Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (1) : 16-38    https://doi.org/10.1007/s11783-014-0697-2
REVIEW ARTICLE
Occurrence of bisphenol A in surface and drinking waters and its physicochemical removal technologies
Liping LIANG1,2,Jing ZHANG2,Pian FENG3,Cong LI4,Yuying HUANG1,*(),Bingzhi DONG3,Lina LI1,Xiaohong GUAN3,*()
1. Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
2. State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
3. State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
4. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 Download: PDF(270 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Bisphenol A (BPA), an endocrine disrupting compound, has caused wide public concerns due to its wide occurrence in environment and harmful effects. BPA has been detected in many surface waters and drinking water with the maximum concentrations up to tens of μg·L-1. The physicochemical technology options in eliminating BPA can be divided into four categories: oxidation, advanced oxidation, adsorption and membrane filtration. Each removal option has its own limitation and merits in removing BPA. Oxidation and advanced oxidation generally can remove BPA efficiently while they also have some drawbacks, such as high cost, the generation of a variety of transformation products that are even more toxic than the parent compound and difficult to be mineralized. Only few advanced oxidation methods have been reported to be able to mineralize BPA completely. Therefore, it is important not only to identify the major initial transformation products but also to assess their estrogenic activity relative to the parent compounds when oxidation methods are employed to remove BPA. Without formation of harmful by-products, physical separation methods such as activated carbon adsorption and membrane processes are able to remove BPA in water effluents and thus have potential as BPA removal technologies. However, the necessary regeneration of activated carbon and the low BPA removal efficiency when the membrane became saturated may limit the application of activated carbon adsorption and membrane processes for BPA removal. Hybrid processes, e.g. combining adsorption and biologic process or combining membrane and oxidation process, which can achieve simultaneous physical separation and degradation of BPA, will be highly preferred in future.

Keywords Bisphenol A (BPA)      occurrence      conventional oxidation      advanced oxidation      adsorption      membrane filtration     
Corresponding Author(s): Yuying HUANG   
Online First Date: 23 April 2014    Issue Date: 31 December 2014
 Cite this article:   
Liping LIANG,Jing ZHANG,Pian FENG, et al. Occurrence of bisphenol A in surface and drinking waters and its physicochemical removal technologies[J]. Front. Environ. Sci. Eng., 2015, 9(1): 16-38.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0697-2
https://academic.hep.com.cn/fese/EN/Y2015/V9/I1/16
country water type number ofsampling points median ofconcentrations /(ng·L-1) range/(ng·L-1) reference
Spain river water (NE Spain-Catalonia) 11 4.5 under detection ~2970 [8]
river water (Spain-Granada) --- --- 52.0–219 [9]
Portugal river water (Portugal-Mondego River Estuary) 8 41.5 under detection ~ 590 [10]
river water (Portugal-the Douro River Estuary) 9 2.5 under detection ~10700 [11]
Switzerland river water (Switzerland-Glatt River) 3 0.0 under detection ~4.4 [12]
Korea river water (Korea-Talanta) 5 23.8 under detection ~39.4 [13]
Mexico river water (Mexico-a coastal lagoon) 4 12.3 under detection ~145 [14]
USA river and lake water (USA-New Orleans, Louisiana) 5 60 1.5–113 [15]
bayou River (USA) --- --- 9–44 [15]
China Changjiang River (China-Wuhan) 8 60.45 9.2–198.7 [16]
Pearl River/Dong River (China-Guangzhou) 31 231.9 43.5–639.1 [17]
Jiaozhou Bay (China-Qingdao) 156 18 .4786 .9 6 .7–37.862 .9–3035 [18]
Pearl rivers (Southern China) 15 285.3 2.2–1030 [19]
Pearl River (China-Guangzhou) 14 192.8 97.8–540 [20]
Japan river water (Japan-Tokyo Bay) 5 --- <500–900 [21]
surface seawater(Japan-Tokyo Bay) --- --- 20.2–30.1 [22]
Germany Elbe River (Germany) 16 35.4 16–100 [23]
drinking water (southern Germany) 16 1.1 0.50–2.0 [24]
Belgium river water (Belgium and Italian) 1 48.5 42–55 [25]
Tab.1  Occurrence of BPA in surface and drinking waters
property value
structural formula for BPA
CAS. No 80-05-7
molecular formula C15H16O2
molar mass 228.29 g·mol-1
water solubility (20°C–25 °C) 120–300 mg·L-1
density 1.20 g·cm-3
logKow (25°C) 2.2–3.82
melting point 158–159 °C
boiling point (4 mmHg) 220 °C
vapor pressure (190°C) 87 Pa
henry′s law contant (25°C) 1×10-10
appearance white crystalline solid
LD50a, rat, oral 3300–4240 mg·kg-1
LD50, mouse, oral 2500–5200 mg·kg-1
LD50, fish (Pimephales promelas), 96 h 4.6 mg·L-1
Tab.2  Physico-chemical characteristics of BPA
oxidants reaction rate/(mol-1·L·s-1) degradation products reference
ozone 1.3×104 (pH=2), 1.6×109 (pH=12) [27]
1.68×104 (BPA), 1.06×109 (BPA-), 1.11×109 (BPA2-) [28]
catechol, orthoquinone, muconic acid derivatives of BPA, benzoquinone, 2-(4-hydroxyphenyl)-propan-2-ol [29]
0.48×105 (pH=2), 0.94×105 (pH=5), 1.71×105 (pH=7), 1.16×105 (pH=10) [30]
catechol, resorcinol, acetone, formaldehyde, acetic acid, formic acid, maleic acid, oxalic acid [31]
p-tert-butylphenol, hydroquinone, methyl-dihydrobenzofuran, n-butyl acetate [32]
permanganate 45 (BPA), 6.09×103 (BPA-), 2.25×105 (BPA2-) [34]
12.7 (pH=5), 14.2 (pH=6), 35.8 (pH=7), 240 (pH=8), 870 (pH=9) [35]
ferrate 8.2×102 (BPA), 0.8×105 (BPA-), 2.6×105 (BPA2-) [39]
phenol, p-isopropylphenol, 4-isopropanolphenol, (1-phenyl-1-butenyl)benzene, styrene, p-hydroxyacetophenone, 4-isopropyl-cyclohexa-2,5-dienone, propanedioic acid, oxalic acid [40]
1094 (initial pH=5.5) [41]
chlorine 4-chloro-BPA, 2,6-dichloro-BPA, 2,6-dichloro-BPA, 2,2',6'-trichloro-BPA, 2,2',6,6'-tetrachloro-BPA, trichlorophenol, 4-isopropyl-2'-hydroxylphenol, six kinds of polychlorinated phenoxyphenols [43]
3.10×104 (BPA-), 6.62×104 (BPA2-) [44]
2-chloro BPA (MCBPA), 2,6-dichloro BPA (2,6-D2CBPA), 2,2’-dichloro BPA (2,2’-D2CBPA), 2,2’,6-trichloro BPA (T3CBPA) and 2,2’,6,6’-tetrachloro BPA (T4CBPA), 2,4,6-trichlorophenol (T3CP), 2,6-dichloro-1,4-benzoquinone (D2CBQ), 2,6-dichloro-1,4-hydroquinone (D2CHQ), C9H10Cl2O2, C9H8Cl2O and C10H12Cl2O2 [45]
Tab.3  Reaction rates and degradation products of BPA with traditional oxidants
type of AOPs reaction conditions degradation efficiency/% mineralization efficiency /% reference
sonochemical degradation [BPA]=500 μmol·L-1, ultrasonic system (404 kHz, 3.5 kW·m-2) ~100 (10 h) [76]
[BPA]=500 μmol·L-1, ultrasonic system (404 kHz, 9 kW·m-2) ~100 (3 h) 15.4 (10 h)
[BPA]=500 μmol·L-1, ultrasonic system (404 kHz, 12.9 kW·m-2) ~100 (2 h)
[BPA]=500 μmol·L-1, ultrasonic system (404 kHz, 9 kW·m-2), Fe(II)=4.0 mmol·L-1 ~100 (3 h) 50.2 (10 h)
sonochemical degradation [BPA]=118 μmol·L-1, ultrasonic system (300 kHz, 80 W), 22°C, saturating gas: oxygen, pH=7.0. ~100 (105 min) 9 (105 min) [77]
photo-Fenton [BPA]=118 μmol·L-1, [Fe2+]=100 μmol·L-1, [H2O2]=96 μmol·h-1, 22°C, saturating gas: oxygen, pH=7.0, UV irradiation: solar simulator. ~100 (180 min) 14 (180 min)
sequential helio-photo-Fenton process [BPA]=118 μmol·L-1, ultrasonic system (300 kHz, 80 W), [Fe2+]=100 μmol·L-1, [H2O2]=96 μmol·h-1, 22°C, saturating gas: oxygen, pH=7.0. 92 (60 min) 70 (240 min)
sonochemical degradation [BPA]=118 μmol·L-1, pH=3.0, ultrasonic system (300 kHz, 80 W), 20±2°C 100 (90 min) 5 (180 min) [47]
Fenton process [BPA]=118 μmol·L-1, pH=3.0, [Fe2+]=100 μmol·L-1, [H2O2]=110 μmol·h-1, 20±2°C 100 (90 min) 20 (180 min)
sonochemical degradation [BPA]=0.44 μmol·L-1, pH=6.5, 25±0.5°C, ultrasonic system (20 kHz, 40 W·cm-2) 44.9 (120 min) [50]
[BPA]=0.44 μmol·L-1, pH=6.5, 25±0.5°C, ultrasonic system (20 kHz, 60 W·cm-2) 34.6 (60 min), 51.1 (120 min)
[BPA]=0.44 μmol·L-1, pH=6.5, 25±0.5°C, ultrasonic system (20 kHz, 80 W·cm-2) 55 (120 min)
O3 [BPA]=0.44 μmol·L-1, pH=6.5, 25±0.5°C, O3=10 mL·min-1 63 (60 min)
US+O3 [BPA]=0.44 μmol·L-1, pH=6.5, 25±0.5°C, 20 kHz, 60 W·cm-2, O3=10 mL·min-1 ~100 (60 min)
ultrasonication [BPA]=10 μmol·L-1, ultrasonic system (300 kHz, 0.19 W mL-1), 0.15l min-1 air injection, pH=3.0 ~100 (60 min) [49]
[BPA]=10 μmol·L-1, ultrasonic system (300 kHz, 0.19 W·mL-1), 0.15l min-1 air injection, pH=6.0 ~100 (60 min)
[BPA]=10 μmol·L-1, ultrasonic system (300 kHz, 0.19 W·mL-1), 0.15l min-1 air injection, pH=10.5 90.9 (60 min)
photodegradation [BPA]=520 μmol·L-1, pH=6.7, low-pressure mercury lamp, 15 W, λ=254 nm, 25°C 7.3 (15 min) [78]
[BPA]=520 μmol·L-1, pH=6.7, low-pressure mercury lamp, 15 W, λ=254 nm, 25°C, [H2O2]= 500 μmol·L-1 35 (15 min)
photooxidation [BPA]=8.8 μmol·L-1, pH=3.5, Fe(III)=10.0 μmol·L-1, [Ox]=120.0 μmol·L-1, 28°C, 491 kHz, high-pressure mercury lamp, 125 W, λ≥365 nm 90.2 (40 min) [65]
[BPA]=21.9 μmol·L-1, pH=3.5, Fe(III)=10.0 μmol·L-1, [Ox]=120.0 μmol·L-1, 28 oC, 491 kHz, high-pressure mercury lamp, 125 W, λ≥365 nm 75.4 (80 min)
[BPA]=43.8 μmol·L-1, pH=3.5, Fe(III)=10.0 μmol·L-1, [Ox]=120.0 μmol·L-1, 28°C, 491 kHz, high-pressure mercury lamp, 125 W, λ≥365 nm 38.6 (80 min)
solar photocatalysis [BPA]=438 μmol·L-1, pH=6.0, sunlight, 1.3 mW·cm-2, [TiO2]=5 g·L-1, 30°C ~60 (60 min) 100 (11 h) [61]
H2O2 –assisted photoelectrocatalytic oxidation [BPA]=49.1 μmol·L-1, 8 W, 0.68 mW·cm-2, λ=365 nm, Ti/TiO2 electrode, current intensity 0 mA 13 (180 min) [55]
[BPA]=49.1 μmol·L-1, 8 W, 0.68 mW·cm-2, λ=365 nm, Ti/TiO2 electrode, current intensity 0.2 mA 68 (180 min)
[BPA]=49.1 μmol·L-1, 8 W, 0.68 mW·cm-2, λ=365 nm, Ti/TiO2 electrode, current intensity 1.5 mA 99 (180 min)
photocatalysis (TiO2 powder) [BPA]=21.9 μmol·L-1, TiO2 0.5 g·L-1, blue light, pH=6.0±0.2 with 1.25 mmol·L-1 NaCl as the background electrolyte 35 (2 h) 38 (6 h) [62]
photocatalysis (TiO2 hollow sphere) [BPA]=21.9 μmol·L-1, TiO2 hollow sphere 0.5 g·L-1, blue light, pH 6.0±0.2 with 1.25 mmol·L-1 NaCl as the background electrolyte 40 (2 h) 49 (6 h)
photocatalysis (nitrogen-doped TiO2 hollow sphere) [BPA]=21.9 μmol·L-1, nitrogen-doped TiO2 hollow sphere 0.5 g·L-1, blue light, pH 6.0±0.2 with 1.25 mmol·L-1 NaCl as the background electrolyte 90 (2 h) 66 (6 h)
Co2+/PMS [BPA]=500 μmol·L-1, pH=7.0, [PMS]=0.1 mmol·L-1, [Co2+]=8.5×10-7 mol, T=25°C ~100 38 [79]
UV/Co2+/PMS [BPA]=500 μmol·L-1, pH=7.0, [PMS]=0.1 mmol·L-1, [Co2+]=8.5×10-7 mol, T=25°C, λ=254 nm ~100 45
[BPA]=500 μmol·L-1, pH=7.0, [PMS]=0.1 mmol·L-1, [Co2+]=8.5×10-7 mol, T=25°C, λ=365 nm ~100 49
photolysis (UV) One 1 kW medium-pressure (MP) UV lamp, λ=200-300 nm, 1000 mJ·cm-2 14.5 [69]
four 15 W low-pressure (LP) UV lamp, λ=254 nm, 1000 mJ·cm-2 <5
UV/H2O2 One 1 kW medium-pressure (MP) UV lamp, λ=200-300 nm, 1000 mJ·cm-2, [H2O2]=15 mg·L-1 ~90
four 15 W low-pressure UV lamp, λ=254 nm, 1000 mJ·cm-2, [H2O2]=15 mg·L-1 ~90
UV/H2O2 [BPA]=60 μmol·L-1, low pressure Hg lamp (15 W, 253.7 nm), 3000 mJ·cm-2, room temperature, [H2O2]=10 mg·L-1 80 [72]
[BPA]=60 μmol·L-1, low pressure Hg lamp (15 W, 253.7 nm), 3000 mJ·cm-2, room temperature, [H2O2]=25 mg·L-1 97
[BPA]=60 μmol·L-1, low pressure Hg lamp (15 W, 253.7 nm), 3000 mJ·cm-2, room temperature, [H2O2]=50 mg·L-1 >99
Fenton [BPA]=43.8 μmol·L-1, [H2O2]=4×10-4 mol, [Fe2+]=4×10-5 mol, pH=4.0 90 (9 min) [75]
photo-Fenton [BPA]=43.8 μmol·L-1, [H2O2]=4×10-4 mol, [Fe2+]=4×10-5 mol, pH=4.0, a Xe lamp, λ=320-410 nm, 0.5 mW·cm-2. 100 (9 min) 90 (36 h)
TiO2 photocatalysis [BPA]=118 μmol·L-1, [TiO2]=10 mg·L-1, pH=3.0, temperature: 22±2 °C, solar simulator irradiation 66 (75 min) 5 (4 h) [80]
ultrasound [BPA]=118 μmol·L-1, pH=3.0, temperature: 22±2 oC, ultrasound: 300 kHz, 80 W 100 (120 min) 6 (4 h)
ultrasound, Fe2+ and TiO2 photoassisted- process [BPA]=118 μmol·L-1, [TiO2]=10 mg·L-1, [Fe2+]=5.6 mg·L-1, pH=3.0, temperature: 22±2 °C, ultrasound: 300 kHz, 80 W, solar simulator irradiation 100 (75 min) 93 (4 h)
UV-Na2S2O8 /H2O2-Fe(II) [BPA]=50 μmol·L-1, [Na2S2O8]=0.05 mmol·L-1, 15 W UV lamp, λ=254 nm, [Fe(II)]=0.045 mmol·L-1, [H2O2]=0.1579 mmol·L-1, 25°C 100 (90 min) 91 (300 min) [81]
[BPA]=50 μmol·L-1, [Na2S2O8]=0.05 mmol·L-1, 15 W UV lamp, λ=254 nm, [Fe(III)]=0.045 mmol·L-1, [H2O2]=0.1579 mmol·L-1, 25°C 100 (90 min) 87 (300 min)
Tab.4  Summary of BPA removal by advanced oxidation processes
type adsorbent pH T/°C BET area/(m2·g-1) qmax/(mg·g-1) reference
carbon nanomaterials fullerene NAa RTb 7.21 2.4 [82]
single-walled carbon nanotubes NAa RTb 541 591
multiwalled carbon nanotubes (outer diameters of 8–15 nm) NAa RTb 174 121
multiwalled carbon nanotubes (outer diameters of 20–30 nm) NAa RTb 107 77
multiwalled carbon nanotubes (outer diameters of 30–50 nm) NAa RTb 94.7 103
carbon carbonaceous material prepared at 600°C from by-products of wood processing NAa 25 NA 4.2–18.2 [83]
carbonaceous material prepared at 800°C from by-products of wood processing NAa 25 NA 24.1–31.4
activated carbon purchased from Takeda (coconut shell based) NAa 25 1119 23.5
activated carbon purchased from Sorbonorit (charcoal based) 6.5–7.0 25 1225 129.6 [84]
activated carbon purchased from Merck (charcoal based) 6.5–7.0 25 1084 263.1
activated carbon from almond shells 6.5–7.0 25 1216 188.9
activated carbon purchased from Sorbonorit (charcoal based)-treatment with HCl 6.5–7.0 25 1277 285.7
activated carbon purchased from Merck (charcoal based) -treatment with HCl 6.5–7.0 25 1158 303
activated carbon purchased from Calgon (coconut shell based) 7.0 25 916 328.3 [85]
activated carbon purchased from Calgon (bituminous coal based) 7.0 25 1060 263.2
carbon WV A1100 purchased from Westvaco 7.0 25 1777 378.3 [86]
thermally treated carbon WV A1100 7.0 25 1760 430.3
HNO3-treated carbon WV A1100 7.0 25 1.27 57.1
carbon F400 purchased from Calgon 7.0 25 996 317.7
thermally treated carbon F400 7.0 25 1000 223.5
HNO3-treated carbon F400 7.0 25 900 115.4
porous carbon prepared at 400°C from Moso bamboo NAa 23 2.5 2.1 [87]
porous carbon prepared at 700°C from Moso bamboo NAa 23 251 11.4
porous carbon prepared at 1000°C from Moso bamboo NAa 23 300 41.8
activated carbon purchased from Wako NAa 23 1350 56.5
mesoporous carbon CMK-3 NAa 10 920 276 [88]
NAa 25 920 296
NAa 45 920 263
Tab.5  The adsorption capacity of BPA by various carbon type adsorbents
1 Krishnan P, Le H, Lee S H, Gelerinter E. Further EPR studies of molecular motions in polymer/plasticizer mixtures. Journal of Polymer Science. Part B, Polymer Physics, 1993, 31(13): 1885–1890
https://doi.org/10.1002/polb.1993.090311301
2 Von Reppert-Bismarck J, EU to Ban Bisphenol A in Baby Bottles in 2011, Reuters. Nov., 25. 2010
3 Vandenberg L N, Hauser R, Marcus M, Olea N, Welshons W V. Human exposure to Bisphenol A (BPA). Reproductive Toxicology (Elmsford, N.Y.), 2007, 24(2): 139–177
https://doi.org/10.1016/j.reprotox.2007.07.010 pmid: 17825522
4 Kolpin D W, Furlong E T, Meyer M T, Thurman E M, Zaugg S D, Barber L B, Buxton H T. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance. Environmental Science and Technology, 2002, 36(6): 1202–1211
https://doi.org/10.1021/es011055j pmid: 11944670
5 Rodriguez-Mozaz S, de Alda M J, Barceló D. Monitoring of estrogens, pesticides and BPA in natural waters and drinking water treatment plants by solid-phase extraction-liquid chromatography-mass spectrometry. Journal of Chromatography A, 2004, 1045(1-2): 85–92
https://doi.org/10.1016/j.chroma.2004.06.040 pmid: 15378882
6 Fromme H, Küchler T, Otto T, Pilz K, Müller J, Wenzel A. Occurrence of phthalates and bisphenol A and F in the environment. Water Research, 2002, 36(6): 1429–1438
https://doi.org/10.1016/S0043-1354(01)00367-0 pmid: 11996333
7 Staples C A, Williams J B, Blessing R L, Varineau P T. Measuring the biodegradability of nonylphenol ether carboxylates, octylphenol ether carboxylates, and nonylphenol. Chemosphere, 1999, 38(9): 2029–2039
https://doi.org/10.1016/S0045-6535(98)00415-9 pmid: 10101857
8 Céspedes R, Lacorte S, Raldúa D, Ginebreda A, Barceló D, Pi?a B. Distribution of endocrine disruptors in the Llobregat River Basin (Catalonia, NE Spain). Chemosphere, 2005, 61(11): 1710–1719
https://doi.org/10.1016/j.chemosphere.2005.03.082 pmid: 15893793
9 González-Casado A, Navas N, del Olmo M, Vílchez J L. Determination of BPA in water by micro liquid-liquid extraction followed by silylation and gas chromatography-mass spectrometry analysis. Journal of Chromatographic Science, 1998, 36(11): 565–569
https://doi.org/10.1093/chromsci/36.11.565 pmid: 9812391
10 Ribeiro C, Pardal M ?, Martinho F, Margalho R, Tiritan M E, Rocha E, Rocha M J. Distribution of endocrine disruptors in the Mondego River Estuary, Portugal. Environmental Monitoring and Assessment, 2009, 149(1-4): 183–193
https://doi.org/10.1007/s10661-008-0192-y pmid: 18317940
11 Ribeiro C, Tiritan M E, Rocha E, Rocha M J. Seasonal and spatial distribution of several endocrine-disrupting compounds in the Douro River Estuary, Portugal. Archives of Environmental Contamination and Toxicology, 2009, 56(1): 1–11
https://doi.org/10.1007/s00244-008-9158-x pmid: 18368434
12 Jonkers N, Kohler H P E, Dammsh?user A, Giger W. Mass flows of endocrine disruptors in the Glatt River during varying weather conditions. Environmental Pollution, 2009, 157(3): 714–723
https://doi.org/10.1016/j.envpol.2008.11.029 pmid: 19117654
13 Ko E J, Kim K W, Kang S Y, Kim S D, Bang S B, Hamm S Y, Kim D W. Monitoring of environmental phenolic endocrine disrupting compounds in treatment effluents and river waters, Korea. Talanta, 2007, 73(4): 674–683
https://doi.org/10.1016/j.talanta.2007.04.033 pmid: 19073088
14 Pojana G, Gomiero A, Jonkers N, Marcomini A. Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon. Environment International, 2007, 33(7): 929–936
https://doi.org/10.1016/j.envint.2007.05.003 pmid: 17559935
15 Boyd G R, Palmeri J M, Zhang S, Grimm D A. Pharmaceuticals and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs) in stormwater canals and Bayou St. John in New Orleans, Louisiana, USA. Science of the Total Environment, 2004, 333(1-3): 137–148
https://doi.org/10.1016/j.scitotenv.2004.03.018 pmid: 15364525
16 Xue X, Wu F, Deng N.Determination of endocrine disrupting compounds in rivers and lakes of Wuhan City, China. Journal of Luoyang University, 2005, 20(4): 33–36 (in Chinese)
17 Gong J, Ran Y, Chen D, Yang Y, Ma X. Occurrence and environmental risk of endocrine-disrupting chemicals in surface waters of the Pearl River, South China. Environmental Monitoring and Assessment, 2009, 156(1-4): 199–210
https://doi.org/10.1007/s10661-008-0474-4 pmid: 18670899
18 Li Z, Li D.Distribution characteristics of BPA in Shihwa Lake and nearby creeks. Transactions of Oceanology and Limnology, 2004, 2: 30–35 (in Chinese)
19 Zhao J L, Ying G G, Wang L, Yang J F, Yang X B, Yang L H, Li X. Determination of phenolic endocrine disrupting chemicals and acidic pharmaceuticals in surface water of the Pearl Rivers in South China by gas chromatography-negative chemical ionization-mass spectrometry. Science of the Total Environment, 2009, 407(2): 962–974
https://doi.org/10.1016/j.scitotenv.2008.09.048 pmid: 19004474
20 Gong J, Ran Y, Yang Y, Chen D Y. Contamination of estrogenic compounds in the surface water of Guangzhou reach of the Pearl River. Environmental Chemistry, 2008, 2(27): 242–244 (in Chinese)
21 Kang J H, Kondo F. BPA in the surface water and freshwater snail collected from rivers around a secure landfill. Bulletin of Environmental Contamination and Toxicology, 2006, 76(1): 113–118
https://doi.org/10.1007/s00128-005-0896-4 pmid: 16404668
22 Hashimoto S, Horiuchi A, Yoshimoto T, Nakao M, Omura H, Kato Y, Tanaka H, Kannan K, Giesy J P. Horizontal and vertical distribution of estrogenic activities in sediments and waters from Tokyo Bay, Japan. Archives of Environmental Contamination and Toxicology, 2005, 48(2): 209–216
https://doi.org/10.1007/s00244-003-0205-3 pmid: 15696346
23 Schmidt R, Brockmeyer R. Vorkommen und Verhalten von Expektorantien, Analgetika, Xylometazolin und deren Metaboliten in Gew?ssern und bei der Uferfiltration. Vom Wasser, 2002, 98: 37–54
24 Kuch H M, Ballschmiter K. Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range. Environmental Science and Technology, 2001, 35(15): 3201–3206
https://doi.org/10.1021/es010034m pmid: 11506003
25 Loos R, Hanke G, Umlauf G, Eisenreich S J. LC-MS-MS analysis and occurrence of octyl- and nonylphenol, their ethoxylates and their carboxylates in Belgian and Italian textile industry, waste water treatment plant effluents and surface waters. Chemosphere, 2007, 66(4): 690–699
https://doi.org/10.1016/j.chemosphere.2006.07.060 pmid: 16949635
26 Alum A, Yoon Y, Westerhoff P, Abbaszadegan M. Oxidation of BPA, 17β-estradiol, and 17α-ethynyl estradiol and byproduct estrogenicity. Environmental Toxicology, 2004, 19(3): 257–264
https://doi.org/10.1002/tox.20018 pmid: 15101041
27 Lee J, Park H, Yoon J. Ozonation characteristics of bisphenol A in water. Water Environment and Technology, 2003, 24(2): 241–248
https://doi.org/10.1080/09593330309385555 pmid: 12666793
28 Deborde M, Rabouan S, Duguet J P, Legube B. Kinetics of aqueous ozone-induced oxidation of some endocrine disruptors. Environmental Science and Technology, 2005, 39(16): 6086–6092
https://doi.org/10.1021/es0501619 pmid: 16173567
29 Deborde M, Rabouan S, Mazellier P, Duguet J P, Legube B. Oxidation of BPA by ozone in aqueous solution. Water Research, 2008, 42(16): 4299–4308
https://doi.org/10.1016/j.watres.2008.07.015 pmid: 18752822
30 Garoma T, Matsumoto S. Ozonation of aqueous solution containing BPA: effect of operational parameters. Journal of Hazardous Materials, 2009, 167(1-3): 1185–1191
https://doi.org/10.1016/j.jhazmat.2009.01.133 pmid: 19264397
31 Garoma T, Matsumoto S, Wu Y, Klinger R. Removal of BPA and its reaction-intermediates from aqueous solution by ozonation. Ozone Science and Engineering, 2010, 32(5): 338–343
https://doi.org/10.1080/01919512.2010.508484
32 Gultekin I, Mavrov V, Ince N H. Degradation of BPA by ozonation. Journal of Advanced Oxidation Technologies, 2009, 12(2): 242–248
33 Waldemer R H, Tratnyek P G. Kinetics of contaminant degradation by permanganate. Environmental Science and Technology, 2006, 40(3): 1055–1061
https://doi.org/10.1021/es051330s pmid: 16509357
34 Yang J J. Determination of trace permanganate and oxidation of BPA by permanganate. Dissertation for the Master Degree. Harbin: Harbin Institute of Technology, 2008: 32–35
35 Jiang J, Pang S Y, Ma J. Role of ligands in permanganate oxidation of organics. Environmental Science and Technology, 2010, 44(11): 4270–4275
https://doi.org/10.1021/es100038d pmid: 20429549
36 Shao X L, Ma J, Wen G, Yang J J. Oxidation of estrone by permanganate: reaction kinetics and estrogenicity removal. Chinese Science Bulletin, 2010, 55(9): 802–808
https://doi.org/10.1007/s11434-010-0058-x
37 Lee Y, Um I H, Yoon J. Arsenic(III) oxidation by iron(VI) (ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation. Environmental Science and Technology, 2003, 37(24): 5750–5756
https://doi.org/10.1021/es034203+ pmid: 14717190
38 Li C, Li X Z, Graham N. A study of the preparation and reactivity of potassium ferrate. Chemosphere, 2005, 61(4): 537–543
https://doi.org/10.1016/j.chemosphere.2005.02.027 pmid: 16202807
39 Lee Y, Yoon J, von Gunten U. Kinetics of the oxidation of phenols and phenolic endocrine disruptors during water treatment with ferrate (Fe(VI)). Environmental Science and Technology, 2005, 39(22): 8978–8984
https://doi.org/10.1021/es051198w pmid: 16323803
40 Li C, Li X Z, Graham N, Gao N Y. The aqueous degradation of BPA and steroid estrogens by ferrate. Water Research, 2008, 42(1-2): 109–120
https://doi.org/10.1016/j.watres.2007.07.023 pmid: 17681362
41 Zhang P, Zhang G, Dong J, Fan M, Zeng G. Bisphenol A oxidative removal by ferrate (Fe (VI)) under a weak acidic condition. Separation and Purification Technology, 2011, 84(1): 46–51
42 Deborde M, von Gunten U. Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: a critical review. Water Research, 2008, 42(1-2): 13–51
https://doi.org/10.1016/j.watres.2007.07.025 pmid: 17915284
43 Hu J Y, Aizawa T, Ookubo S. Products of aqueous chlorination of BPA and their estrogenic activity. Environmental Science and Technology, 2002, 36(9): 1980–1987
https://doi.org/10.1021/es011177b pmid: 12026981
44 Gallard H, Leclercq A, Croué J P. Chlorination of BPA: kinetics and by-products formation. Chemosphere, 2004, 56(5): 465–473
https://doi.org/10.1016/j.chemosphere.2004.03.001 pmid: 15212912
45 Yamamoto T, Yasuhara A. Chlorination of BPA in aqueous media: formation of chlorinated bisphenol A congeners and degradation to chlorinated phenolic compounds. Chemosphere, 2002, 46(8): 1215–1223
https://doi.org/10.1016/S0045-6535(01)00198-9 pmid: 11951989
46 Torres R A, Pétrier C, Combet E, Carrier M, Pulgarin C. Ultrasonic cavitation applied to the treatment of bisphenol A. Effect of sonochemical parameters and analysis of BPA by-products. Ultrasonics Sonochemistry, 2008, 15(4): 605–611
https://doi.org/10.1016/j.ultsonch.2007.07.003 pmid: 17822937
47 Torres R A, Abdelmalek F, Combet E, Pétrier C, Pulgarin C. A comparative study of ultrasonic cavitation and Fenton’s reagent for BPA degradation in deionised and natural waters. Journal of Hazardous Materials, 2007, 146(3): 546–551
https://doi.org/10.1016/j.jhazmat.2007.04.056 pmid: 17532122
48 Torres R A, Pétrier C, Combet E, Moulet F, Pulgarin C. BPA mineralization by integrated ultrasound-UV-iron (II) treatment. Environmental Science and Technology, 2007, 41(1): 297–302
https://doi.org/10.1021/es061440e pmid: 17265962
49 Gültekin I, Ince N H. Ultrasonic destruction of BPA: the operating parameters. Ultrasonics Sonochemistry, 2008, 15(4): 524–529
https://doi.org/10.1016/j.ultsonch.2007.05.005 pmid: 17644462
50 Guo Z, Feng R. Ultrasonic irradiation-induced degradation of low-concentration bisphenol A in aqueous solution. Journal of Hazardous Materials, 2009, 163(2-3): 855–860
https://doi.org/10.1016/j.jhazmat.2008.07.038 pmid: 18718719
51 Mahamuni N N, Adewuyi Y G. Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrasonics Sonochemistry, 2010, 17(6): 990–1003
https://doi.org/10.1016/j.ultsonch.2009.09.005 pmid: 19879793
52 Tsai W T, Lee M K, Su T Y, Chang Y M. Photodegradation of BPA in a batch TiO2 suspension reactor. Journal of Hazardous Materials, 2009, 168(1): 269–275
https://doi.org/10.1016/j.jhazmat.2009.02.034 pmid: 19285792
53 Watanabe N, Horikoshi S, Kawabe H, Sugie Y, Zhao J, Hidaka H. Photodegradation mechanism for BPA at the TiO2/H2O interfaces. Chemosphere, 2003, 52(5): 851–859
https://doi.org/10.1016/S0045-6535(02)00837-8 pmid: 12757786
54 Guo C, Ge M, Liu L, Gao G, Feng Y, Wang Y. Directed synthesis of mesoporous TiO2 microspheres: catalysts and their photocatalysis for BPA degradation. Environmental Science and Technology, 2010, 44(1): 419–425
https://doi.org/10.1021/es9019854 pmid: 19928897
55 Xie Y B, Li X Z. Degradation of BPA in aqueous solution by H2O2-assisted photoelectrocatalytic oxidation. Journal of Hazardous Materials, 2006, 138(3): 526–533
https://doi.org/10.1016/j.jhazmat.2006.05.074 pmid: 16828969
56 Fukahori S, Iguchi Y, Ichiura H, Kitaoka T, Tanaka H, Wariishi H. Effect of void structure of photocatalyst paper on VOC decomposition. Chemosphere, 2007, 66(11): 2136–2141
https://doi.org/10.1016/j.chemosphere.2006.09.022 pmid: 17166561
57 Wang R, Ren D, Xia S, Zhang Y, Zhao J. Photocatalytic degradation of BPA using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR). Journal of Hazardous Materials, 2009, 169(1-3): 926–932
https://doi.org/10.1016/j.jhazmat.2009.04.036 pmid: 19500904
58 Tao H, Hao S, Chang F, Wang L, Zhang Y, Cai X, Zeng J S D. Photodegradation of BPA by Titana Nanoparticles in Mesoporous MCM-41. Water, Air, and Soil Pollution, 2011, 214(1): 491–498
https://doi.org/10.1007/s11270-010-0440-y
59 Horikoshi S, Hidaka H, Serpone N. Environmental remediation by an integrated microwave/UV illumination technique: VI. A simple modified domestic microwave oven integrating an electrodeless UV-Vis lamp to photodegrade environmental pollutants in aqueous media. Journal of Photochemistry and Photobiology A Chemistry, 2004, 161(2): 221–225
https://doi.org/10.1016/j.nainr.2003.07.003
60 Wang G, Wu F, Zhang X, Luo M, Deng N. Enhanced TiO2 photocatalytic degradation of bisphenol E by β-cyclodextrin in suspended solutions. Journal of Photochemistry and Photobiology A Chemistry, 2006, 133(1-3): 85–91
https://doi.org/10.1016/j.jhazmat.2005.09.058 pmid: 16309827
61 Kaneco S, Rahman M A, Suzuki T, Katsumata H, Ohta K. Optimization of solar photocatalytic degradation conditions of BPA in water using titanium dioxide. Journal of Photochemistry and Photobiology A Chemistry, 2004, 163(3): 419–424
https://doi.org/10.1016/j.jphotochem.2004.01.012
62 Subagio D P, Srinivasan M, Lim M, Lim T T. Photocatalytic degradation of BPA by nitrogen-doped TiO2 hollow sphere in a vis-LED photoreactor. Applied Catalysis B: Environmental, 2010, 95(3–4): 414–422
https://doi.org/10.1016/j.apcatb.2010.01.021
63 Wang Y, Wang X, Li C M. Electrocatalysis of Pd–Co supported on carbon black or ball-milled carbon nanotubes towards methanol oxidation in alkaline media. Applied Catalysis B: Environmental, 2010, 99(1): 229–234
https://doi.org/10.1016/j.apcatb.2010.06.024
64 Yang J, Dai J, Li J. Synthesis, characterization and degradation of BPA using Pr, N co-doped TiO2 with highly visible light activity. Applied Surface Science, 2011, 257(21): 8965–8973
https://doi.org/10.1016/j.apsusc.2011.05.074
65 Zhou D, Wu F, Deng N, Xiang W. Photooxidation of BPA in water in the presence of ferric and carboxylate salts. Water Research, 2004, 38(19): 4107–4116
https://doi.org/10.1016/j.watres.2004.07.021 pmid: 15491658
66 Liu Y, Deng L, Chen Y, Wu F, Deng N. Simultaneous photocatalytic reduction of Cr(VI) and oxidation of BPA induced by Fe(III)-OH complexes in water. Journal of Hazardous Materials, 2007, 139(2): 399–402
https://doi.org/10.1016/j.jhazmat.2006.06.012 pmid: 16844289
67 Zhan M, Yang X, Xian Q, Kong L. Photosensitized degradation of BPA involving reactive oxygen species in the presence of humic substances. Chemosphere, 2006, 63(3): 378–386
https://doi.org/10.1016/j.chemosphere.2005.08.046 pmid: 16289215
68 Wang C, Zhu L, Song C, Shan G, Chen P. Characterization of photocatalyst Bi3.84W0.16O6.24 and its photodegradation on BPA under simulated solar light irradiation. Applied Catalysis B: Environmental, 2011, 105(1-2): 229–236
https://doi.org/10.1016/j.apcatb.2011.04.023
69 Rosenfeldt E J, Linden K G. Degradation of endocrine disrupting chemicals BPA, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. Environmental Science and Technology, 2004, 38(20): 5476–5483
https://doi.org/10.1021/es035413p pmid: 15543754
70 Chen B, Yang C, Goh N K. Photolysis pathway of nitroaromatic compounds in aqueous solutions in the UV/H2O2 process. Journal of Environmental Sciences (China), 2006, 18(6): 1061–1064
https://doi.org/10.1016/S1001-0742(06)60039-9 pmid: 17294942
71 Chen P J, Kullman S W, Hinton D E, Linden K G. Comparisons of polychromatic and monochromatic UV-based treatments of BPA in water via toxicity assessments. Chemosphere, 2007, 68(6): 1041–1049
https://doi.org/10.1016/j.chemosphere.2007.02.020 pmid: 17397900
72 Chen P J, Linden K G, Hinton D E, Kashiwada S, Rosenfeldt E J, Kullman S W. Biological assessment of BPA degradation in water following direct photolysis and UV advanced oxidation. Chemosphere, 2006, 65(7): 1094–1102
https://doi.org/10.1016/j.chemosphere.2006.04.048 pmid: 16762394
73 Irmak S, Erbatur O, Akgerman A. Degradation of 17β-estradiol and BPA in aqueous medium by using ozone and ozone/UV techniques. Journal of Hazardous Materials, 2005, 126(1-3): 54–62
https://doi.org/10.1016/j.jhazmat.2005.05.045 pmid: 16085358
74 Rivas F J, Carbajo M, Beltrán F, Gimeno O, Frades J. Comparison of different advanced oxidation processes (AOPs) in the presence of perovskites. Journal of Hazardous Materials, 2008, 155(3): 407–414
https://doi.org/10.1016/j.jhazmat.2007.11.081 pmid: 18178005
75 Katsumata H, Kawabe S, Kaneco S, Suzuki T, Ohta K. Degradation of BPA in water by the photo-Fenton reaction. Journal of Photochemistry and Photobiology A Chemistry, 2004, 162(2): 297–305
https://doi.org/10.1016/S1010-6030(03)00374-5
76 Inoue M, Masuda Y, Okada F, Sakurai A, Takahashi I, Sakakibara M. Degradation of BPA using sonochemical reactions. Water Research, 2008, 42(6-7): 1379–1386
https://doi.org/10.1016/j.watres.2007.10.006 pmid: 17976685
77 Torres R A, Sarantakos G, Combet E, Pétrier C, Pulgarin C. Sequential helio-photo-Fenton and sonication processes for the treatment of BPA. Journal of Photochemistry and Photobiology A Chemistry, 2008, 199(2): 197–203
https://doi.org/10.1016/j.jphotochem.2008.05.016
78 Neam?u M, Frimmel F H. Degradation of endocrine disrupting BPA by 254 nm irradiation in different water matrices and effect on yeast cells. Water Research, 2006, 40(20): 3745–3750
https://doi.org/10.1016/j.watres.2006.08.019 pmid: 17028063
79 Huang Y F, Huang Y H. Behavioral evidence of the dominant radicals and intermediates involved in BPA degradation using an efficient Co2+/PMS oxidation process. Journal of Hazardous Materials, 2009, 167(1-3): 418–426
https://doi.org/10.1016/j.jhazmat.2008.12.138 pmid: 19216025
80 Torres-Palma R A, Nieto J I, Combet E, Pétrier C, Pulgarin C. An innovative ultrasound, Fe2+ and TiO2 photoassisted process for BPA mineralization. Water Research, 2010, 44(7): 2245–2252
https://doi.org/10.1016/j.watres.2009.12.050 pmid: 20106498
81 Huang Y F, Huang Y H. Identification of produced powerful radicals involved in the mineralization of BPA using a novel UV-Na2S2O8/H2O2-Fe(II,III) two-stage oxidation process. Journal of Hazardous Materials, 2009, 162(2-3): 1211–1216
https://doi.org/10.1016/j.jhazmat.2008.06.008 pmid: 18635314
82 Pan B, Lin D, Mashayekhi H, Xing B. Adsorption and hysteresis of BPA and 17α-ethinyl estradiol on carbon nanomaterials. Environmental Science and Technology, 2008, 42(15): 5480–5485
https://doi.org/10.1021/es8001184 pmid: 18754464
83 Nakanishi A, Tamai M, Kawasaki N, Nakamura T, Tanada S. Adsorption characteristics of BPA onto carbonaceous materials produced from wood chips as organic waste. Journal of Colloid and Interface Science, 2002, 252(2): 393–396
https://doi.org/10.1006/jcis.2002.8387 pmid: 16290804
84 Bautista-Toledo I, Ferro-García M A, Rivera-Utrilla J, Moreno-Castilla C, Vegas Fernández F J. BPA removal from water by activated carbon. Effects of carbon characteristics and solution chemistry. Environmental Science and Technology, 2005, 39(16): 6246–6250
https://doi.org/10.1021/es0481169 pmid: 16173588
85 Tsai W T, Lai C W, Su T Y. Adsorption of BPA from aqueous solution onto minerals and carbon adsorbents. Journal of Hazardous Materials, 2006, 134(1-3): 169–175
https://doi.org/10.1016/j.jhazmat.2005.10.055 pmid: 16343748
86 Liu G, Ma J, Li X, Qin Q. Adsorption of BPA from aqueous solution onto activated carbons with different modification treatments. Journal of Hazardous Materials, 2009, 164(2-3): 1275–1280
https://doi.org/10.1016/j.jhazmat.2008.09.038 pmid: 18977073
87 Asada T, Oikawa K, Kawata K, Ishihara S, Iyobe T, Yamada A. Study of removal effect of BPA and beta-estradiol by porous carbon. Journal of Health Science, 2004, 50(6): 588–593
https://doi.org/10.1248/jhs.50.588
88 Sui Q, Huang J, Liu Y, Chang X, Ji G, Deng S, Xie T, Yu G. Rapid removal of BPA on highly ordered mesoporous carbon. Journal of Environmental Sciences (China), 2011, 23(2): 177–182
https://doi.org/10.1016/S1001-0742(10)60391-9 pmid: 21516989
89 Yoon Y, Westerhoff P, Snyder S A, Esparza M. HPLC-fluorescence detection and adsorption of BPA, 17β-estradiol, and 17α-ethynyl estradiol on powdered activated carbon. Water Research, 2003, 37(14): 3530–3537
https://doi.org/10.1016/S0043-1354(03)00239-2 pmid: 12834747
90 Mao M, Liu Z, Wang T, Yu B, Wen X, Yang K, Zhao C. Polysulfone‐activated carbon hybrid particles for the removal of BPA. Separation Science and Technology, 2006, 41(3): 515–529
https://doi.org/10.1080/01496390500524875
91 Pan J, Yao H, Li X, Wang B, Huo P, Xu W, Ou H, Yan Y. Synthesis of chitosan/γ-Fe2O3/fly-ash-cenospheres composites for the fast removal of BPA and 2,4,6-trichlorophenol from aqueous solutions. Journal of Hazardous Materials, 2011, 190(1-3): 276–284
https://doi.org/10.1016/j.jhazmat.2011.03.046 pmid: 21466912
92 Matsushita K, Shimada M, Okayama T. Adsorption properties of BPA on activated carbon prepared from wastepaper. Sen'i Gakkaishi, 2009, 65(11): 287–291
https://doi.org/10.2115/fiber.65.287
93 Zhang Y, Causserand C, Aimar P, Cravedi J P. Removal of BPA by a nanofiltration membrane in view of drinking water production. Water Research, 2006, 40(20): 3793–3799
https://doi.org/10.1016/j.watres.2006.09.011 pmid: 17074381
94 Dong B, Wang L, Gao N. The removal of BPA by ultrafiltration. Desalination, 2008, 221(1-3): 312–317
95 Dong B, Chu H, Wang L, Xia S, Gao N. The removal of BPA by hollow fiber microfiltration membrane. Desalination, 2010, 250(2): 693–697
https://doi.org/10.1016/j.desal.2009.05.022
96 Wu S, Dong B, Huang Y. Adsorption of BPA by polysulphone membrane. Desalination, 2010, 253(1–3): 22–29
97 Liu L, Zheng G, Yang F. Adsorptive removal and oxidation of organic pollutants from water using a novel membrane. Chemical Engineering Journal, 2010, 156(3): 553–556
https://doi.org/10.1016/j.cej.2009.04.008
98 Kim J H, Kim S, Lee C H, Kwon H H, Lee S. A novel nanofiltration hybrid system to control organic micro-pollutants: application of dual functional adsorbent/catalyst. Desalination, 2008, 231(1–3): 276–282
https://doi.org/10.1016/j.desal.2007.10.031
99 Chin S S, Lim T M, Chiang K, Fane A G. Factors affecting the performance of a low-pressure submerged membrane photocatalytic reactor. Chemical Engineering Journal, 2007, 130(1): 53–63
https://doi.org/10.1016/j.cej.2006.11.008
100 Zhang T, Zhang X, Yan X, Ng J, Wang Y, Sun D D. Removal of BPA via a hybrid process combining oxidation on β-MnO2 nanowires with microfiltration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 392(1): 198–204
https://doi.org/10.1016/j.colsurfa.2011.09.056
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Majid Mustafa, Huijiao Wang, Richard H. Lindberg, Jerker Fick, Yujue Wang, Mats Tysklind. Identification of resistant pharmaceuticals in ozonation using QSAR modeling and their fate in electro-peroxone process[J]. Front. Environ. Sci. Eng., 2021, 15(5): 106-.
[4] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[5] Yang Li, Yixin Zhang, Guangshen Xia, Juhong Zhan, Gang Yu, Yujue Wang. Evaluation of the technoeconomic feasibility of electrochemical hydrogen peroxide production for decentralized water treatment[J]. Front. Environ. Sci. Eng., 2021, 15(1): 1-.
[6] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[7] Yapeng Song, Hui Gong, Jianbing Wang, Fengmin Chang, Kaijun Wang. Enhanced triallyl isocyanurate (TAIC) degradation through application of an O3/UV process: Performance optimization and degradation pathways[J]. Front. Environ. Sci. Eng., 2020, 14(4): 64-.
[8] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[9] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[10] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[11] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[12] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[13] Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34-.
[14] Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha. Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(1): 15-.
[15] Hongqi Wang, Ruhan Jiang, Dekang Kong, Zili Liu, Xiaoxiong Wu, Jie Xu, Yi Li. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins[J]. Front. Environ. Sci. Eng., 2020, 14(1): 9-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed