Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2014, Vol. 8 Issue (6) : 854-862    https://doi.org/10.1007/s11783-014-0755-9
RESEARCH ARTICLE
Variation in humic and fulvic acids during thermal sludge treatment assessed by size fractionation, elementary analysis, and spectroscopic methods
Yuning YANG1,2,Huan LI1,*(),Jinyi LI1
1. Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
2. Joint Research Center of Urban Resource Recycling Technology of Graduate School at Shenzhen, Tsinghua University and Shenzhen Green Eco-Manufacturer High-Tech Co. Ltd., Shenzhen 518055, China
 Download: PDF(627 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Thermal pretreatment can be applied to sludge anaerobic digestion or dewatering. To analyze the variation in humic substances during thermal sludge treatment, sludge humic and fulvic acids were extracted before and after 30-min thermal treatment at 180°C, and then their contents, molecular weight distributions, elementary compositions, and spectral characteristics were compared. The results showed that the total contents of humic and fulvic acids in the sludge almost remained constant during thermal treatment, but 35% of humic and fulvic acids were dissolved from the sludge solids. Moreover, both humic and fulvic acids were partly decomposed and 32% of humic acids were converted to fulvic acids. The median value of the molecular weights of humic acids decreased from 81 to 41 kDa and that of fulvic acids decreased from 15 to 2 kDa. Besides the reduction in molecular size, the chemical structures of humic and fulvic acids also exhibited a slight change, i.e. some oxygen functional groups disappeared and aromatic structures increased after thermal sludge treatment.

Keywords sludge      thermal treatment      humic acids      fulvic acids     
Corresponding Author(s): Huan LI   
Issue Date: 17 November 2014
 Cite this article:   
Yuning YANG,Huan LI,Jinyi LI. Variation in humic and fulvic acids during thermal sludge treatment assessed by size fractionation, elementary analysis, and spectroscopic methods[J]. Front. Environ. Sci. Eng., 2014, 8(6): 854-862.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0755-9
https://academic.hep.com.cn/fese/EN/Y2014/V8/I6/854
content HA-DIS FA-DIS HA-TTS FA-TTS
in solid phase/(mg·L-1) 2382.21±14.95 361.93±5.27 1089.60±22.80 711.83±18.80
in liquid phase/(mg·L-1) 11.64±1.10 1.16±0.20 543.60±49.40 416.90±18.10
total concentration/(mg·L-1) 2393.85±16.05 363.09±5.47 1633.20±72.20 1128.73±36.90
average mass ratio in VS/% 16.6 2.5 11.3 7.8
Tab.1  Distribution of HAs and FAs in the DIS and TTS
Fig.1  Distributions of HAs and FAs in different MW intervals according to their TOC contents (DIS: digested sludge; TTS: thermally treated sludge): (a) HA-DIS; (b) FA-DIS; (c) HA-TTS; (d) FA-TTS; (e) HA in supernatant of TTS; (f) FA in supernatant of TTS
content composition/% atomic ratio
C O H N S ash H/C O/C C/N
HA-DIS 54.20±0.10 29.39±0.74 8.01±0.02 6.66±0.02 1.22±0.05 ?0.52±0.02 1.77 0.41 ?9.49
HA-TTS 58.46±0.12 26.33±0.47 7.30±0.21 6.04±0.02 1.37±0.02 ?0.50±0.01 1.50 0.34 11.29
FA-DIS 44.66±0.19 38.29±0.85 7.22±0.25 4.26±0.04 1.07±0.03 ?4.50±0.05 1.94 0.64 12.23
FA-TTS 46.87±0.20 37.71±0.53 5.31±0.23 4.73±0.10 1.09±0.03 ?4.30±0.04 1.36 0.60 11.56
Tab.2  Elementary contents of HAs and FAs in the DIS and TTS
Fig.2  FTIR spectra of HAs and FAs derived from the DIS and TTS
Fig.3  Fluorescence spectra of FAs derived from the DIS and TTS
Fig.4  Fluorescence spectra of HAs derived from the DIS and TTS
1 Zhu G, Liu C, Li J, Ren N, Liu L, Huang X. Fermentative hydrogen production from beet sugar factory wastewater treatment in a continuous stirred tank reactor using anaerobic mixed consortia. Frontiers of Environmental Science and Engineering, 2013, 7(1): 143–150
https://doi.org/10.1007/s11783-012-0456-1
2 Guo J, Ma F, Qu Y, Li A, Wang L. Systematical strategies for wastewater treatment and the generated wastes and greenhouse gases in China. Frontiers of Environmental Science and Engineering, 2012, 6(2): 271–279
https://doi.org/10.1007/s11783-011-0328-0
3 Neyens E, Baeyens J. A review of thermal sludge pre-treatment processes to improve dewaterability. Journal of Hazardous Materials, 2003, 98(1–3): 51–67
https://doi.org/10.1016/S0304-3894(02)00320-5 pmid: 12628777
4 Lagerkvist A, Morgan-Sagastume F. The effects of substrate pre-treatment on anaerobic digestion systems: a review. Waste Management, 2012, 32(9): 1634–1650
5 Carrère H, Dumas C, Battimelli A, Batstone D J, Delgenès J P, Steyer J P, Ferrer I. Pretreatment methods to improve sludge anaerobic degradability: a review. Journal of Hazardous Materials, 2010, 183(1–3): 1–15
https://doi.org/10.1016/j.jhazmat.2010.06.129 pmid: 20708333
6 Pérez-Elvira S I, Fdz-Polanco F. Continuous thermal hydrolysis and anaerobic digestion of sludge. Energy integration study. Water Science and Technology, 2012, 65(10): 1839–1846
https://doi.org/10.2166/wst.2012.863 pmid: 22546800
7 Wang W, Luo Y, Qiao W. Possible solutions for sludge dewatering in China. Frontiers of Environmental Science and Engineering in China, 2010, 4(1): 102–107
https://doi.org/10.1007/s11783-010-0001-z
8 Li H, Li Y, Li C. Characterization of humic acids and fulvic acids derived from sewage sludge. Asian Journal of Chemistry, 2013, 25(18): 10087–10091
9 Li H, Li Y, Jin Y, Zou S, Li C. Recovery of sludge humic acids with alkaline pretreatment and its impact on subsequent anaerobic digestion. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2014, 89(5): 707–713
https://doi.org/10.1002/jctb.4173
10 Kim K, Fujita M, Daimon H, Fujie K. Application of hydrothermal reaction for excess sludge reuse as carbon sources in biological phosphorus removal. Water Science and Technology, 2005, 52(10–11): 533–541
pmid: 16459831
11 Ouyang E, Wang W. The change of spectroscopic characterization and molecular weight distribution in sludge thermal hydrolysis process. China Environmental Science, 2008, 28(12): 1062–1067 (in Chinese)
12 Kliaugait? D, Yasadi K, Euverink G J, Bijmans M F M, Racys V. Electrochemical removal and recovery of humic-like substances from wastewater. Separation and Purification Technology, 2013, 108: 37–44
https://doi.org/10.1016/j.seppur.2013.01.055
13 Feng H J, Hu L F, Mahmood Q, Long Y, Shen D S. Study on biosorption of humic acid by activated sludge. Biochemical Engineering Journal, 2008, 39(3): 478–485
https://doi.org/10.1016/j.bej.2007.11.004
14 Rose M T, Patti A F, Little K R, Brown A L, Jackson W R, Cavagnaro T R A. Meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. Advances in Agronomy, 2014, 124: 37–89
https://doi.org/10.1016/B978-0-12-800138-7.00002-4
15 Li H, Li Y K, Zou S X, Li C C. Extracting humic acids from digested sludge by alkaline treatment and ultrafiltration. Journal of Material Cycles and Waste Management, 2014, 16(1): 93–100
https://doi.org/10.1007/s10163-013-0153-6
16 Lu X Q, Hanna J V, Johnson W D. Evidence of chemical pathways of humification: a study of aquatic humic substances heated at various temperatures. Chemical Geology, 2001, 177(3–4): 249–264
https://doi.org/10.1016/S0009-2541(00)00412-5
17 Pertusatti J, Prado A G S. Buffer capacity of humic acid: thermodynamic approach. Journal of Colloid and Interface Science, 2007, 314(2): 484–489
https://doi.org/10.1016/j.jcis.2007.06.006 pmid: 17603069
18 Skhonde M P, Herod A A, van der Walt T J, Tsatsi W L, Mokoena K. The effect of thermal treatment on the compositional structure of humic acids extracted from South African bituminous coal. International Journal of Mineral Processing, 2006, 81(1): 51–57
https://doi.org/10.1016/j.minpro.2006.07.001
19 Fu P, Liu C, Yin Z, Wu F. Characteristics of humic acid with three-dimensional excitation emission matrix fluorescence spectroscopy. Geochimica, 2004, 3(3): 301–308 (in Chinese)
20 Ministry of Environmental Protection (MEP). Standard Methods for the Examination of Water and Wastewater, 4th ed. Beijing: Ministry of Environmental Protection, China, 2002 (in Chinese)
21 Dignac M F, Urbain V, Rybacki D, Bruchet A, Snidaro D, Scribe P. Chemical description of extracellular polymers: implication on activated sludge floc structure. Water Science and Technology, 1998, 38(8–9): 45–53
https://doi.org/10.1016/S0273-1223(98)00676-3
22 Polak J, Bartoszek M, Su?kowski W W. Comparison of humification processes occurring during sewage purification in treatment plants with different technological processes. Water Research, 2009, 43(17): 4167–4176
https://doi.org/10.1016/j.watres.2009.06.040 pmid: 19628247
23 Réveillé V, Mansuy L, Jardé E, Garnier-Sillama é. Characterisation of sewage sludge-derived organic matter: lipids and humic acids. Organic Geochemistry, 2003, 34(4): 615–627
https://doi.org/10.1016/S0146-6380(02)00216-4
24 Christl I, Knicker H, K?gel-Knabner I, Kretzschmar R. Chemical heterogeneity of humic substances: characterization of size fractions obtained by hollow-fibre ultrafiltration. European Journal of Soil Science, 2000, 51(4): 617–625
https://doi.org/10.1046/j.1365-2389.2000.00352.x
25 Francioso O, Sánchez-Cortés S, Casarini D, Garcia-Ramosb J V, Ciavattaa C, Gessa C. Spectroscopic study of humic acids fractionated by means of tangential ultrafiltration. Journal of Molecular Structure, 2002, 609(1–3): 137–147
https://doi.org/10.1016/S0022-2860(01)00971-1
26 Amir S, Jouraiphy A, Meddich A, El Gharous M, Winterton P, Hafidi M. Structural study of humic acids during composting of activated sludge-green waste: elemental analysis, FTIR and 13C NMR. Journal of Hazardous Materials, 2010, 177(1–3): 524–529
https://doi.org/10.1016/j.jhazmat.2009.12.064 pmid: 20106591
27 García C, Hernández T, Costa F, Ceccanti B, Polo A. A comparative chemical-structural study of fossil humic acids and those extracted from urban wastes. Resources, Conservation and Recycling, 1992, 6(3): 231–241
https://doi.org/10.1016/0921-3449(92)90033-X
28 González-Pérez M, Vidal Torrado P, Colnago L A, Martin-Neto L, Otero X L, Milori D M B P, Gomes F H. 13C NMR and FTIR spectroscopy characterization of humic acids in spodosols under tropical rain forest in southeastern Brazil. Geoderma, 2008, 146(3–4): 425–433
https://doi.org/10.1016/j.geoderma.2008.06.018
29 Jiang W, Cai Q, Xu W, Yang M, Cai Y, Dionysiou D D, O’Shea K E. Cr(VI) adsorption and reduction by humic acid coated on magnetite. Environmental Science & Technology, 2014, 48(14): 8078–8085
https://doi.org/10.1021/es405804m pmid: 24901955
30 Pantano G, Tadini A M, Bisinoti M C, Moreira A B, Santos A, Oliveira L C, Martin C S. Development of a simple and versatile ultrafiltration system for the fractionation of aquatic humic substances. Organic Geochemistry, 2012, 43: 156–161
https://doi.org/10.1016/j.orggeochem.2011.10.002
31 Hisiger S, Jolicoeur M. A multiwavelength fluorescence probe: Is one probe capable for on-line monitoring of recombinant protein production and biomass activity? Journal of Biotechnology, 2005, 117(4): 325–336
https://doi.org/10.1016/j.jbiotec.2005.03.004 pmid: 15890426
32 Aoyama M. Do humic substances exhibit fluorescence? In: Swift R S, Spark K M, eds. Understanding and Managing Organic Matter in Soils, Sediments, and Waters. Proceedings of the 9th International Conference of the International Humic Substances Society. Adelaide, Australia: Hyde Park Press, 2001, 125–131
33 Miikki V, Senesi N, H?nninen K. Characterization of humic material formed by composting of domestic and industrial biowastes: Part 2 spectroscopic evaluation of humic acid structures. Chemosphere, 1997, 34(8): 1639–1651
https://doi.org/10.1016/S0045-6535(97)00021-0
34 Velasco M I, Campitelli P A, Ceppi S B, Havel J. Analysis of humic acid from compost of urban wastes and soil by fluorescence spectroscopy. Agriscientia, 2004, 21(1): 31–38
[1] Fanling Meng, Yunxue Xia, Jianshuai Zhang, Dong Qiu, Yaozhu Chu, Yuanyuan Tang. Cu/Cr co-stabilization mechanisms in a simulated Al2O3-Fe2O3-Cr2O3-CuO waste system[J]. Front. Environ. Sci. Eng., 2021, 15(6): 116-.
[2] Yuan Meng, Weiyi Liu, Heidelore Fiedler, Jinlan Zhang, Xinrui Wei, Xiaohui Liu, Meng Peng, Tingting Zhang. Fate and risk assessment of emerging contaminants in reclaimed water production processes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 104-.
[3] Ruijie Li, Mengmeng Zhou, Shilong He, Tingting Pan, Jing Liu, Jiabao Zhu. Deciphering the effect of sodium dodecylbenzene sulfonate on up-flow anaerobic sludge blanket treatment of synthetic sulfate-containing wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(5): 91-.
[4] Ying Xu, Hui Gong, Xiaohu Dai. High-solid anaerobic digestion of sewage sludge: achievements and perspectives[J]. Front. Environ. Sci. Eng., 2021, 15(4): 71-.
[5] Ling Wang, Chunxue Yang, Sangeetha Thangavel, Zechong Guo, Chuan Chen, Aijie Wang, Wenzong Liu. Enhanced hydrogen production in microbial electrolysis through strategies of carbon recovery from alkaline/thermal treated sludge[J]. Front. Environ. Sci. Eng., 2021, 15(4): 56-.
[6] Fan Lu, Tianyu Hu, Shunyan Wei, Liming Shao, Pinjing He. Bioaerosolization behavior along sewage sludge biostabilization[J]. Front. Environ. Sci. Eng., 2021, 15(3): 45-.
[7] Guoliang Zhang, Liang Zhang, Xiaoyu Han, Shujun Zhang, Yongzhen Peng. Start-up of PN-anammox system under low inoculation quantity and its restoration after low-loading rate shock[J]. Front. Environ. Sci. Eng., 2021, 15(2): 32-.
[8] Shengjie Qiu, Jinjin Liu, Liang Zhang, Qiong Zhang, Yongzhen Peng. Sludge fermentation liquid addition attained advanced nitrogen removal in low C/N ratio municipal wastewater through short-cut nitrification-denitrification and partial anammox[J]. Front. Environ. Sci. Eng., 2021, 15(2): 26-.
[9] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[10] Milan Malhotra, Anurag Garg. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge[J]. Front. Environ. Sci. Eng., 2021, 15(1): 13-.
[11] Xiling Li, Tianwei Hao, Yuxin Tang, Guanghao Chen. A “Seawater-in-Sludge” approach for capacitive biochar production via the alkaline and alkaline earth metals activation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 3-.
[12] An Ding, Yingxue Zhao, Huu Hao Ngo, Langming Bai, Guibai Li, Heng Liang, Nanqi Ren, Jun Nan. Metabolic uncoupler, 3,3′,4′,5-tetrachlorosalicylanilide addition for sludge reduction and fouling control in a gravity-driven membrane bioreactor[J]. Front. Environ. Sci. Eng., 2020, 14(6): 96-.
[13] An Ding, Yingxue Zhao, Zhongsen Yan, Langming Bai, Haiyang Yang, Heng Liang, Guibai Li, Nanqi Ren. Co-application of energy uncoupling and ultrafiltration in sludge treatment: Evaluations of sludge reduction, supernatant recovery and membrane fouling control[J]. Front. Environ. Sci. Eng., 2020, 14(4): 59-.
[14] Luman Zhou, Chengyang Wu, Yuwei Xie, Siqing Xia. Biogenic palladium prepared by activated sludge microbes for the hexavalent chromium catalytic reduction: Impact of relative biomass[J]. Front. Environ. Sci. Eng., 2020, 14(2): 27-.
[15] Lanhe Zhang, Jing Zheng, Jingbo Guo, Xiaohui Guan, Suiyi Zhu, Yanping Jia, Jian Zhang, Xiaoyu Zhang, Haifeng Zhang. Effects of Al3+ on pollutant removal and extracellular polymeric substances (EPS) under anaerobic, anoxic and oxic conditions[J]. Front. Environ. Sci. Eng., 2019, 13(6): 85-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed