Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (4) : 12    https://doi.org/10.1007/s11783-016-0855-9
RESEARCH ARTICLE
Effect of protein on PVDF ultrafiltration membrane fouling behavior under different pH conditions: interface adhesion force and XDLVO theory analysis
Xudong WANG1,Miao ZHOU1,Xiaorong MENG1,2,Lei WANG1,*(),Danxi HUANG1
1. School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2. School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China
 Download: PDF(1864 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

pH values of the BSA solution significantly impact the process of membrane fouling.

Dramatic flux decline is caused by membrane–BSA adhesion force at start of filtration.

XDLVO theory shows the polar or Lewis acid–base interaction plays a major role in membrane fouling.

To further determine the fouling behavior of bovine serum albumin (BSA) on different hydrophilic PVDF ultrafiltration (UF) membranes over a range of pH values, self-made atomic force microscopy (AFM) colloidal probes were used to detect the adhesion forces of membrane–BSA and BSA–BSA, respectively. Results showed that the membrane–BSA adhesion interaction was stronger than the BSA–BSA adhesion interaction, and the adhesion force between BSA–BSA-fouled PVDF/PVA membranes was similar to that between BSA–BSA-fouled PVDF/PVP membranes, which indicated that the fouling was mainly caused by the adhesion interaction between membrane and BSA. At the same pH condition, the PVDF/PVA membrane–BSA adhesion force was smaller than that of PVDF/PVP membrane–BSA, which illustrated that the more hydrophilic the membrane was, the better antifouling ability it had. The extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory predicts that the polar or Lewis acid–base (AB) interaction played a dominant role in the interfacial free energy of membrane–BSA and BSA–BSA that can be affected by pH. For the same membrane, the pH values of a BSA solution can have a significant impact on the process of membrane fouling by changing the AB component of free energy.

Keywords PVDF membrane      Membrane fouling      Adhesion force      Protein      Interfacial free energy     
Corresponding Author(s): Lei WANG   
Online First Date: 08 July 2016    Issue Date: 24 August 2016
 Cite this article:   
Xudong WANG,Miao ZHOU,Xiaorong MENG, et al. Effect of protein on PVDF ultrafiltration membrane fouling behavior under different pH conditions: interface adhesion force and XDLVO theory analysis[J]. Front. Environ. Sci. Eng., 2016, 10(4): 12.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-016-0855-9
https://academic.hep.com.cn/fese/EN/Y2016/V10/I4/12
compositions/% PVDF/PVA PVDF/PVP
PVDF 17 17
PVA 3 0
PVP 0 3
PEG 3 0
LiCl 3 3
DMAc 74 77
Tab.1   Compositions of different casting solution
γ l + γ i γ   L W γ   A B γ   T O T
Ultrapure water 25.5 25.5 21.8 51.0 72.8
Diiodomethane 0.0 0.0 50.8 0.0 50.8
Glycerol 3.9 57.4 34.0 30.0 64.0
Tab.2  Surface tension properties (mJ·m-2) of probe liquids at 20℃
Fig.1  FTIR spectra of PVDF/PVA and PVDF/PVP membranes
types PVDF/PVA PVDF/PVP
BSA rejection/% 89.2 78.5
porosity/% 62.9 78.5
mean pore size/nm 46.8 43.6
contact angle/(º) 62.7 69.8
flux/LMH 258.6 308.8
Tab.3   PVDF UF membrane structure parameters
Fig.2  Effect of BSA solution pH on zeta potential and particle size
Fig.3  Flux decline in BSA ultrafiltration at different pHs (a) is for PVDF/PVA, (b) is for PVDF/PVP)
Fig.4  Adhesion forces of PVDF/PVA membrane-BSA (a) and BSA-BSA (b)
Fig.5  Adhesion forces of PVDF/PVP membrane-BSA (a) and BSA-BSA (b)
Fig.6  The surface SEM images of membranes fouled by BSA solutions (Experimental conditions: test temperature, room temperature; Filtration time: 2 h)
Fig.7  The 3-dimensional AFM images of BSA fouled membranes (Experimental conditions: test temperature, room temperature; Filtration time: 2 h)
Types pH qW/(°) qD/(°) qG/(°) γ l + γ i γ   A B γ   L W γ   T O T
PVDF/PVA 3 67.21 (±0.15) 42.05 (±0.11) 50.76 (±0.31) 0.23 25.70 4.86 34.16 39.02
4.7 67.70 (±0.37) 46.30(±0.52) 57.93(±0.55) 0.69 13.91 6.20 36.70 42.90
9 62.72 (±0.29) 43.54 (±0.17) 51.75 (±0.16) 1.31 11.63 7.81 39.79 47.60
PVDF/PVP 3 84.40 (±0.35) 47.80 (±0.24) 59.10 (±0.18) 0.65 7.84 4.51 30.51 35.02
4.7 80.77 (±0.51) 60.91 (±0.67) 69.42 (±0.12) 0.91 6.81 4.98 28.58 33.56
9 73.91 (±0.27) 52.82 (±0.26) 63.00 (±0.57) 0.96 10.50 6.35 33.74 40.09
BSA 3 76.59 (±0.29) 37.16 (±0.31) 66.95 (±0.15) 0.07 7.09 1.41 40.96 42.37
4.7 77.16 (±0.24) 37.56 (±0.18) 67.41 (±0.28) 0.06 7.08 1.30 42.20 43.50
9 72.43 (±0.13) 34.17 (±0.25) 65.64 (±0.34) 0.02 10.60 0.92 40.83 41.75
Tab.4  The contact angles, surface tension components and parameters (mJ·m–2) of membrane and BSA
membranes pH Δ G m l f L W Δ G m l f A B Δ G m l f A D Δ G f l f L W Δ G f l f A B Δ G f l f c o
PVDF/PVA 3 –5.09 –32.90 –37.99 –4.16 –20.91 –25.07
4.7 –5.29 –37.91 –43.20 –4.91 –22.81 –27.72
9 –4.24 –28.27 –32.51 –1.69 –19.64 –21.33
PVDF/PVP 3 –2.49 –43.13 –45. 62 –2.67 –23.21 –25.88
4.7 –4.43 –53.40 –57.83 –3.44 –23.13 –26.57
9 –2.92 –36.19 –39.11 –2.68 –20.23 –22.91
Tab.5  PVDF UF membranes-BSA interfacial free energies of adhesion and BSA-BSA interfacial free energies of adhesion (mJ·m–2)
J water flux (L·m-2·h -1)
J0 pure water flux (L·m-2·h -1)
q contact angle (deg)
qw contact angle measured by ultrapure water (deg)
qD contact angle measured by diiodomethane (deg)
qG contact angle measured by glycerol (deg)
LW Lifshitz–van der Waals interactions
AB polar or Lewis acid–base interactions
EL electrostatic double layer interactions
ΔG  LW LW component of free energy (mJ·m-2)
ΔG  AB AB component of free energy (mJ·m-2)
ΔG  EL EL component of free energy (mJ·m-2)
γ  LW LW component of surface tension (mJ·m-2)
γl+ electron acceptor component of surface tension (mJ·m-2)
γi electron donor component of surface tension (mJ·m-2)
γ  TOT total component of surface tension (mJ·m-2)
ΔGmlfAD membrane–BSA interfacial free energy of adhesion (mJ·m-2)
ΔGflfCO BSA–BSA interfacial free energy of adhesion (mJ·m-2)
Tab.1  
m membrane
l liquid environment
f foulant
Tab.1  
1 Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Mariñas B J, Mayes A M. Science and technology for water purification in the coming decades. Nature, 2008, 452(7185): 301–310
https://doi.org/10.1038/nature06599 pmid: 18354474
2 Wang L, Wang X. Study of membrane morphology by microscopic image analysis and membrane structure parameter model. Journal of Membrane Science, 2006, 283(1–2): 109–115
https://doi.org/10.1016/j.memsci.2006.06.017
3 Fan X, Tao Y, Wei D, Zhang X, Lei Y, Noguchi H. Removal of organic matter and disinfection by-products precursors in a hybrid process combining ozonation with ceramic membrane ultrafiltration. Frontiers of Environmental Science & Engineering, 2015, 9(1): 112–120
https://doi.org/10.1007/s11783-014-0745-y
4 Mo H, Tay K G, Ng H Y. Fouling of reverse osmosis membrane by protein (BSA): effects of pH, calcium, magnesium, ionic strength and temperature. Journal of Membrane Science, 2008, 315(1–2): 28–35
https://doi.org/10.1016/j.memsci.2008.02.002
5 Dong B, Chen Y, Gao N, Fan J. Effect of pH on UF membrane fouling. Desalination, 2006, 195(1–3): 201–208
https://doi.org/10.1016/j.desal.2005.11.012
6 He H, Sui Q, Lu S, Zhao W, Qiu Z, Yu G. Effect of effluent organic matter on ozonation of bezafibrate. Frontiers of Environmental Science & Engineering, 2015, 9(6): 962–969
https://doi.org/10.1007/s11783-015-0772-3
7 Wang Q, Wang Z, Wu Z. Effects of solvent compositions on physicochemical properties and anti-fouling ability of PVDF microfiltration membranes for wastewater treatment. Desalination, 2012, 297: 79–86
https://doi.org/10.1016/j.desal.2012.04.020
8 Chang H, Qu F, Liu B, Yu H, Li K, Shao S, Li G, Liang H. Hydraulic irreversibility of ultrafiltration membrane fouling by humic acid: effects of membrane properties and backwash water composition. Journal of Membrane Science, 2015, 493: 723–733
https://doi.org/10.1016/j.memsci.2015.07.001
9 Wang L, Miao R, Wang X, Lv Y, Meng X, Yang Y, Huang D, Feng L, Liu Z, Ju K. Fouling behavior of typical organic foulants in polyvinylidene fluoride ultrafiltration membranes: characterization from microforces. Environmental Science & Technology, 2013, 47(8): 3708–3714
https://doi.org/10.1021/es4004119 pmid: 23528200
10 Ang W S, Elimelech M. Protein (BSA) fouling of reverse osmosis membranes: implications for wastewater reclamation. Journal of Membrane Science, 2007, 296(1–2): 83–92
https://doi.org/10.1016/j.memsci.2007.03.018
11 She Q, Tang C Y, Wang Y N, Zhang Z. The role of hydrodynamic conditions and solution chemistry on protein fouling during ultrafiltration. Desalination, 2009, 249(3): 1079–1087
https://doi.org/10.1016/j.desal.2009.05.015
12 Wei L, Wang K, Kong X, Liu G, Cui S, Zhao Q, Cui F.Application of ultra-sonication, acid precipitation and membrane filtration for co-recovery of protein and humic acid from sewage sludge. Frontiers of Environmental Science & Engineering, 2016, 10(2), 327–335
13 Velasco C, Calvo J, Palacio L, Carmona J, Prádanos P, Hernández A. Flux kinetics, limit and critical fluxes for low pressure dead-end microfiltration: the case of BSA filtration through a positively charged membrane. Chemical Engineering Science, 2015, 129: 58–68
https://doi.org/10.1016/j.ces.2015.02.003
14 Ahmad B, Kamal M Z, Khan R H. Alkali-induced conformational transition in different domains of bovine serum albumin. Protein and Peptide Letters, 2004, 11(4): 307–315
https://doi.org/10.2174/0929866043406887 pmid: 15327362
15 Ho C C, Zydney A L. A combined pore blockage and cake filtration model for protein fouling during microfiltration. Journal of Colloid and Interface Science, 2000, 232(2): 389–399
https://doi.org/10.1006/jcis.2000.7231 pmid: 11097775
16 Duclos-Orsello C, Li W, Ho C C. A three mechanism model to describe fouling of microfiltration membranes. Journal of Membrane Science, 2006, 280(1–2): 856–866
https://doi.org/10.1016/j.memsci.2006.03.005
17 Sun X, Kanani D M, Ghosh R. Characterization and theoretical analysis of protein fouling of cellulose acetate membrane during constant flux dead-end microfiltration. Journal of Membrane Science, 2008, 320(1–2): 372–380
https://doi.org/10.1016/j.memsci.2008.04.017
18 Ma B, Hu C, Wang X, Xie Y, Jefferson W A, Liu H, Qu J. Effect of aluminum speciation on ultrafiltration membrane fouling by low dose aluminum coagulation with bovine serum albumin (BSA). Journal of Membrane Science, 2015, 492: 88–94
https://doi.org/10.1016/j.memsci.2015.05.043
19 Mosley L M, Hunter K A, Ducker W A. Forces between colloid particles in natural waters. Environmental Science & Technology, 2003, 37(15): 3303–3308
https://doi.org/10.1021/es026216d pmid: 12966974
20 Zhang W, Stack A G, Chen Y. Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM. Colloids and Surfaces. B, Biointerfaces, 2011, 82(2): 316–324
https://doi.org/10.1016/j.colsurfb.2010.09.003 pmid: 20932723
21 Hashino M, Hirami K, Ishigami T, Ohmukai Y, Maruyama T, Kubota N, Matsuyama H. Effect of kinds of membrane materials on membrane fouling with BSA. Journal of Membrane Science, 2011, 384(1–2): 157–165
https://doi.org/10.1016/j.memsci.2011.09.015
22 Miao R, Wang L, Wang X, Lv Y, Gao Z, Mi N, Liu T. Preparation of a polyvinylidene fluoride membrane material probe and its application in membrane fouling research. Desalination, 2015, 357: 171–177
https://doi.org/10.1016/j.desal.2014.11.029
23 Derjaguin B. Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim. USSR, 1941, 14: 633–662
24 Verwey E J. Theory of the stability of lyophobic colloids. Journal of Physical Chemistry, 1947, 51(3): 631–636
https://doi.org/10.1021/j150453a001 pmid: 20238663
25 Lin T, Lu Z, Chen W. Interaction mechanisms of humic acid combined with calcium ions on membrane fouling at different conditions in an ultrafiltration system. Desalination, 2015, 357: 26–35
https://doi.org/10.1016/j.desal.2014.11.007
26 Meng X, Tang W, Wang L, Wang X, Huang D, Chen H, Zhang N. Mechanism analysis of membrane fouling behavior by humic acid using atomic force microscopy: effect of solution pH and hydrophilicity of PVDF ultrafiltration membrane interface. Journal of Membrane Science, 2015, 487: 180–188 doi:10.1016/j.memsci.2015.03.034
27 Meng X, Zhang H, Wang L, Wang X, Zhao L. Membrane fouling by secondary effluent of urban sewage and the membrane properties. Environmental Sciences, 2013, 34(5): 1822–1827
pmid: 23914534
28 Brant J A, Childress A E. Assessing short-range membrane–colloid interactions using surface energetics. Journal of Membrane Science, 2002, 203(1–2): 257–273
https://doi.org/10.1016/S0376-7388(02)00014-5
29 Subramani A, Hoek E M. Direct observation of initial microbial deposition onto reverse osmosis and nanofiltration membranes. Journal of Membrane Science, 2008, 319(1–2): 111–125
https://doi.org/10.1016/j.memsci.2008.03.025
30 van Oss C J, Chaudhury M K, Good R J. Monopolar surfaces. Advances in Colloid and Interface Science, 1987, 28(1): 35–64
https://doi.org/10.1016/0001-8686(87)80008-8 pmid: 3333137
31 Li J F, Xu Z L, Yang H. Microporous polyethersulfone membranes prepared under the combined precipitation conditions with non-solvent additives. Polymers for Advanced Technologies, 2008, 19(4): 251–257
https://doi.org/10.1002/pat.982
32 Feng C, Shi B, Li G, Wu Y. Preparation and properties of microporous membrane from poly (vinylidene fluoride-co-tetrafluoroethylene)(F2.4) for membrane distillation. Journal of Membrane Science, 2004, 237(1–2): 15–24
https://doi.org/10.1016/j.memsci.2004.02.007
33 Saikia D, Kumar A. Ionic conduction in P(VDF-HFP)/PVDF–(PC+ DEC)–LiClO4 polymer gel electrolytes. Electrochimica Acta, 2004, 49(16): 2581–2589
https://doi.org/10.1016/j.electacta.2004.01.029
34 Wang Y N, Tang C Y. Fouling of nanofiltration, reverse osmosis, and ultrafiltration membranes by protein mixtures: the role of inter-foulant-species interaction. Environmental Science & Technology, 2011, 45(15): 6373–6379
https://doi.org/10.1021/es2013177 pmid: 21678956
35 Miao R, Wang L, Lv Y, Wang X, Feng L, Liu Z, Huang D, Yang Y. Identifying polyvinylidene fluoride ultrafiltration membrane fouling behavior of different effluent organic matter fractions using colloidal probes. Water Research, 2014, 55: 313–322
https://doi.org/10.1016/j.watres.2014.02.039 pmid: 24631880
[1] FSE-16020-OF-WXD_suppl_1 Download
[1] Danyang Liu, Johny Cabrera, Lijuan Zhong, Wenjing Wang, Dingyuan Duan, Xiaomao Wang, Shuming Liu, Yuefeng F. Xie. Using loose nanofiltration membrane for lake water treatment: A pilot study[J]. Front. Environ. Sci. Eng., 2021, 15(4): 69-.
[2] Karla Ilić Đurđić, Raluca Ostafe, Olivera Prodanović, Aleksandra Đurđević Đelmaš, Nikolina Popović, Rainer Fischer, Stefan Schillberg, Radivoje Prodanović. Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls[J]. Front. Environ. Sci. Eng., 2021, 15(2): 19-.
[3] Shuo Wei, Lei Du, Shuo Chen, Hongtao Yu, Xie Quan. Electro-assisted CNTs/ceramic flat sheet ultrafiltration membrane for enhanced antifouling and separation performance[J]. Front. Environ. Sci. Eng., 2021, 15(1): 11-.
[4] An Ding, Yingxue Zhao, Huu Hao Ngo, Langming Bai, Guibai Li, Heng Liang, Nanqi Ren, Jun Nan. Metabolic uncoupler, 3,3′,4′,5-tetrachlorosalicylanilide addition for sludge reduction and fouling control in a gravity-driven membrane bioreactor[J]. Front. Environ. Sci. Eng., 2020, 14(6): 96-.
[5] An Ding, Yingxue Zhao, Zhongsen Yan, Langming Bai, Haiyang Yang, Heng Liang, Guibai Li, Nanqi Ren. Co-application of energy uncoupling and ultrafiltration in sludge treatment: Evaluations of sludge reduction, supernatant recovery and membrane fouling control[J]. Front. Environ. Sci. Eng., 2020, 14(4): 59-.
[6] Hongqi Wang, Ruhan Jiang, Dekang Kong, Zili Liu, Xiaoxiong Wu, Jie Xu, Yi Li. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins[J]. Front. Environ. Sci. Eng., 2020, 14(1): 9-.
[7] Caiyun Hou, Sen Qiao, Yue Yang, Jiti Zhou. A novel sequence batch membrane carbonation photobioreactor developed for microalgae cultivation[J]. Front. Environ. Sci. Eng., 2019, 13(6): 92-.
[8] Xuehao Zhao, Yinhu Wu, Xue Zhang, Xin Tong, Tong Yu, Yunhong Wang, Nozomu Ikuno, Kazuki Ishii, Hongying Hu. Ozonation as an efficient pretreatment method to alleviate reverse osmosis membrane fouling caused by complexes of humic acid and calcium ion[J]. Front. Environ. Sci. Eng., 2019, 13(4): 55-.
[9] Chao Pang, Chunhua He, Zhenhu Hu, Shoujun Yuan, Wei Wang. Aggravation of membrane fouling and methane leakage by a three-phase separator in an external anaerobic ceramic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2019, 13(4): 50-.
[10] Nathalie Tanne, Rui Xu, Mingyue Zhou, Pan Zhang, Xiaomao Wang, Xianghua Wen. Influence of pore size and membrane surface properties on arsenic removal by nanofiltration membranes[J]. Front. Environ. Sci. Eng., 2019, 13(2): 19-.
[11] Xiaoli Song, Zhenghua Shi, Xiufen Li, Xinhua Wang, Yueping Ren. Fate of proteins of waste activated sludge during thermal alkali pretreatment in terms of sludge protein recovery[J]. Front. Environ. Sci. Eng., 2019, 13(2): 25-.
[12] Guangrong Sun, Chuanyi Zhang, Wei Li, Limei Yuan, Shilong He, Liping Wang. Effect of chemical dose on phosphorus removal and membrane fouling control in a UCT-MBR[J]. Front. Environ. Sci. Eng., 2019, 13(1): 1-.
[13] Lu Ao, Wenjun Liu, Yang Qiao, Cuiping Li, Xiaomao Wang. Comparison of membrane fouling in ultrafiltration of down-flow and up-flow biological activated carbon effluents[J]. Front. Environ. Sci. Eng., 2018, 12(6): 9-.
[14] Yuqin Lu, Xiao Bian, Hailong Wang, Xinhua Wang, Yueping Ren, Xiufen Li. Simultaneously recovering electricity and water from wastewater by osmotic microbial fuel cells: Performance and membrane fouling[J]. Front. Environ. Sci. Eng., 2018, 12(4): 5-.
[15] Xiaorong Meng, Shanshan Huo, Lei Wang, Xudong Wang, Yongtao Lv, Weiting Tang, Rui Miao, Danxi Huang. Effect of electrokinetic property of charged polyether sulfone membrane on bovine serum albumin fouling behavior[J]. Front. Environ. Sci. Eng., 2017, 11(2): 2-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed