Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (6) : 1130-1138    https://doi.org/10.1007/s11783-015-0821-y
RESEARCH ARTICLE
Performance and kinetics of iron-based oxygen carriers reduced by carbon monoxide for chemical looping combustion
Xiuning HUA,Wei WANG(),Feng WANG
School of Environment, Tsinghua University, Beijing 100084, China
 Download: PDF(1040 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Chemical looping combustion is a promising technology for energy conversion due to its low-carbon, high-efficiency, and environmental-friendly feature. A vital issue for CLC process is the development of oxygen carrier, since it must have sufficient reactivity. The mechanism and kinetics of CO reduction on iron-based oxygen carriers namely pure Fe2O3 and Fe2O3 supported by alumina (Fe2O3/Al2O3) were investigated using thermo-gravimetric analysis. Fe2O3/Al2O3 showed better reactivity over bare Fe2O3 toward CO reduction. This was well supported by the observed higher rate constant for Fe2O3/Al2O3 over pure Fe2O3 with respective activation energy of 41.1±2.0 and 33.3±0.8 kJ·mol−1. The proposed models were compared via statistical approach comprising Akaike information criterion with correction coupled with F-test. The phase-boundary reaction and diffusion control models approximated to 95% confidence level along with scanning electron microscopy results; revealed the promising reduction reactions of pure Fe2O3 and Fe2O3/Al2O3. The boosting recital of iron-based oxygen carrier support toward efficient chemical looping combustion could be explained accurately through the present study.

Keywords chemical looping combustion      iron-based oxygen carriers      reduction kinetics      carbon monoxide      statistics     
Corresponding Author(s): Wei WANG   
Online First Date: 23 October 2015    Issue Date: 23 November 2015
 Cite this article:   
Xiuning HUA,Wei WANG,Feng WANG. Performance and kinetics of iron-based oxygen carriers reduced by carbon monoxide for chemical looping combustion[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1130-1138.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0821-y
https://academic.hep.com.cn/fese/EN/Y2015/V9/I6/1130
properties pure Fe2O3 pure Al2O3 Fe5Al5
bcd) acd) bc ac bc ac
Fe2O3 content /%a) 100 0 50
SBET /(m2·g−1)b) 3.9 1.0 181.9 49.8 115.0 19.4
pore size /nm 18.7 28.0 4.5 16.9 5.5 16.1
pore volume /(cm3·g−1) 0.012 0.002 0.232 0.196 0.145 0.069
pore volume to SBET ratio /nm 3.0 1.9 1.3 3.9 1.3 3.6
particle size /μmc) 100−200 100−200
Tab.1  Properties of the materials around iron-based oxygen carriers
Fig.1  XRD patterns of the fresh iron-based oxygen carriers: (a) pure Fe2O3 and (b) Fe5Al5 (Fe2O3:Al2O3=50: 50 wt.%)
Fig.2  SEM images of the fresh particles ((a): pure Fe2O3; (g): Fe5Al5) and the used particles ((b), (c), (d), (e), (f): pure Fe2O3; (h), (i), (j), (k), (l): Fe5Al5) after the reduction process at different temperatures ((b), (h): 973 K; (c), (i): 1023 K; (d), (j): 1073 K; (e), (k): 1123 K; (f), (l): 1173 K)
Fig.3  Conversion curves of the iron-based oxygen carriers as a function of time at different temperatures: (a) pure Fe2O3 and (b) Fe5Al5
Fig.4  Linear fitting of the different kinetic models at 1073 K: ((a), (c)) pure Fe2O3 and ((b), (d)) Fe5Al5. Eq. # corresponds to No. # in Table S1. R2 is the linear regression coefficient obtained with MS Excel®
oxygen carrier model 973 K 1023 K 1073 K 1123 K 1173 K
RSS AICc RSS AICc RSS AICc RSS AICc RSS AICc
pure Fe2O3 A2 1.20 10.5 0.47 −3.39 0.23 −10.8 0.19 −10.0 0.21 −6.15
R2 0.03 −87.3 0.06 −43.9 0.11 −23.2 0.10 −19.0 0.09 −17.9
D1 0.52 −11.1 0.65 2.92 0.70 7.20 0.65 7.47 0.59 7.27
F0 1.11 8.60 0.42 −5.30 0.22 −11.2 0.18 −10.6 0.17 −9.24
Fe5Al5 A2 3.26 35.0 2.08 24.8 1.09 15.1 1.05 15.0 0.78 12.3
R2 0.53 −5.03 0.31 −7.31 0.11 −15.8 0.08 −13.4 0.04 −15.5
D1 0.02 −76.4 0.03 −47.2 0.06 −23.8 0.07 −16.0 0.08 −9.34
F0 3.24 34.9 2.20 25.7 1.30 17.5 0.96 14.1 0.66 10.7
Tab.2  Statistical analyses of the candidate models for the fitting experimental conversions of the iron-based oxygen carriers at different temperatures
Fig.5  Comparison of the calculated conversion curves with the experimental data: (a) pure Fe2O3 and (b) Fe5Al5. Symbols denote the experimental data. Lines represent the calculated conversion curves: (a) R2 and (b) D1
Fig.6  Arrhenius plot for the two iron-based oxygen carriers. Error bars are defined by the range of the experimental data
2a Chen Z, Deng S, Wei H, Wang B, Huang J, Yu G. Activated carbons and amine-modified materials for carbon dioxide capture—a review. Frontiers of Environmental Science & Engineering, 2013, 7(3): 326–340
3a Xie J, Yan N, Liu F, Qu Z, Yang S, Liu P. CO2 adsorption performance of ZIF-7 and its endurance in flue gas components. Frontiers of Environmental Science & Engineering, 2014, 8(2): 162–168
1 IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013
2 Cabello  A, Abad  A, García-Labiano  F, Gayán  P, de Diego  L F, Adánez  J. Kinetic determination of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier for use in gas-fueled Chemical Looping Combustion. Chemical Engineering Journal, 2014, 258(0): 265–280
https://doi.org/10.1016/j.cej.2014.07.083
3 IPCC. Carbon Dioxide Capture and Storage. Working group III of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2005
4 Lewis  W K. Newton, Gilliland E R Production of pure carbon dioxide. US Patent 2665972 A, 1954
5 Richter  H J, Knoche  K F. Reversibility of combustion processes. ACS Symposium Series, 1983, 235(1): 71–86
6 Ishida  M, Jin  H. A new advanced power-generation system using chemical-looping combustion. Energy, 1994, 19(4): 415–422
https://doi.org/10.1016/0360-5442(94)90120-1
7 Lyngfelt  A, Leckner  B, Mattisson  T. A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion. Chemical Engineering Science, 2001, 56(10): 3101–3113
https://doi.org/10.1016/S0009-2509(01)00007-0
8 Ishida  M, Jin  H. A novel chemical-looping combustor without NOx formation. Industrial & Engineering Chemistry Research, 1996, 35(7): 2469–2472
https://doi.org/10.1021/ie950680s
9 Hua  X, Wang  W. Chemical looping combustion: a new low-dioxin energy conversion technology. Journal of Environmental Sciences- China, 2015, 32(0): 135–145
https://doi.org/10.1016/j.jes.2014.09.044
10 Adanez  J, Abad  A, Garcia-Labiano  F, Gayan  P, de Diego  L F. Progress in chemical-looping combustion and reforming technologies. Progress in Energy and Combustion Science, 2012, 38(2): 215–282
https://doi.org/10.1016/j.pecs.2011.09.001
11 Hua  X, Wang  W, Hu  Y, Zhu  J. Analysis of reduction stage of chemical looping packed bed reactor based on the reaction front distribution. Journal of Material Cycles and Waste Management, 2014, 16(4): 583–590
https://doi.org/10.1007/s10163-014-0260-z
12 Lyngfelt  A, Johansson  M, Mattisson  T. Chemical-looping combustion- status of development. In: 9th International Conference on Circulating Fluidized Beds, Hamburg. Chalmers Publication Library: Goteborg, 2008
13 Abad  A, Mattisson  T, Lyngfelt  A, Johansson  M. The use of iron oxide as oxygen carrier in a chemical-looping reactor. Fuel, 2007, 86(7−8): 1021–1035
https://doi.org/10.1016/j.fuel.2006.09.021
14 Huang  Z, He  F, Feng  Y, Zhao  K, Zheng  A, Chang  S, Li  H. Synthesis gas production through biomass direct chemical looping conversion with natural hematite as an oxygen carrier. Bioresource Technology, 2013, 140(0): 138–145
https://doi.org/10.1016/j.biortech.2013.04.055
15 Mattisson  T, García-Labiano  F, Kronberger  B, Lyngfelt  A, Adánez  J, Hofbauer  H. Chemical-looping combustion using syngas as fuel. International Journal of Greenhouse Gas Control, 2007, 1(2): 158–169
https://doi.org/10.1016/S1750-5836(07)00023-0
16 Li  F, Zeng  L, Velazquez-Vargas  L G, Yoscovits  Z, Fan  L S. Syngas chemical looping gasification process: Bench-scale studies and reactor simulations. AIChE Journal. American Institute of Chemical Engineers, 2010, 56(8): 2186–2199
https://doi.org/10.1002/aic.12093
17 Burnham  K P, Anderson  D R. Model Selection and Multimodel Inference: A Practical Information—Theoretic Approach. New York: Springer, 2002
18 Ott  R L, Longnecker  M T. An Introduction to Statistical Methods and Data Analysis. Canada: Cengage Learning, 2010
19 de Diego  L F, García-Labiano  F, Adánez  J, Gayán  P, Abad  A, Corbella  B M, María Palacios  J. Development of Cu-based oxygen carriers for chemical-looping combustion. Fuel, 2004, 83(13): 1749–1757
https://doi.org/10.1016/j.fuel.2004.03.003
20 Gayán  P, Adánez-Rubio  I, Abad  A, de Diego  L F, García-Labiano  F, Adánez  J. Development of Cu-based oxygen carriers for Chemical-Looping with Oxygen Uncoupling (CLOU) process. Fuel, 2012, 96(0): 226–238
https://doi.org/10.1016/j.fuel.2012.01.021
21 Tong  A, Sridhar  D, Sun  Z, Kim  H R, Zeng  L, Wang  F, Wang  D, Kathe  M V, Luo  S, Sun  Y, Fan  L S. Continuous high purity hydrogen generation from a syngas chemical looping 25kWth sub-pilot unit with 100% carbon capture. Fuel, 2013, 103(0): 495–505
https://doi.org/10.1016/j.fuel.2012.06.088
22 Liu  F, Zhang  Y, Chen  L, Qian  D, Neathery  J K, Kozo  S, Liu  K. Investigation of a canadian ilmenite as an oxygen carrier for chemical looping combustion. Energy & Fuels, 2013, 27(10): 5987–5995
https://doi.org/10.1021/ef401513p
23 Monazam  E R, Breault  R W, Siriwardane  R, Miller  D D. Thermogravimetric analysis of modified hematite by methane (CH4) for chemical-looping combustion: a global kinetics mechanism. Industrial & Engineering Chemistry Research, 2013, 52(42): 14808–14816
https://doi.org/10.1021/ie4024116
24 Monazam  E R, Breault  R W, Siriwardane  R. Kinetics of hematite to Wüstite by hydrogen for chemical looping combustion. Energy & Fuels, 2014, 28(8): 5406–5414
https://doi.org/10.1021/ef501100b
25 Monazam  E R, Breault  R W, Siriwardane  R, Richards  G, Carpenter  S. Kinetics of the reduction of hematite (Fe2O3) by methane (CH4) during chemical looping combustion: a global mechanism. Chemical Engineering Journal, 2013, 232(0): 478–487
https://doi.org/10.1016/j.cej.2013.07.091
26 Cho  P, Mattisson  T, Lyngfelt  A. Carbon formation on nickel and iron oxide-containing oxygen carriers for chemical-looping combustion. Industrial & Engineering Chemistry Research, 2005, 44(4): 668–676
https://doi.org/10.1021/ie049420d
27 Monazam  E R, Breault  R W, Siriwardane  R. Reduction of hematite (Fe2O3) to wüstite (FeO) by carbon monoxide (CO) for chemical looping combustion. Chemical Engineering Journal, 2014, 242(0): 204–210
https://doi.org/10.1016/j.cej.2013.12.040
28 Khawam  A, Flanagan  D R. Solid-state kinetic models: basics and mathematical fundamentals. Journal of Physical Chemistry B, 2006, 110(35): 17315–17328
https://doi.org/10.1021/jp062746a
29 Luo  M, Wang  S, Wang  L, Lv  M. Reduction kinetics of iron-based oxygen carriers using methane for chemical-looping combustion. Journal of Power Sources, 2014, 270(0): 434–440
https://doi.org/10.1016/j.jpowsour.2014.07.100
30 Saha B, Khan A, Ibrahim H, Idem R. Evaluating the performance of non-precious metal based catalysts for sulfur-tolerance during the dry reforming of biogas. Fuel, 2014, 120(0): 202–217
https://doi.org/10.1016/j.fuel.2013.12.016
[1] Supplementary Material Download
[1] Yuxuan WANG, Yuqiang ZHANG, Jiming HAO, . Review on the applications of Tropospheric Emissions Spectrometer to air-quality research: Perspectives for China[J]. Front.Environ.Sci.Eng., 2010, 4(1): 12-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed