Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2019, Vol. 13 Issue (6) : 89    https://doi.org/10.1007/s11783-019-1173-9
REVIEW ARTICLE
Advances in Fe(III) bioreduction and its application prospect for groundwater remediation: A review
Yu Jiang1,2, Beidou Xi1,2(), Rui Li2(), Mingxiao Li2, Zheng Xu2,3, Yuning Yang2,3, Shaobo Gao2,4
1. School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
2. State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
3. Municipal and Environmental Engineering College, Jilin Jianzhu University, Changchun 130118, China
4. School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
 Download: PDF(1027 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Microbial Fe(III) reduction is closely related to the fate of pollutants.

Bioavailability of crystalline Fe(III) oxide is restricted due to thermodynamics.

Amorphous Fe(III) (hydro)oxides are more bioavailable.

Enrichment and incubation of Fe(III) reducing bacteria are significant.

Microbial Fe(III) reduction is a significant driving force for the biogeochemical cycles of C, O, P, S, N, and dominates the natural bio-purification of contaminants in groundwater (e.g., petroleum hydrocarbons, chlorinated ethane, and chromium). In this review, the mechanisms and environmental significance of Fe(III) (hydro)oxides bioreduction are summarized. Compared with crystalline Fe(III) (hydro)oxides, amorphous Fe(III) (hydro)oxides are more bioavailable. Ligand and electron shuttle both play an important role in microbial Fe(III) reduction. The restrictive factors of Fe(III) (hydro)oxides bioreduction should be further investigated to reveal the characteristics and mechanisms of the process. It will improve the bioavailability of crystalline Fe(III) (hydro)oxides and accelerate the anaerobic oxidation efficiency of the reduction state pollutants. Furthermore, the approach to extract, culture, and incubate the functional Fe(III) reducing bacteria from actual complicated environment, and applying it to the bioremediation of organic, ammonia, and heavy metals contaminated groundwater will become a research topic in the future. There are a broad application prospects of Fe(III) (hydro)oxides bioreduction to groundwater bioremediation, which includes the in situ injection and permeable reactive barriers and the innovative Kariz wells system. The study provides an important reference for the treatment of reduced pollutants in contaminated groundwater.

Keywords Microbial Fe(III) reduction      Mechanism      Groundwater contamination      Remediation     
Corresponding Author(s): Beidou Xi,Rui Li   
Issue Date: 27 November 2019
 Cite this article:   
Yu Jiang,Beidou Xi,Rui Li, et al. Advances in Fe(III) bioreduction and its application prospect for groundwater remediation: A review[J]. Front. Environ. Sci. Eng., 2019, 13(6): 89.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-019-1173-9
https://academic.hep.com.cn/fese/EN/Y2019/V13/I6/89
Fig.1  Microbial reduction processes in a petroleum-contaminated aquifer.
Fig.2  Microbial strategies mediating electron transfer to crystalline Fe(III) (hydro)oxides (L refer to ligands): Direct contact reduction through the flagellum (a), Indirect reduction by ligands (b) and electron shuttles (c).
Organic contaminants Degradation reaction References
Formic acid HCOO? + 2Fe(III)→HCO3? + 2Fe(II) + 2H+ Lovley et al. (1994);
Coates et al. (1999); Aburto-Medina and Ball (2015);
Farkas et al. (2017)
Lactic acid CH3CHOHCOO? + 4Fe(III) + 2H2O→CH3COO? + HCO3? + 4Fe(II) + 5H+
Pyruvic acid CH3COCOO? + 2Fe(III) + 2H2O→CH3COO? + HCO3?+ 2Fe(II) + 3H+
Benzoic acid C7H6O2 + 30Fe(III) + 19H2O→7HCO3? + 30Fe(II) + 37H+
Methylbenzene C7H8 + 36Fe(III) + 21H2O→7HCO3? + 36Fe(II) + 43H+
Phenol C6H5OH+ 28Fe(III) + 17H2O→6HCO3? + 28Fe(II) + 3H+
P-cresol C7H8O+ 34Fe(III) + 20H2O→7HCO3? + 34Fe(II) + 41H+
Syringic acid C9H10O5 + 36Fe(III) + 22H2O→9HCO3? + 36Fe(II) + 45H+
Ferulic acid C10H10O4 + 42Fe(III) + 26H2O→10HCO3? + 42Fe(II) + 52H+
Nicotinic acid C6H5NO2 + 22Fe(III) + 16H2O→6HCO3? + 22Fe(II) + NH4+ + 27H+
M-hydroxy benzoic acid C7H6O3 + 28Fe(III) + 18H2O→7HCO3? + 28Fe(II) + 35H+
2,5-DHBA C7H6O4 + 26Fe(III) + 17H2O→6HCO3? + 26Fe(II) + 32H+
M-cresol C7H8O+ 34Fe(III) + 20H2O→7HCO3? + 34Fe(II) + 41H+
O-phthalic acid C8H6O4 + 30Fe(III) + 20H2O+ 8HCO3? + 30Fe(II) + 38H+
Tab.1  Degradation  of organic compounds with Fe(III) (hydro)oxides reduction
Environment Degradation reaction Primary product References
Wetland soil NH4+ + 6FeOOH+ 10H+→NO2? + 6Fe2+ + 10H2O Fe2+, NO2- Clement et al. (2005)
Sludge after domestication NH4+ + 2H2O+ 6Fe3+ →NO2? + 6Fe2+ + 8H+ Fe2+, NO2?, NO3?, N2 Park et al. (2009)
NH4+ + 1.32NO2?→0.26NO3? + 1.02N2
Upland soil 3Fe(OH)3 + 5H+ + NH4+→3Fe2+ + 9H2O+ 0.5N2 Fe2+, NO2?, NO3?, N2 Yang et al. (2012)
6Fe(OH)3 + 10H+ + NH4+→6Fe2+ + 16H2O+ NO2?
8Fe(OH)3 + 14H+ + NH4+→8Fe2+ + 21H2O+ NO3?
Tab.2  Reactions  of NH4+ and Fe3+ in different environments
Fig.3  Methods of engineering application: In situ injection (a), permeable reactive barriers (b), kariz system (c).
1 A Aburto-Medina, A S Ball (2015). Microorganisms involved in anaerobic benzene degradation. Annals of Microbiology, 65(3): 1201–1213
https://doi.org/10.1007/s13213-014-0926-8
2 H A Al-Abadleh (2015). Review of the bulk and surface chemistry of iron in atmospherically relevant systems containing humic-like substances. RSC Advances, 5(57): 45785–45811
https://doi.org/10.1039/C5RA03132J
3 K Amstaetter, T Borch, A Kappler (2012). Influence of humic acid imposed changes of ferrihydrite aggregation on microbial Fe(III) reduction. Geochimica et Cosmochimica Acta, 85: 326–341
https://doi.org/10.1016/j.gca.2012.02.003
4 R T Anderson, D R Lovley (2000). Anaerobic bioremediation of benzene under sulfate-reducing conditions in a petroleum-contaminated aquifer. Environmental Science & Technology, 34(11): 2261–2266
https://doi.org/10.1021/es991211a
5 R T Anderson, J N Rooney-Varga, C V Gaw, D R Lovley (1998). Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum contaminated aquifers. Environmental Science & Technology, 32(9): 1222–1229
https://doi.org/10.1021/es9704949
6 R T Anderson, H A Vrionis, I Ortiz-Bernad, C T Resch, P E Long, R Dayvault, K Karp, S Marutzky, D R Metzler, A Peacock, D C White, M Lowe, D R Lovley (2003). Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Applied and Environmental Microbiology, 69(10): 5884–5891
https://doi.org/10.1128/AEM.69.10.5884-5891.2003 pmid: 14532040
7 S G Benner, C M Hansel, B W Wielinga, T M Barber, S Fendorf (2002). Reductive dissolution and biomineralization of iron hydroxide under dynamic flow conditions. Environmental Science & Technology, 36(8): 1705–1711
https://doi.org/10.1021/es0156441 pmid: 11993867
8 P L Bjerg, N Tuxen, L A Reitzel, H J Albrechtsen, P Kjeldsen (2011). Natural attenuation processes in landfill leachate plumes at three Danish sites. Ground Water, 49(5): 688–705
https://doi.org/10.1111/j.1745-6584.2009.00613.x pmid: 19709312
9 A J Bongoua-Devisme, A Cebron, K E Kassin, G R Yoro, C Mustin, J Berthelin (2013). Microbial communities involved in Fe reduction and mobility during soil organic matter (SOM) mineralization in two contrasted paddy soils. Geomicrobiology Journal, 30(4): 347–361
https://doi.org/10.1080/01490451.2012.688928
10 F C Caccavo Jr, A Das (2002). Adhesion of dissimilatory Fe(III)-reducing bacteria to Fe(III) minerals. Geomicrobiology Journal, 19(2): 161–177
https://doi.org/10.1080/01490450252864262
11 Y Chen, H Wang, Y B Si (2013). Research on the bioaccesibility of HgS by Shewanella oneidensis MR-1. Environmental Science, 34(11): 4466–4472 (in Chinese)
pmid: 24455961
12 S E Childers, S Ciufo, D R Lovley (2002). Geobacter metallireducensaccesses insoluble Fe(III) oxide by chemotaxis. Nature, 416(6882): 767–769
https://doi.org/10.1038/416767a pmid: 11961561
13 J C Clement, J Shrestha, J G Ehrenfeld, P R Jaffe (2005). Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil Biology & Biochemistry, 37(12): 2323–2328
https://doi.org/10.1016/j.soilbio.2005.03.027
14 J D Coates, D J Ellis, C V Gaw, D R Lovley (1999). Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. International Journal of Systematic Bacteriology, 49(4): 1615–1622
https://doi.org/10.1099/00207713-49-4-1615 pmid: 10555343
15 R S Cutting, V S Coker, J W Fellowes, J R Lloyd, D J Vaughan (2009). Mineralogical and morphological constraints on the reduction of Fe(III) minerals by Geobacter sulfurreducens. Geochimica et Cosmochimica Acta, 73(14): 4004–4022
https://doi.org/10.1016/j.gca.2009.04.009
16 M Deng (2010). Kariz wells in arid land and mountain-front depressed ground reservoir. Advances in Water Science, 21(6): 748–756 (in Chinese)
17 T C Eisele, K L Gabby (2014). Review of reductive leaching of iron by anaerobic bacteria. Mineral Processing and Extractive Metallurgy Review, 35(2): 75–105
https://doi.org/10.1080/08827508.2012.703627
18 H I Essaid, B A Bekins, I M Cozzarelli (2015). Organic contaminant transport and fate in the subsurface: evolution of knowledge and understanding. Water Resources Research, 51(7): 4861–4902
https://doi.org/10.1002/2015WR017121
19 J Esther, L B Sukla, N Pradhan, S Panda (2015). Fe (III) reduction strategies of dissimilatory iron reducing bacteria. Korean Journal of Chemical Engineering, 32(1): 1–14
https://doi.org/10.1007/s11814-014-0286-x
20 M Farkas, S Szoboszlay, T Benedek, F Révész, P G Veres, B Kriszt, A Táncsics (2017). Enrichment of dissimilatory Fe(III)-reducing bacteria from groundwater of the Siklós BTEX-contaminated site (Hungary). Folia Microbiologica, 62(1): 63–71
https://doi.org/10.1007/s12223-016-0473-8 pmid: 27680983
21 D Fortin, S Langley (2005). Formation and occurrence of biogenic iron-rich minerals. Earth-Science Reviews, 72(1–2): 1–19
https://doi.org/10.1016/j.earscirev.2005.03.002
22 J K Fredrickson, J M Zachara, D W Kennedy, H L Dong, T C Onstott, N W Hinman, S M Li (1998). Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochimica et Cosmochimica Acta, 62(19–20): 3239–3257
https://doi.org/10.1016/S0016-7037(98)00243-9
23 A R Gavaskar (1999). Design and construction techniques for permeable reactive barriers. Journal of Hazardous Materials, 68(1-2): 41–71
https://doi.org/10.1016/S0304-3894(99)00031-X pmid: 10518664
24 C M Hansel, S G Benner, S Fendorf (2005). Competing Fe (II)-induced mineralization pathways of ferrihydrite. Environmental Science & Technology, 39(18): 7147–7153
https://doi.org/10.1021/es050666z pmid: 16201641
25 C M Hansel, S G Benner, J Neiss, A Dohnalkova, R K Kukkadapu, S Fendorf (2003). Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochimica et Cosmochimica Acta, 67(16): 2977–2992
https://doi.org/10.1016/S0016-7037(03)00276-X
26 S Heald, R O Jenkins (1994). Trichloroethylene removal and oxidation toxicity mediated by toluene dioxygenase of Pseudomonas putida. Applied and Environmental Microbiology, 60(12): 4634–4637
pmid: 7811103
27 T Hori, T Aoyagi, H Itoh, T Narihiro, A Oikawa, K Suzuki, A Ogata, M W Friedrich, R Conrad, Y Kamagata (2015). Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural environments. Frontiers in Microbiology, 6(386): 1–16
https://doi.org/10.3389/fmicb.2015.00386 pmid: 25999927
28 S Komulainen, J Pursiainen, P Peramaki, M Lajunen (2013). Complexation of Fe(III) with water-soluble oxidized starch. Stärke, 65(3–4): 338–345
https://doi.org/10.1002/star.201200127
29 D Kossoff, W E Dubbin, M Alfredsson, S J Edwards, M G Macklin, K A Hudson-Edwards (2014). Mine tailings dams: characteristics, failure, environmental impacts, and remediation. Applied Geochemistry, 51: 229–245
https://doi.org/10.1016/j.apgeochem.2014.09.010
30 J E Kostka, K H Nealson (1995). Dissolution and reduction of magnetite by bacteria. Environmental Science & Technology, 29(10): 2535–2540
https://doi.org/10.1021/es00010a012 pmid: 11539843
31 L R Krumholz, R Sharp, S S Fishbain (1996). A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation. Applied and Environmental Microbiology, 62(11): 4108–4113
pmid: 8900001
32 S Kügler, R E Cooper, C E Wegner, J F Mohr, T Wichard, K Küsel (2019). Iron-organic matter complexes accelerate microbial iron cycling in an iron-rich fen. Science of the Total Environment, 646: 972–988
https://doi.org/10.1016/j.scitotenv.2018.07.258 pmid: 30235650
33 D E Latta, C A Gorski, M I Boyanov, E J O’Loughlin, K M Kemner, M M Scherer (2012). Influence of magnetite stoichiometry on U(VI) reduction. Environmental Science & Technology, 46(2): 778–786
https://doi.org/10.1021/es2024912 pmid: 22148359
34 L Li, C H Benson, E M Lawson (2005). Impact of mineral fouling on hydraulic behavior of permeable reactive barriers. Ground Water, 43(4): 582–596
https://doi.org/10.1111/j.1745-6584.2005.0042.x pmid: 16029183
35 L Li, Z Qu, R Jia, B Wang, Y Wang, D Qu (2017). Excessive input of phosphorus significantly affects microbial Fe(III) reduction in flooded paddy soils by changing the abundances and community structures of Clostridium and Geobacteraceae. Science of the Total Environment, 607-608: 982–991
https://doi.org/10.1016/j.scitotenv.2017.07.078 pmid: 28724230
36 R Li, Y Jiang, B Xi, M Li, X Meng, C Feng, X Mao, H Liu, Y Jiang (2018a). Raw hematite based Fe(III) bio-reduction process for humified landfill leachate treatment. Journal of Hazardous Materials, 355: 10–16
https://doi.org/10.1016/j.jhazmat.2018.05.002 pmid: 29763796
37 X Li, Y Huang, H W Liu, C Wu, W Bi, Y Yuan, X Liu (2018b). Simultaneous Fe(III) reduction and ammonia oxidation process in Anammox sludge. Journal of Environmental Sciences (China), 64: 42–50
https://doi.org/10.1016/j.jes.2017.01.002 pmid: 29478660
38 X Li, Y Yuan, Y Huang, H W Liu, Z Bi, Y Yuan, P B Yang (2018c). A novel method of simultaneous NH4+ and NO3‒ removal using Fe cycling as a catalyst: Feammox coupled with NAFO. Science of the Total Environment, 631-632: 153–157
https://doi.org/10.1016/j.scitotenv.2018.03.018 pmid: 29524892
39 Z Liao, O A Cirpka (2011). Shape-free inference of hyporheic traveltime distributions from synthetic conservative and smart tracer tests in streams. Water Resources Research, 47(7): 1–14
https://doi.org/10.1029/2010WR009927
40 B Lin, H W Van Verseveld, W F M Röling (2002). Microbial aspects of anaerobic BTEX degradation. Biomedical and Environmental Sciences, 15(2): 130–144
pmid: 12244754
41 C Liu, S Kota, J M Zachara, J K Fredrickson, C K Brinkman (2001). Kinetic analysis of the bacterial reduction of goethite. Environmental Science & Technology, 35(12): 2482–2490
https://doi.org/10.1021/es001956c pmid: 11432552
42 C Liu, J M Zachara, N S Foster, J Strickland (2007). Kinetics of reductive dissolution of hematite by bioreduced anthraquinone-2,6-disulfonate. Environmental Science & Technology, 41(22): 7730–7735
https://doi.org/10.1021/es070768k pmid: 18075081
43 M M Lorah, M A Voytek (2004). Degradation of 1,1,2,2-tetrachloroethane and accumulation of vinyl chloride in wetland sediment microcosms and in situ porewater: biogeochemical controls and associations with microbial communities. Journal of Contaminant Hydrology, 70(1-2): 117–145
https://doi.org/10.1016/j.jconhyd.2003.08.010 pmid: 15068871
44 D R Lovley (1995). Bioremediation of organic and metal contaminants with dissimilatory metal reduction. Journal of Industrial Microbiology, 14(2): 85–93
https://doi.org/10.1007/BF01569889 pmid: 7766214
45 D R Lovley (2001). Bioremediation. Anaerobes to the rescue. Science, 293(5534): 1444–1446
https://doi.org/10.1126/science.1063294 pmid: 11520973
46 D R Lovley, R T Anderson (2000). Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface. Hydrogeology Journal, 8(1): 77–88
https://doi.org/10.1007/PL00010974
47 D R Lovley, S J Giovannoni, D C White, J E Champine, E J Phillips, Y A Gorby, S Goodwin (1993). Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Archives of Microbiology, 159(4): 336–344
https://doi.org/10.1007/BF00290916 pmid: 8387263
48 D R Lovley, D E Holmes, K P Nevin (2004). Advances in Microbial Physiology, vol. 49. Poole R K, ed., 219–286
49 D R Lovley, E J Phillips (1987). Rapid assay for microbially reducible ferric iron in aquatic sediments. Applied and Environmental Microbiology, 53(7): 1536–1540
pmid: 16347384
50 D R Lovley, J C Woodward, F H Chapelle (1994). Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature, 370(6485): 128–131
https://doi.org/10.1038/370128a0 pmid: 8022480
51 Y S Luu, J A Ramsay (2003). Review: Microbial mechanisms of accessing insoluble Fe(III) as an energy source. World Journal of Microbiology & Biotechnology, 19(2): 215–225
https://doi.org/10.1023/A:1023225521311
52 J Ma, C Ma, J Tang, S Zhou, L Zhuang (2015). Mechanisms and applications of electron shuttle-mediated extracellular electron transfer. Progress in Chemistry, 27(12): 1833–1840 (in Chinese)
53 L Machala, J Tucek, R Zboril (2011). Polymorphous transformations of nanometric iron(III) oxide: A review. Chemistry of Materials, 23(14): 3255–3272
https://doi.org/10.1021/cm200397g
54 T A Martin, J H Kempton (2000). In situ stabilization of metal-contaminated groundwater by hydrous ferric oxide: An experimental and modeling investigation. Environmental Science & Technology, 34(15): 3229–3234
https://doi.org/10.1021/es980861w
55 J Mejia, E E Roden, M Ginder-Vogel (2016). Influence of oxygen and nitrate on Fe (Hydr)oxide mineral transformation and soil microbial communities during redox cycling. Environmental Science & Technology, 50(7): 3580–3588
https://doi.org/10.1021/acs.est.5b05519 pmid: 26949922
56 K H Nealson, D Saffarini (1994). Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation. Annual Review of Microbiology, 48(1): 311–343
https://doi.org/10.1146/annurev.mi.48.100194.001523 pmid: 7826009
57 L E S Netto, E R Stadtman (1996). The iron-catalyzed oxidation of dithiothreitol is a biphasic process: Hydrogen peroxide is involved in the initiation of a free radical chain of reactions. Archives of Biochemistry and Biophysics, 333(1): 233–242
https://doi.org/10.1006/abbi.1996.0386 pmid: 8806776
58 E J O’Loughlin, C A Gorski, M M Scherer, M I Boyanov, K M Kemner (2010). Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite (gamma-FeOOH) and the formation of secondary mineralization products. Environmental Science & Technology, 44(12): 4570–4576
https://doi.org/10.1021/es100294w pmid: 20476735
59 W Park, Y Nam, M Lee, T Kim (2009). Anaerobic ammonia-oxidation coupled with Fe3+ reduction by an anaerobic culture from a piggery wastewater acclimated to NH4+/Fe3+ medium. Biotechnology and Bioprocess Engineering; BBE, 14(5): 680–685
https://doi.org/10.1007/s12257-009-0026-y
60 R W Puls, D W Blowes, R W Gillham (1999). Long-term performance monitoring for a permeable reactive barrier at the U.S. Coast Guard Support Center, Elizabeth City, North Carolina. Journal of Hazardous Materials, 68(1-2): 109–124
https://doi.org/10.1016/S0304-3894(99)00034-5 pmid: 10518667
61 F Qian, H Wang, Y Ling, G Wang, M P Thelen, Y Li (2014). Photoenhanced electrochemical interaction between Shewanella and a hematite nanowire photoanode. Nano Letters, 14(6): 3688–3693
https://doi.org/10.1021/nl501664n pmid: 24875432
62 S Rayu, D G Karpouzas, B K Singh (2012). Emerging technologies in bioremediation: Constraints and opportunities. Biodegradation, 23(6): 917–926
https://doi.org/10.1007/s10532-012-9576-3 pmid: 22836784
63 E E Roden, M M Urrutia (2002). Influence of biogenic Fe(II) on bacterial crystalline Fe(III) oxide reduction. Geomicrobiology Journal, 19(2): 209–251
https://doi.org/10.1080/01490450252864280
64 E E Roden, J M Zachara (1996). Microbial reduction of crystalline iron(III) oxides: Influence of oxide surface area and potential for cell growth. Environmental Science & Technology, 30(5): 1618–1628
https://doi.org/10.1021/es9506216
65 M M Savard, D Paradis, G Somers, S Liao, E Van Bochove (2007). Winter nitrification contributes to excess NO3‒ in groundwater of an agricultural region: A dual-isotope study. Water Resources Research, 43(6): 1–10
https://doi.org/10.1029/2006WR005469
66 S Sawayama (2006). Possibility of anoxic ferric ammonium oxidation. Journal of Bioscience and Bioengineering, 101(1): 70–72
https://doi.org/10.1263/jbb.101.70 pmid: 16503294
67 D T Scott, D M Mcknight, E L Blunt-Harris, S E Kolesar, D R Lovley (1998). Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environmental Science & Technology, 32(19): 2984–2989
https://doi.org/10.1021/es980272q
68 Z Shi, J M Zachara, L Shi, Z Wang, D A Moore, D W Kennedy, J K Fredrickson (2012). Redox reactions of reduced flavin mononucleotide (FMN), riboflavin (RBF), and anthraquinone-2,6-disulfonate (AQDS) with ferrihydrite and lepidocrocite. Environmental Science & Technology, 46(21): 11644–11652
https://doi.org/10.1021/es301544b pmid: 22985396
69 J Shrestha, J J Rich, J G Ehrenfeld, P R Jaffe (2009). Oxidation of ammonium to nitrite under iron-reducing conditions in wetland soils laboratory, field demonstrations, and push-pull rate determination. Soil Science, 174(3): 156–164
https://doi.org/10.1097/SS.0b013e3181988fbf
70 R Thiruvenkatachari, S Vigneswaran, R Naidu (2008). Permeable reactive barrier for groundwater remediation. Journal of Industrial and Engineering Chemistry, 14(2): 145–156
https://doi.org/10.1016/j.jiec.2007.10.001
71 M Tuntoolavest, W D Burgos (2005). Anaerobic phenol oxidation by Geobacter metallireducens using various electron acceptors. Environmental Engineering Science, 22(4): 421–426
https://doi.org/10.1089/ees.2005.22.421
72 I Utkin, C Woese, J Wiegel (1994). Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. International Journal of Systematic Bacteriology, 44(4): 612–619
https://doi.org/10.1099/00207713-44-4-612 pmid: 7981092
73 N VanStone, A Przepiora, J Vogan, G Lacrampe-Couloume, B Powers, E Perez, S Mabury, B Sherwood Lollar (2005). Monitoring trichloroethene remediation at an iron permeable reactive barrier using stable carbon isotopic analysis. Journal of Contaminant Hydrology, 78(4): 313–325
https://doi.org/10.1016/j.jconhyd.2005.05.013 pmid: 16026893
74 J L Vogan, R M Focht, D K Clark, S L Graham (1999). Performance evaluation of a permeable reactive barrier for remediation of dissolved chlorinated solvents in groundwater. Journal of Hazardous Materials, 68(1-2): 97–108
https://doi.org/10.1016/S0304-3894(99)00033-3 pmid: 10518666
75 K A Weber, L A Achenbach, J D Coates (2006). Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature Reviews. Microbiology, 4(10): 752–764
https://doi.org/10.1038/nrmicro1490 pmid: 16980937
76 W H Yang, K A Weber, W L Silver (2012). Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction. Nature Geoscience, 5(8): 538–541
https://doi.org/10.1038/ngeo1530
77 H Yao, R Conrad, R Wassmann, H U Neue (1999). Effect of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China, the Philippines, and Italy. Biogeochemistry, 47(3): 269–295
https://doi.org/10.1007/BF00992910
78 Y You, J Han, P C Chiu, Y Jin (2005). Removal and inactivation of waterborne viruses using zerovalent iron. Environmental Science & Technology, 39(23): 9263–9269
https://doi.org/10.1021/es050829j pmid: 16382951
79 J M Zachara, J K Fredrickson, S M Li, D W Kennedy, S C Smith, P L Gassman (1998). Bacterial reduction of crystalline Fe3+ oxides in single phase suspensions and subsurface materials. American Mineralogist, 83(11-12 Part 2): 1426–1443
https://doi.org/10.2138/am-1998-11-1232
80 R Zboril, M Mashlan, D Petridis (2002). Iron(III) oxides from thermal processes-synthesis, structural and magnetic properties, Mossbauer spectroscopy characterization, and applications. Chemistry of Materials, 14(3): 969–982
https://doi.org/10.1021/cm0111074
81 C L Zhang, H Vali, C S Romanek, T J Phelps, S V Liu (1998). Formation of single-domain magnetite by a thermophilic bacterium. American Mineralogist, 83(11-12 Part 2): 1409–1418
https://doi.org/10.2138/am-1998-11-1230
82 J Zobrist, P R Dowdle, J A Davis, R S Oremland (2000). Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environmental Science & Technology, 34(22): 4747–4753
https://doi.org/10.1021/es001068h
[1] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[2] Zhifei Ma, Huali Cao, Fengchun Lv, Yu Yang, Chen Chen, Tianxue Yang, Haixin Zheng, Daishe Wu. Preparation of nZVI embedded modified mesoporous carbon for catalytic persulfate to degradation of reactive black 5[J]. Front. Environ. Sci. Eng., 2021, 15(5): 98-.
[3] Kehui Liu, Jie Xu, Chenglong Dai, Chunming Li, Yi Li, Jiangming Ma, Fangming Yu. Exogenously applied oxalic acid assists in the phytoremediation of Mn by Polygonum pubescens Blume cultivated in three Mn-contaminated soils[J]. Front. Environ. Sci. Eng., 2021, 15(5): 86-.
[4] Xinshu Liu, Xiaoman Su, Sijie Tian, Yue Li, Rongfang Yuan. Mechanisms for simultaneous ozonation of sulfamethoxazole and natural organic matters in secondary effluent from sewage treatment plant[J]. Front. Environ. Sci. Eng., 2021, 15(4): 75-.
[5] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[6] Dongjie Shang, Jianfei Peng, Song Guo, Zhijun Wu, Min Hu. Secondary aerosol formation in winter haze over the Beijing-Tianjin-Hebei Region, China[J]. Front. Environ. Sci. Eng., 2021, 15(2): 34-.
[7] Huibin Guo, Ning Wang, Xiang Li. Antioxidative potential of metformin: Possible protective mechanism against generating OH radicals[J]. Front. Environ. Sci. Eng., 2021, 15(2): 21-.
[8] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
[9] Karla Ilić Đurđić, Raluca Ostafe, Olivera Prodanović, Aleksandra Đurđević Đelmaš, Nikolina Popović, Rainer Fischer, Stefan Schillberg, Radivoje Prodanović. Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls[J]. Front. Environ. Sci. Eng., 2021, 15(2): 19-.
[10] Jinjin Fu, Quan Zhang, Baocheng Huang, Niansi Fan, Rencun Jin. A review on anammox process for the treatment of antibiotic-containing wastewater: Linking effects with corresponding mechanisms[J]. Front. Environ. Sci. Eng., 2021, 15(1): 17-.
[11] Wenqing Xu, Mark L. Segall, Zhao Li. Reactivity of Pyrogenic Carbonaceous Matter (PCM) in mediating environmental reactions: Current knowledge and future trends[J]. Front. Environ. Sci. Eng., 2020, 14(5): 86-.
[12] Zhengqing Cai, Xiao Zhao, Jun Duan, Dongye Zhao, Zhi Dang, Zhang Lin. Remediation of soil and groundwater contaminated with organic chemicals using stabilized nanoparticles: Lessons from the past two decades[J]. Front. Environ. Sci. Eng., 2020, 14(5): 84-.
[13] Jianzhi Huang, Huichun Zhang. Redox reactions of iron and manganese oxides in complex systems[J]. Front. Environ. Sci. Eng., 2020, 14(5): 76-.
[14] Sen Liu, Congren Yang, Wei Liu, Longsheng Yi, Wenqing Qin. A novel approach to preparing ultra-lightweight ceramsite with a large amount of fly ash[J]. Front. Environ. Sci. Eng., 2020, 14(4): 62-.
[15] Meng Zhu, Yongming Luo, Ruyi Yang, Shoubiao Zhou, Juqin Zhang, Mengyun Zhang, Peter Christie, Elizabeth L. Rylott. Diphenylarsinic acid sorption mechanisms in soils using batch experiments and EXAFS spectroscopy[J]. Front. Environ. Sci. Eng., 2020, 14(4): 58-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed