FSE-16064-WWM-tb1Fig10.tif" ScaleToFit="1" ScaleToFitWidth="10cm"/></InlineMediaObject> <InlineMediaObject OutputMedium="All"><ImageObject FileRef="FSE-16064-WWM.doc_images\FSE-16064-WWM-tb1Fig11.tif" ScaleToFit="1" ScaleToFitWidth="10cm"/></InlineMediaObject>
Polyethylene
terephthalate
PET (C10H8O4)n 1.37–1.45 Bacteria <InlineMediaObject OutputMedium="All"><ImageObject FileRef="FSE-16064-WWM.doc_images\FSE-16064-WWM-tb1Fig12.tif" ScaleToFit="1" ScaleToFitWidth="10cm"/></InlineMediaObject> <InlineMediaObject OutputMedium="All"><ImageObject FileRef="FSE-16064-WWM.doc_images\FSE-16064-WWM-tb1Fig13.tif" ScaleToFit="1" ScaleToFitWidth="10cm"/></InlineMediaObject>
Polyurethane PUR (R - (N = C= O)n 1.20 Fungi <InlineMediaObject OutputMedium="All"><ImageObject FileRef="FSE-16064-WWM.doc_images\FSE-16064-WWM-tb1Fig14.tif" ScaleToFit="1" ScaleToFitWidth="10cm"/></InlineMediaObject> <InlineMediaObject OutputMedium="All"><ImageObject FileRef="FSE-16064-WWM.doc_images\FSE-16064-WWM-tb1Fig15.tif" ScaleToFit="1" ScaleToFitWidth="10cm"/></InlineMediaObject>
Polyester PET, Nylon, Acrylic PET or various 1.24–2.3 Bacteria Similar to PET or various <InlineMediaObject OutputMedium="All"><ImageObject FileRef="FSE-16064-WWM.doc_images\FSE-16064-WWM-tb1Fig16.tif" ScaleToFit="1" ScaleToFitWidth="10cm"/></InlineMediaObject>
Tab.1  Major microplastics found marine environment in literatures
1 Jambeck J R, Geyer R, Wilcox C, Siegler T R, Perryman M, Andrady A, Narayan R, Law K L. Plastic waste inputs from land into the ocean. Science, 2015, 347(6223): 768–771
https://doi.org/10.1126/science.1260352 pmid: 25678662
2 Cµzar A, Echevarría F, González-Gordillo J I, Irigoien X, Úbeda B, Hernández-León S, Palma Á T, Navarro S, García-de-Lomas J, Ruiz A, Fernández-de-Puelles M L, Duarte C M. Plastic debris in the open ocean. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(28): 10239–10244
https://doi.org/10.1073/pnas.1314705111 pmid: 24982135
3 Cole M, Lindeque P, Halsband C, Galloway T S. Microplastics as contaminants in the marine environment: a review. Marine Pollution Bulletin, 2011, 62(12): 2588–2597
https://doi.org/10.1016/j.marpolbul.2011.09.025 pmid: 22001295
4 Zhao S, Zhu L, Wang T, Li D. Suspended microplastics in the surface water of the Yangtze Estuary System, China: first observations on occurrence, distribution. Marine Pollution Bulletin, 2014, 86(1-2): 562–568
https://doi.org/10.1016/j.marpolbul.2014.06.032 pmid: 25023438
5 Fendall L S, Sewell M A. Contributing to marine pollution by washing your face: microplastics in facial cleansers. Marine Pollution Bulletin, 2009, 58(8): 1225–1228
https://doi.org/10.1016/j.marpolbul.2009.04.025 pmid: 19481226
6 Andrady A L. Microplastics in the marine environment. Marine Pollution Bulletin, 2011, 62(8): 1596–1605
https://doi.org/10.1016/j.marpolbul.2011.05.030 pmid: 21742351
7 Tokiwa Y, Calabia B P, Ugwu C U, Aiba S. Biodegradability of plastics. International Journal of Molecular Sciences, 2009, 10(9): 3722–3742
https://doi.org/10.3390/ijms10093722 pmid: 19865515
8 Yang J, Yang Y, Wu W M, Zhao J, Jiang L. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environmental Science & Technology, 2014, 48(23): 13776–13784
https://doi.org/10.1021/es504038a pmid: 25384056
9 Yang Y, Yang J, Wu W M, Zhao J, Song Y, Gao L, Yang R, Jiang L. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 2. Role of gut Microorganisms. Environmental Science & Technology, 2015, 49(20): 12087–12093
https://doi.org/10.1021/acs.est.5b02663 pmid: 26390390
10 Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 2016, 351(6278): 1196–1199
https://doi.org/10.1126/science.aad6359 pmid: 26965627
[1] Paul Olusegun Bankole, Kirk Taylor Semple, Byong-Hun Jeon, Sanjay Prabhu Govindwar. Enhanced enzymatic removal of anthracene by the mangrove soil-derived fungus, Aspergillus sydowii BPOI[J]. Front. Environ. Sci. Eng., 2020, 14(6): 113-.
[2] Yiquan Wu, Ying Xu, Ningyi Zhou. A newly defined dioxygenase system from Mycobacterium vanbaalenii PYR-1 endowed with an enhanced activity of dihydroxylation of high-molecular-weight polyaromatic hydrocarbons[J]. Front. Environ. Sci. Eng., 2020, 14(1): 14-.
[3] Ling Huang, Syed Bilal Shah, Haiyang Hu, Ping Xu, Hongzhi Tang. Pollution and biodegradation of hexabromocyclododecanes: A review[J]. Front. Environ. Sci. Eng., 2020, 14(1): 11-.
[4] Bin Liang, Deyong Kong, Mengyuan Qi, Hui Yun, Zhiling Li, Ke Shi, E Chen, Alisa S. Vangnai, Aijie Wang. Anaerobic biodegradation of trimethoprim with sulfate as an electron acceptor[J]. Front. Environ. Sci. Eng., 2019, 13(6): 84-.
[5] Zuotao Zhang, Chongyang Wang, Jianzhong He, Hui Wang. Anaerobic phenanthrene biodegradation with four kinds of electron acceptors enriched from the same mixed inoculum and exploration of metabolic pathways[J]. Front. Environ. Sci. Eng., 2019, 13(5): 80-.
[6] Qinqin Liu, Miao Li, Rui Liu, Quan Zhang, Di Wu, Danni Zhu, Xuhui Shen, Chuanping Feng, Fawang Zhang, Xiang Liu. Removal of trimethoprim and sulfamethoxazole in artificial composite soil treatment systems and diversity of microbial communities[J]. Front. Environ. Sci. Eng., 2019, 13(2): 28-.
[7] Qinqin Liu, Miao Li, Xiang Liu, Quan Zhang, Rui Liu, Zhenglu Wang, Xueting Shi, Jin Quan, Xuhui Shen, Fawang Zhang. Removal of sulfamethoxazole and trimethoprim from reclaimed water and the biodegradation mechanism[J]. Front. Environ. Sci. Eng., 2018, 12(6): 6-.
[8] Yueqiao Liu, Aizhong Ding, Yujiao Sun, Xuefeng Xia, Dayi Zhang. Impacts of n-alkane concentration on soil bacterial community structure and alkane monooxygenase genes abundance during bioremediation processes[J]. Front. Environ. Sci. Eng., 2018, 12(5): 3-.
[9] Shunan Shan, Yuting Zhang, Yining Zhang, Lanjun Hui, Wen Shi, Yongming Zhang, Bruce E. Rittmann. Comparison of sequential with intimate coupling of photolysis and biodegradation for benzotriazole[J]. Front. Environ. Sci. Eng., 2017, 11(6): 8-.
[10] E. Rohan Jayaratne, Buddhi Pushpawela, Lidia Morawska. Temporal evolution of charged and neutral nanoparticle concentrations during atmospheric new particle formation events and its implications for ion-induced nucleation[J]. Front. Environ. Sci. Eng., 2016, 10(5): 13-.
[11] Liangliang WEI,Kun WANG,Xiangjuan KONG,Guangyi LIU,Shuang CUI,Qingliang ZHAO,Fuyi CUI. Application of ultra-sonication, acid precipitation and membrane filtration for co-recovery of protein and humic acid from sewage sludge[J]. Front. Environ. Sci. Eng., 2016, 10(2): 327-335.
[12] Ning YAN,Lu WANG,Ling CHANG,Cuiyi ZHANG,Yang ZHOU,Yongming ZHANG,Bruce E. RITTMANN. Coupled aerobic and anoxic biodegradation for quinoline and nitrogen removals[J]. Front. Environ. Sci. Eng., 2015, 9(4): 738-744.
[13] ZHANG Dong,ZHU Lizhong. Controlling microbiological interfacial behaviors of hydrophobic organic compounds by surfactants in biodegradation process[J]. Front.Environ.Sci.Eng., 2014, 8(3): 305-315.
[14] Rongfang YUAN, Beihai ZHOU, Chunhong SHI, Liying YU, Chunlei ZHANG, Junnong GU. Biodegradation of 2-methylisoborneol by bacteria enriched from biological activated carbon[J]. Front Envir Sci Eng, 2012, 6(5): 701-710.
[15] Chengbin XIAO, Hai YAN, Junfeng WANG, Wei WEI, Jun NING, Gang PAN. Microcystin-LR biodegradation by Sphingopyxis sp. USTB-05[J]. Front Envir Sci Eng Chin, 2011, 5(4): 526-532.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed