Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (1) : 3    https://doi.org/10.1007/s11783-017-0972-0
REVIEW ARTICLE
Catalytic reduction for water treatment
Maocong Hu1, Yin Liu2, Zhenhua Yao1, Liping Ma3, Xianqin Wang1()
1. Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
2. Primus Green Energy, Hillsborough, NJ 08844, USA
3. Oil & Gas Technology Research Institute of Changqing Oilfield Company, Xi’an 710018, China
 Download: PDF(814 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Catalytic reduction technology for water treatment was reviewed.

• Hydrodehalogenation for wastewater treatment was covered.

• Hydrogenation of nitrate for groundwater remediation was introduced.

• Combination of water splitting with catalytic reduction was illustrated.

Treating water contaminants via heterogeneously catalyzed reduction reaction is a subject of growing interest due to its good activity and superior selectivity compared to conventional technology, yielding products that are non-toxic or substantially less toxic. This article reviews the application of catalytic reduction as a progressive approach to treat different types of contaminants in water, which covers hydrodehalogenation for wastewater treatment and hydrogenation of nitrate/nitrite for groundwater remediation. For hydrodehalogenation, an overview of the existing treatment technologies is provided with an assessment of the advantages of catalytic reduction over the conventional methodologies. Catalyst design for feasible catalytic reactions is considered with a critical analysis of the pertinent literature. For hydrogenation, hydrogenation of nitrate/nitrite contaminants in water is mainly focused. Several important nitrate reduction catalysts are discussed relating to their preparation method and catalytic performance. In addition, novel approach of catalytic reduction using in situ synthesized H2 evolved from water splitting reaction is illustrated. Finally, the challenges and perspective for the extensive application of catalytic reduction technology in water treatment are discussed. This review provides key information to our community to apply catalytic reduction approach for water treatment.

Keywords Halogenated compounds      Nitrate/nitrite contaminants      Hydrodechloriantion      Hydrogenation      Wastewater treatment      Groundwater remediation     
Corresponding Author(s): Xianqin Wang   
Issue Date: 27 June 2017
 Cite this article:   
Maocong Hu,Yin Liu,Zhenhua Yao, et al. Catalytic reduction for water treatment[J]. Front. Environ. Sci. Eng., 2018, 12(1): 3.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0972-0
https://academic.hep.com.cn/fese/EN/Y2018/V12/I1/3
Fig.1  Illustration of the coverage of this review
Fig.2  General reaction mechanism for hydrodehalogenation (chlorinated compounds as example): (a) Chlorinated compounds adsorption; (b) H2 dissociative adsorption; (c) Catalytic reaction on the surface
target compound a)catalyst a)condition b)removal efficiencymain products/activityRef.
TCEPd/CNF80℃~100%105 L·mol-1 Pd·min[30]
MCPAPd-Pt/ACRT60%NA[31]
4-CPPd/resinRT91.8%1608 mmol·gPd-1·h-1[32]
BromatePd/ CNF/SMFRT~45%NA[33]
TCE/MCBPd/ MagnetiteRT≥90%22500/3700 L·g-1·min-1[34]
2,5-DBAPd2+/FHCRT100%Aniline/0.0412 min-1[35]
TBBPAPd/NGRT100%0.166 mmol·L-1·min-1[36]
2,4-DCPPd-Fe/SiO2RT97%Phenol[37]
p-CPB/Fe/PdRT98.7%Phenol[38]
TCEPd-Fe/BNPsRTNA c)NA c)[39]
1,2,3,4-TCDDAg/FeRT>90%0.0421 L·h-1·m-2[40]
4-CPNi-FeRT100%0.00214 L·min-1·m-2[41]
MCANi-Fe45℃>88%2.18 L·g-1·h-1[17]
Tab.1  Summary of catalytic hydrodehalogenation for wastewater treatment
Fig.3  Catalytic removal of bromates in wastewater over Pd supported CNF/SMF [33]
Fig.4  Deactivation mechanisms of Pd-Fe bimetallic nanoparticles in different media [39]: (a) Mechanism of TCE HDC over fresh Pd-Fe catalyst; (b) Four deactivation modes of Pd-Fe catalyst
Fig.5  PdAg alloy nanoparticles supported on amine-functionalized SiO2 for catalytic reduction of nitrate in water [73]
Fig.6  Illustration of sequential transport of H2 in a three-phase catalytic reaction
Fig.7  Comparison of multifunctional catalyst approach (left) with mixture-of-catalysts method (right) for catalytic reduction (white: photocatalyst, blue: NiO nanoparticles, dark gray: metal catalyst, light gray: hydrogenation catalyst support) [96]
TCEtrichloroethylene
CNFcarbon nanofibers
Ptplatinum
4-CP4-chlorophenol
MCBmonochlorobenzene
FHCferrous hydroxy complex
NGnitrogen doped graphene
Feiron
Bbentonite
Agsilver
Ninickle
Pdpalladium
MCPA4-chloro-2-methylphenoxyacetic acid
ACactivated carbon
SMFsintered metal fibers
2,5-DBA2,5-dibromoaniline
TBBPAtetrabromobisphenol A
2,4-DCP2,4-dichlorophenol
p-CPp-chlorophenol
BNPsbimetallic nanoparticles
1,2,3,4-TCDD1,2,3,4-tetrachloro dibenzo-p-dioxin
MCAmonochloroacetic acid
  
6 Niu J, Yin L, Dai Y, Bao Y, Crittenden J C. Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water. Applied Catalysis A, General, 2016, 521: 90–95
https://doi.org/10.1016/j.apcata.2015.11.018
7 Arena F, Di Chio R, Gumina B, Spadaro L, Trunfio G. Recent advances on wet air oxidation catalysts for treatment of industrial wastewaters. Inorganica Chimica Acta, 2015, 431: 101–109
https://doi.org/10.1016/j.ica.2014.12.017
1 Lu H, Wang J, Wang T, Wang N, Bao Y, Hao H. Crystallization techniques in wastewater treatment: an overview of applications. Chemosphere, 2017, 173: 474–484
https://doi.org/10.1016/j.chemosphere.2017.01.070 pmid: 28135682
8 Wang Y, Wang K, Wang X. Preparation of Ag3PO4/Ni3(PO4)2 hetero-composites by cation exchange reaction and its enhancing photocatalytic performance. Journal of Colloid and Interface Science, 2016, 466: 178–185
https://doi.org/10.1016/j.jcis.2015.12.021 pmid: 26722799
9 Li X, Shi H, Li K, Zhang L. Combined process of biofiltration and ozone oxidation as an advanced treatment process for wastewater reuse. Frontiers of Environmental Science & Engineering, 2015, 9(6): 1076–1083
https://doi.org/10.1007/s11783-015-0770-5
10 Chaplin B P, Reinhard M, Schneider W F, Schüth C, Shapley J R, Strathmann T J, Werth C J. Critical review of Pd-based catalytic treatment of priority contaminants in water. Environmental Science & Technology, 2012, 46(7): 3655–3670
https://doi.org/10.1021/es204087q pmid: 22369144
2 Hu M, Zhong S. The structure of TiO2/hydroxyapatite and its photocatalytic performance in degradation of aldehyde. Chinese Journal of Catalysis, 2006, 27(12): 1144–1148 (in Chinese)
11 Zhang Y, He Z, Wang H, Qi L, Liu G, Zhang X. Applications of hollow nanomaterials in environmental remediation and monitoring: A review. Frontiers of Environmental Science & Engineering, 2015, 9(5): 770–783
https://doi.org/10.1007/s11783-015-0811-0
12 Wang J, Bai Z. Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater. Chemical Engineering Journal, 2017, 312: 79–98
https://doi.org/10.1016/j.cej.2016.11.118
13 Wang J, Wang G, Yang C, Yang S, Huang Q. Catalytic ozonation of organic compounds in water over the catalyst of RuO2/ZrO2-CeO2. Frontiers of Environmental Science & Engineering, 2015, 9(4): 615–624
https://doi.org/10.1007/s11783-014-0706-5
14 Khamparia S, Jaspal D K. Adsorption in combination with ozonation for the treatment of textile waste water: a critical review. Frontiers of Environmental Science & Engineering, 2017, 11(1): 8
https://doi.org/10.1007/s11783-017-0899-5
15 Chen Y, Xiao F, Liu Y, Wang D, Yang M, Bai H, Zhang J. Occurance and control of manganese in a large scale water treatment plant. Frontiers of Environmental Science & Engineering, 2015, 9(1): 66–72
https://doi.org/10.1007/s11783-014-0637-1
16 Ma L. Catalytic Reduction of Wastewater Technology-Mechanism and Application. Beijing: Science Press, 2008 (in Chinese)
17 Zhu H, Xu F, Zhao J, Jia L, Wu K. Catalytic hydrodechlorination of monochloroacetic acid in wastewater using Ni-Fe bimetal prepared by ball milling. Environmental Science and Pollution Research International, 2015, 22(18): 14299–14306
https://doi.org/10.1007/s11356-015-4675-4 pmid: 25976331
18 Li J, He H, Hu C, Zhao J. The abatement of major pollutants in air and water by environmental catalysis. Frontiers of Environmental Science & Engineering, 2013, 7(3): 302–325
https://doi.org/10.1007/s11783-013-0511-6
19 Choe J K, Bergquist A M, Jeong S, Guest J S, Werth C J, Strathmann T J. Performance and life cycle environmental benefits of recycling spent ion exchange brines by catalytic treatment of nitrate. Water Research, 2015, 80: 267–280
https://doi.org/10.1016/j.watres.2015.05.007 pmid: 26005787
20 He Z, Hu M, Wang X. Highly effective hydrodeoxygenation of guaiacol on Pt/TiO2: Promoter effects. Catalysis Today, 2017
https://doi.org/10.1016/j.cattod.2017.02.034
21 Chu X, Shan G, Chang C, Fu Y, Yue L, Zhu L. Effective degradation of tetracycline by mesoporous Bi2WO6 under visible light irradiation. Frontiers of Environmental Science & Engineering, 2016, 10(2): 211–218
https://doi.org/10.1007/s11783-014-0753-y
22 Zhang X, Yue Q, Yue D, Gao B, Wang X. Application of Fe0/C/Clay ceramics for decoloration of synthetic Acid Red 73 and Reactive Blue 4 wastewater by micro-electrolysis. Frontiers of Environmental Science & Engineering, 2015, 9(3): 402–410
https://doi.org/10.1007/s11783-014-0659-8
23 Matatov-Meytal Y I, Sheintuch M. Catalytic abatement of water pollutants. Industrial & Engineering Chemistry Research, 1998, 37(2): 309–326
https://doi.org/10.1021/ie9702439
24 Barrabés N, Sá J. Catalytic nitrate removal from water, past, present and future perspectives. Applied Catalysis B: Environmental, 2011, 104(1–2): 1–5
https://doi.org/10.1016/j.apcatb.2011.03.011
25 Martin E T, McGuire C M, Mubarak M S, Peters D G. Electroreductive remediation of halogenated environmental pollutants. Chemical Reviews, 2016, 116(24): 15198–15234
https://doi.org/10.1021/acs.chemrev.6b00531 pmid: 27976587
26 Yuan Y, Tao H, Fan J, Ma L. Degradation of p-chloroaniline by persulfate activated with ferrous sulfide ore particles. Chemical Engineering Journal, 2015, 268: 38–46
https://doi.org/10.1016/j.cej.2014.12.092
27 Niu J, Li Y, Shang E, Xu Z, Liu J. Electrochemical oxidation of perfluorinated compounds in water. Chemosphere, 2016, 146: 526–538
https://doi.org/10.1016/j.chemosphere.2015.11.115 pmid: 26745381
28 Han Y, Yang M, Zhang W, Yan W. Optimizing synthesis conditions of nanoscale zero-valent iron (nZVI) through aqueous reactivity assessment. Frontiers of Environmental Science & Engineering, 2015, 9(5): 813–822
https://doi.org/10.1007/s11783-015-0784-z
29 Xiao J, Xie Y, Cao H, Wang Y, Guo Z, Chen Y. Towards effective design of active nanocarbon materials for integrating visible-light photocatalysis with ozonation. Carbon, 2016, 107: 658–666
https://doi.org/10.1016/j.carbon.2016.06.066
30 Díaz E, McCall A, Faba L, Sastre H, Ordõñez S. Trichloroethylene hydrodechlorination in water using formic acid as hydrogen source: selection of catalyst and operation conditions. Environmental Progress & Sustainable Energy, 2013, 32(4): 1217–1222
https://doi.org/10.1002/ep.11730
31 Diaz E, Mohedano A F, Casas J A, Rodriguez J J. Analysis of the deactivation of Pd, Pt and Rh on activated carbon catalysts in the hydrodechlorination of the MCPA herbicide. Applied Catalysis B: Environmental, 2016, 181: 429–435
https://doi.org/10.1016/j.apcatb.2015.08.008
32 Jadbabaei N, Ye T, Shuai D, Zhang H. Development of palladium-resin composites for catalytic hydrodechlorination of 4-chlorophenol. Applied Catalysis B: Environmental, 2017, 205: 576–586
https://doi.org/10.1016/j.apcatb.2016.12.068
33 Palomares A E, Franch C, Yuranova T, Kiwi-Minsker L, García-Bordeje E, Derrouiche S. The use of Pd catalysts on carbon-based structured materials for the catalytic hydrogenation of bromates in different types of water. Applied Catalysis B: Environmental, 2014, 146: 186–191
https://doi.org/10.1016/j.apcatb.2013.02.056
34 Hildebrand H, Mackenzie K, Kopinke F D. Highly active Pd-on-magnetite nanocatalysts for aqueous phase hydrodechlorination reactions. Environmental Science & Technology, 2009, 43(9): 3254–3259
https://doi.org/10.1021/es802726v pmid: 19534143
35 Wu D, Shao B, Feng Y, Ma L. Effects of Cu2+, Ag+, and Pd2+ on the reductive debromination of 2,5-dibromoaniline by the ferrous hydroxy complex. Environmental Technology, 2015, 36(7): 901–908
https://doi.org/10.1080/09593330.2014.966766 pmid: 25231458
36 Li L, Gong L, Wang Y X, Liu Q, Zhang J, Mu Y, Yu H Q. Removal of halogenated emerging contaminants from water by nitrogen-doped graphene decorated with palladium nanoparticles: Experimental investigation and theoretical analysis. Water Research, 2016, 98: 235–241
https://doi.org/10.1016/j.watres.2016.04.024 pmid: 27107141
37 Witońska I A, Walock M J, Binczarski M, Lesiak M, Stanishevsky A V, Karski S. Pd–Fe/SiO2 and Pd–Fe/Al2O3 catalysts for selective hydrodechlorination of 2,4-dichlorophenol into phenol. Journal of Molecular Catalysis A Chemical, 2014, 393: 248–256
https://doi.org/10.1016/j.molcata.2014.06.022
38 Zhou Y, Kuang Y, Li W, Chen Z, Megharaj M, Naidu R. A combination of bentonite-supported bimetallic Fe/Pd nanoparticles and biodegradation for the remediation of p-chlorophenol in wastewater. Chemical Engineering Journal, 2013, 223: 68–75
https://doi.org/10.1016/j.cej.2013.02.118
39 Han Y, Liu C, Horita J, Yan W. Trichloroethene hydrodechlorination by Pd-Fe bimetallic nanoparticles: Solute-induced catalyst deactivation analyzed by carbon isotope fractionation. Applied Catalysis B: Environmental, 2016, 188: 77–86
https://doi.org/10.1016/j.apcatb.2016.01.047
40 Xiao J, Xie Y, Cao H, Wang Y, Zhao Z. g-C3N4-triggered super synergy between photocatalysis and ozonation attributed to promoted OH generation. Catalysis Communications, 2015, 66: 10–14
https://doi.org/10.1016/j.catcom.2015.03.004
41 Xu F, Deng S, Xu J, Zhang W, Wu M, Wang B, Huang J, Yu G. Highly active and stable Ni-Fe bimetal prepared by ball milling for catalytic hydrodechlorination of 4-chlorophenol. Environmental Science & Technology, 2012, 46(8): 4576–4582
https://doi.org/10.1021/es203876e pmid: 22435541
42 Hu M, Wang X. Effect of N3- species on selective acetylene hydrogenation over Pd/SAC catalysts. Catalysis Today, 2016, 263: 98–104
https://doi.org/10.1016/j.cattod.2015.06.021
43 Cobo M, González C A, Sánchez E G, Montes C. Catalytic hydrodechlorination of trichloroethylene with 2-propanol over Pd/Al2O3. Catalysis Today, 2011, 172(1): 78–83
https://doi.org/10.1016/j.cattod.2011.02.064
44 He F, Zhao D. Hydrodechlorination of trichloroethene using stabilized Fe-Pd nanoparticles: reaction mechanism and effects of stabilizers, catalysts and reaction conditions. Applied Catalysis B: Environmental, 2008, 84(3–4): 533–540
https://doi.org/10.1016/j.apcatb.2008.05.008
45 Wu K, Zheng M, Han Y, Xu Z, Zheng S. Liquid phase catalytic hydrodebromination of tetrabromobisphenol A on supported Pd catalysts. Applied Surface Science, 2016, 376: 113–120
https://doi.org/10.1016/j.apsusc.2016.03.101
46 Hu M, Yao Z, Hui K N, Hui K S. Novel mechanistic view of catalytic ozonation of gaseous toluene by dual-site kinetic modelling. Chemical Engineering Journal, 2017, 308: 710–718
https://doi.org/10.1016/j.cej.2016.09.086
47 Hu M, Hui K S, Hui K N. Role of graphene in MnO2/graphene composite for catalytic ozonation of gaseous toluene. Chemical Engineering Journal, 2014, 254: 237–244
https://doi.org/10.1016/j.cej.2014.05.099
48 Hu M, Yao Z, Wang X. Graphene-based nanomaterials for catalysis. Industrial & Engineering Chemistry Research, 2017, 56(13): 3477–3502
https://doi.org/10.1021/acs.iecr.6b05048
49 Wang X, Zhu M, Liu H, Ma J, Li F. Modification of Pd-Fe nanoparticles for catalytic dechlorination of 2,4-dichlorophenol. Science of the Total Environment, 2013, 449: 157–167
https://doi.org/10.1016/j.scitotenv.2013.01.008 pmid: 23425792
50 Trujillo-Reyes J, Peralta-Videa J R, Gardea-Torresdey J L. Supported and unsupported nanomaterials for water and soil remediation: are they a useful solution for worldwide pollution? Journal of Hazardous Materials, 2014, 280: 487–503
https://doi.org/10.1016/j.jhazmat.2014.08.029 pmid: 25203809
51 Luo S, Yang S, Wang X, Sun C. Reductive degradation of tetrabromobisphenol using iron-silver and iron-nickel bimetallic nanoparticles with microwave energy. Environmental Engineering Science, 2012, 29(6): 453–460
https://doi.org/10.1089/ees.2010.0376 pmid: 22693414
52 Huang B, Qian W, Yu C, Wang T, Zeng G, Lei C. Effective catalytic hydrodechlorination of o-, p- and m-chloronitrobenzene over Ni/Fe nanoparticles: Effects of experimental parameter and molecule structure on the reduction kinetics and mechanisms. Chemical Engineering Journal, 2016, 306: 607–618
https://doi.org/10.1016/j.cej.2016.07.109
53 Li A, Zhao X, Hou Y, Liu H, Wu L, Qu J. The electrocatalytic dechlorination of chloroacetic acids at electrodeposited Pd/Fe-modified carbon paper electrode. Applied Catalysis B: Environmental, 2012, 111–112: 628–635
https://doi.org/10.1016/j.apcatb.2011.11.016
54 Esclapez M D, Tudela I, Díez-García M I, Sáez V, Rehorek A, Bonete P, González-García J. Towards the complete dechlorination of chloroacetic acids in water by sonoelectrochemical methods: Effect of the anodic material on the degradation of trichloroacetic acid and its by-products. Chemical Engineering Journal, 2012, 197: 231–241
https://doi.org/10.1016/j.cej.2012.05.031
55 Sadowsky D, McNeill K, Cramer C J. Thermochemical factors affecting the dehalogenation of aromatics. Environmental Science & Technology, 2013, 47(24): 14194–14203
https://doi.org/10.1021/es404033y pmid: 24237268
56 Baumgartner R, Stieger G K, McNeill K. Complete hydrodehalogenation of polyfluorinated and other polyhalogenated benzenes under mild catalytic conditions. Environmental Science & Technology, 2013, 47(12): 6545–6553
pmid: 23663092
57 Sadowsky D, McNeill K, Cramer C J. Dehalogenation of aromatics by nucleophilic aromatic substitution. Environmental Science & Technology, 2014, 48(18): 10904–10911
https://doi.org/10.1021/es5028822 pmid: 25133312
58 Baumgartner R, McNeill K. Hydrodefluorination and hydrogenation of fluorobenzene under mild aqueous conditions. Environmental Science & Technology, 2012, 46(18): 10199–10205
pmid: 22871102
59 Yu Y H, Chiu P C. Kinetics and pathway of vinyl fluoride reduction over rhodium. Environmental Science & Technology Letters, 2014, 1(11): 448–452
https://doi.org/10.1021/ez500291g
60 Wong M S, Alvarez P J J, Fang Y, Akçin N, Nutt M O, Miller J T, Heck K N. Cleaner water using bimetallic nanoparticle catalysts. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2009, 84(2): 158–166
https://doi.org/10.1002/jctb.2002
61 Lowry G V, Reinhard M. Hydrodehalogenation of 1-to 3-carbon halogenated organic compounds in water using a palladium catalyst and hydrogen gas. Environmental Science & Technology, 1999, 33(11): 1905–1910
https://doi.org/10.1021/es980963m
62 Urbano F J, Marinas J M. Hydrogenolysis of organohalogen compounds over palladium supported catalysts. Journal of Molecular Catalysis A Chemical, 2001, 173(1–2): 329–345
https://doi.org/10.1016/S1381-1169(01)00157-1
63 Liu W J, Qian T T, Jiang H. Bimetallic Fe nanoparticles: Recent advances in synthesis and application in catalytic elimination of environmental pollutants. Chemical Engineering Journal, 2014, 236: 448–463
https://doi.org/10.1016/j.cej.2013.10.062
64 Baumgartner R, Stieger G K, McNeill K. Complete hydrodehalogenation of polyfluorinated and other polyhalogenated benzenes under mild catalytic conditions. Environmental Science & Technology, 2013, 47(12): 6545–6553
pmid: 23663092
65 Díaz E, Faba L, Ordóñez S. Effect of carbonaceous supports on the Pd-catalyzed aqueous-phase trichloroethylene hydrodechlorination. Applied Catalysis B: Environmental, 2011, 104(3–4): 415–417
https://doi.org/10.1016/j.apcatb.2011.03.031
66 Fan J, Xu W, Gao T, Ma L. Stability analysis of alkaline nitrobenzene-containing wastewater by a catalyzed Fe-Cu treatment process. Frontiers of Environmental Science & Engineering in China, 2007, 1(4): 504–508
https://doi.org/10.1007/s11783-007-0081-6
67 Ezzatahmadi N, Ayoko G A, Millar G J, Speight R, Yan C, Li J, Li S, Zhu J, Xi Y. Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: A review. Chemical Engineering Journal, 2017, 312: 336–350
https://doi.org/10.1016/j.cej.2016.11.154
68 Tang Y, Ziv-El M, Zhou C, Shin J H, Ahn C H, Meyer K, Candelaria D, Friese D, Overstreet R, Scott R, Rittmann B E. Bioreduction of nitrate in groundwater using a pilot-scale hydrogen-based membrane biofilm reactor. Frontiers of Environmental Science & Engineering in China, 2010, 4(3): 280–285
https://doi.org/10.1007/s11783-010-0235-9
69 Siedel C, Darby J, Jensen V. An Assessment of state of Nitrate treatment Alternatives, Final Report. Davis: The American Water Works Association Inorganic Contaminant Research and Inorganic Water Quality Joint Project Committees, 2011
70 Radjenovic J, Sedlak D L. Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environmental Science & Technology, 2015, 49(19): 11292–11302
https://doi.org/10.1021/acs.est.5b02414 pmid: 26370517
71 Lecloux A J. Chemical, biological and physical constrains in catalytic reduction processes for purification of drinking water. Catalysis Today, 1999, 53(1): 23–34
https://doi.org/10.1016/S0920-5861(99)00100-5
72 Krawczyk N, Karski S, Witońska I. The effect of support porosity on the selectivity of Pd–In/support catalysts in nitrate reduction. Reaction Kinetics, Mechanisms and Catalysis, 2011, 103(2): 311–323 
https://doi.org/10.1007/s11144-011-0321-4
73 Ding Y, Sun W, Yang W, Li Q. Formic acid as the in-situ hydrogen source for catalytic reduction of nitrate in water by PdAg alloy nanoparticles supported on amine-functionalized SiO2. Applied Catalysis B: Environmental, 2017, 203: 372–380
https://doi.org/10.1016/j.apcatb.2016.10.048
74 Mendow G, Marchesini F A, Miró E E, Querini C A. Evaluation of pd-in supported catalysts for water nitrate Abatement in a fixed-bed continuous reactor. Industrial & Engineering Chemistry Research, 2011, 50(4): 1911–1920
https://doi.org/10.1021/ie102080w
75 Marchesini F A, Irusta S, Querini C, Miró E. Spectroscopic and catalytic characterization of Pd-In and Pt-In supported on Al2O3 and SiO2, active catalysts for nitrate hydrogenation. Applied Catalysis A, General, 2008, 348(1): 60–70
https://doi.org/10.1016/j.apcata.2008.06.026
76 Wada K, Hirata T, Hosokawa S, Iwamoto S, Inoue M. Effect of supports on Pd-Cu bimetallic catalysts for nitrate and nitrite reduction in water. Catalysis Today, 2012, 185(1): 81–87
https://doi.org/10.1016/j.cattod.2011.07.021
77 Sá J, Gasparovicova D, Hayek K, Halwax E, Anderson J A, Vinek H. Water denitration over a Pd-Sn/Al2O3 catalyst. Catalysis Letters, 2005, 105(3–4): 209–217
https://doi.org/10.1007/s10562-005-8692-7
78 Prüsse U, Hähnlein M, Daum J, Vorlop K D. Improving the catalytic nitrate reduction. Catalysis Today, 2000, 55(1–2): 79–90
https://doi.org/10.1016/S0920-5861(99)00228-X
79 Kim M S, Lee D W, Chung S H, Kim J T, Cho I H, Lee K Y. Pd-Cu bimetallic catalysts supported on TiO2-CeO2 mixed oxides for aqueous nitrate reduction by hydrogen. Journal of Molecular Catalysis A Chemical, 2014, 392: 308–314
https://doi.org/10.1016/j.molcata.2014.05.034
80 Epron F, Gauthard F, Barbier J. Influence of oxidizing and reducing treatments on the metal-metal interactions and on the activity for nitrate reduction of a Pt-Cu bimetallic catalyst. Applied Catalysis A, General, 2002, 237(1–2): 253–261
https://doi.org/10.1016/S0926-860X(02)00331-9
81 Trawczyński J, Gheek P, Okal J, Zawadzki M, Gomez M J I. Reduction of nitrate on active carbon supported Pd-Cu catalysts. Applied Catalysis A, General, 2011, 409–410: 39–47 
https://doi.org/10.1016/j.apcata.2011.09.020
82 Durkin D P, Ye T, Larson E G, Haverhals L M, Livi K J T, De Long H C, Trulove P C, Fairbrother D H, Shuai D. Lignocellulose fiber- and welded fiber- supports for palladium-based catalytic hydrogenation: a natural fiber welding application for water treatment. ACS Sustainable Chemistry & Engineering, 2016, 4(10): 5511–5522
https://doi.org/10.1021/acssuschemeng.6b01250
83 Yun Y, Li Z, Chen Y H, Saino M, Cheng S, Zheng L. Reduction of nitrate in secondary effluent of wastewater treatment plants by Fe0 reductant and Pd-Cu/graphene catalyst. Water, Air, and Soil Pollution, 2016, 227(4): 111–120
https://doi.org/10.1007/s11270-016-2792-4
84 Hörold S, Tacke T, Vorlop K D. Catalytical removal of nitrate and nitrite from drinking water: 1. Screening for hydrogenation catalysts and influence of reaction conditions on activity and selectivity. Environmental Technology, 1993, 14(10): 931–939
https://doi.org/10.1080/09593339309385367
85 Garron A, Lázár K, Epron F. Effect of the support on tin distribution in Pd–Sn/Al2O3 and Pd–Sn/SiO2 catalysts for application in water denitration. Applied Catalysis B: Environmental, 2005, 59(1–2): 57–69
https://doi.org/10.1016/j.apcatb.2005.01.002
86 Garron A, Lázár K, Epron F. Characterization by Mössbauer spectroscopy of trimetallic Pd–Sn–Au/Al2O3 and Pd–Sn–Au/SiO2 catalysts for denitration of drinking water. Applied Catalysis B: Environmental, 2006, 65(3–4): 240–248
https://doi.org/10.1016/j.apcatb.2006.02.010
87 Costa A O, Ferreira L S, Passos F B, Maia M P, Peixoto F C. Microkinetic modeling of the hydrogenation of nitrate in water on Pd–Sn/Al2O3 catalyst. Applied Catalysis A, General, 2012, 445–446: 26–34
https://doi.org/10.1016/j.apcata.2012.07.043
88 Rocha E P A, Passos F B, Peixoto F C. Modeling of hydrogenation of nitrate in water on Pd–Sn/Al2O3 catalyst: estimation of microkinetic parameters and transport phenomena properties. Industrial & Engineering Chemistry Research, 2014, 53(21): 8726–8734
https://doi.org/10.1021/ie500820a
89 Gao Z, Zhang Y, Li D, Werth C J, Zhang Y, Zhou X. Highly active Pd-In/mesoporous alumina catalyst for nitrate reduction. Journal of Hazardous Materials, 2015, 286: 425–431
https://doi.org/10.1016/j.jhazmat.2015.01.005 pmid: 25600582
90 Ye T, Durkin D P, Hu M, Wang X, Banek N A, Wagner M J, Shuai D. Enhancement of nitrite reduction kinetics on electrospun Pd-carbon nanomaterial catalysts for water purification. ACS Applied Materials & Interfaces, 2016, 8(28): 17739–17744
https://doi.org/10.1021/acsami.6b03635 pmid: 27387354
91 Pintar A, Setinc M, Levec J. Hardness and salt effects on catalytic hydrogenation of aqueous nitrate solutions. Journal of Catalysis, 1998, 174(1): 72–87
https://doi.org/10.1006/jcat.1997.1960
92 Chaplin B P, Shapley J R, Werth C J. Oxidative regeneration of sulfide-fouled catalysts for water treatment. Catalysis Letters, 2009, 132(1–2): 174–181
https://doi.org/10.1007/s10562-009-0083-z
93 Chaplin B P, Roundy E, Guy K A, Shapley J R, Werth C J. Effects of natural water ions and humic acid on catalytic nitrate reduction kinetics using an alumina supported Pd-Cu catalyst. Environmental Science & Technology, 2006, 40(9): 3075–3081
https://doi.org/10.1021/es0525298 pmid: 16719114
94 Chaplin B P, Shapley J R, Werth C J. Regeneration of sulfur-fouled bimetallic Pd-based catalysts. Environmental Science & Technology, 2007, 41(15): 5491–5497
https://doi.org/10.1021/es0704333 pmid: 17822122
95 Ng B J, Putri L K, Tan L L, Pasbakhsh P, Chai S P. All-solid-state Z-scheme photocatalyst with carbon nanotubes as an electron mediator for hydrogen evolution under simulated solar light. Chemical Engineering Journal, 2017, 316: 41–49
https://doi.org/10.1016/j.cej.2017.01.054
96 O’Keefe W K, Liu Y, Sasges M R, Wong M S, Fu H, Takata T, Domen K. Photocatalytic hydrodechlorination of trace carbon tetrachloride (CCl4) in aqueous medium. Industrial & Engineering Chemistry Research, 2014, 53(23): 9600–9607
https://doi.org/10.1021/ie500344v
3 Song X, Liu R, Chen L, Kawagishi T. Comparative experiment on treating digested piggery wastewater with a biofilm MBR and conventional MBR: simultaneous removal of nitrogen and antibiotics. Frontiers of Environmental Science & Engineering, 2017, 11(2): 11
https://doi.org/10.1007/s11783-017-0919-5
4 Zhang H, Li W, Jin Y, Sheng W, Hu M, Wang X, Zhang J. Ru-Co(III)-Cu(II)/SAC catalyst for acetylene hydrochlorination. Applied Catalysis B: Environmental, 2016, 189: 56–64
https://doi.org/10.1016/j.apcatb.2016.02.030
97 Liu D J, Garcia A, Wang J, Ackerman D M, Wang C J, Evans J W. Kinetic monte carlo simulation of statistical mechanical models and coarse-grained mesoscale descriptions of catalytic reaction-diffusion processes: 1D nanoporous and 2D surface systems. Chemical Reviews, 2015, 115(12): 5979–6050
https://doi.org/10.1021/cr500453t pmid: 25909347
98 Konsolakis M. The role of Copper–Ceria interactions in catalysis science: recent theoretical and experimental advances. Applied Catalysis B: Environmental, 2016, 198: 49–66
https://doi.org/10.1016/j.apcatb.2016.05.037
99 Bergquist A M, Choe J K, Strathmann T J, Werth C J. Evaluation of a hybrid ion exchange-catalyst treatment technology for nitrate removal from drinking water. Water Research, 2016, 96: 177–187
https://doi.org/10.1016/j.watres.2016.03.054 pmid: 27043747
5 Xu Z, Liu H, Niu J, Zhou Y, Wang C, Wang Y. Hydroxyl multi-walled carbon nanotube-modified nanocrystalline PbO2 anode for removal of pyridine from wastewater. Journal of Hazardous Materials, 2017, 327: 144–152
https://doi.org/10.1016/j.jhazmat.2016.12.056 pmid: 28064142
[1] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[2] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[3] Wenyue Li, Min Chen, Zhaoxiang Zhong, Ming Zhou, Weihong Xing. Hydroxyl radical intensified Cu2O NPs/H2O2 process in ceramic membrane reactor for degradation on DMAc wastewater from polymeric membrane manufacturer[J]. Front. Environ. Sci. Eng., 2020, 14(6): 102-.
[4] Luxi Zou, Huaibo Li, Shuo Wang, Kaikai Zheng, Yan Wang, Guocheng Du, Ji Li. Characteristic and correlation analysis of influent and energy consumption of wastewater treatment plants in Taihu Basin[J]. Front. Environ. Sci. Eng., 2019, 13(6): 83-.
[5] Jiuhui Qu, Hongchen Wang, Kaijun Wang, Gang Yu, Bing Ke, Han-Qing Yu, Hongqiang Ren, Xingcan Zheng, Ji Li, Wen-Wei Li, Song Gao, Hui Gong. Municipal wastewater treatment in China: Development history and future perspectives[J]. Front. Environ. Sci. Eng., 2019, 13(6): 88-.
[6] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[7] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
[8] Tiezheng Tong, Kenneth H. Carlson, Cristian A. Robbins, Zuoyou Zhang, Xuewei Du. Membrane-based treatment of shale oil and gas wastewater: The current state of knowledge[J]. Front. Environ. Sci. Eng., 2019, 13(4): 63-.
[9] Lian Yang, Qinxue Wen, Zhiqiang Chen, Ran Duan, Pan Yang. Impacts of advanced treatment processes on elimination of antibiotic resistance genes in a municipal wastewater treatment plant[J]. Front. Environ. Sci. Eng., 2019, 13(3): 32-.
[10] Huang Huang, Jie Wu, Jian Ye, Tingjin Ye, Jia Deng, Yongmei Liang, Wei Liu. Occurrence, removal, and environmental risks of pharmaceuticals in wastewater treatment plants in south China[J]. Front. Environ. Sci. Eng., 2018, 12(6): 7-.
[11] Yuqin Lu, Xiao Bian, Hailong Wang, Xinhua Wang, Yueping Ren, Xiufen Li. Simultaneously recovering electricity and water from wastewater by osmotic microbial fuel cells: Performance and membrane fouling[J]. Front. Environ. Sci. Eng., 2018, 12(4): 5-.
[12] Akshay Jain, Zhen He. “NEW” resource recovery from wastewater using bioelectrochemical systems: Moving forward with functions[J]. Front. Environ. Sci. Eng., 2018, 12(4): 1-.
[13] Deyi Hou, Guanghe Li, Paul Nathanail. An emerging market for groundwater remediation in China: Policies, statistics, and future outlook[J]. Front. Environ. Sci. Eng., 2018, 12(1): 16-.
[14] Gang Guo, Yayi Wang, Tianwei Hao, Di Wu, Guang-Hao Chen. Enzymatic nitrous oxide emissions from wastewater treatment[J]. Front. Environ. Sci. Eng., 2018, 12(1): 10-.
[15] Ming Zeng, Ping Li, Nan Wu, Xiaofang Li, Chang Wang. Preparation and characterization of a novel microorganism embedding material for simultaneous nitrification and denitrification[J]. Front. Environ. Sci. Eng., 2017, 11(6): 15-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed