Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (4) : 5    https://doi.org/10.1007/s11783-017-0936-4
RESEARCH ARTICLE
Effects of seed particles Al2O3, Al2(SO4)3 and H2SO4 on secondary organic aerosol
Xiao Zhang1,2, Biwu Chu3, Junhua Li2(), Chaozhi Zhang1()
1. School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
2. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
3. State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
 Download: PDF(980 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• SO2/NH3 affected the role of seed particles in secondary aerosol (SA) formation.

• Effects of seed particles on SA formation depended on their acid-base properties.

• H2SO4 accelerated SA formation under either SO2 or NH3 condition.

Seed particles Al2O3, Al2(SO4)3 and H2SO4 were selected to investigate their effects on secondary aerosol (SA) formation in toluene/NOx photooxidation under sulfur dioxide (SO2) and ammonia (NH3). Effect of seed particles on SA formation was related to their acid-base properties and the presence of acid or alkaline gases. Under NH3-poor condition, SA formation increased with increasing SO2 concentration due to the acid-catalyzing effect of the oxidation products of SO2 (i.e. H2SO4). The enhancing effect of SO2 became unobvious under NH3-rich condition, because NH3 would eliminate the acid-catalyzing effect by neutralizing the acid products. Acidic seeds H2SO4 accelerated SA formation under either SO2 or NH3 condition. Weak acidic Al2(SO4)3 seeds didn’t affect obviously on SA formation. The inhibiting effect of amphoteric seeds Al2O3 on SA formation was related to the presence of SO2 / NH3 due to their acid-base property. Under NH3-poor condition, the inhibiting effect of Al2O3 on SA formation decreased with increasing concentration of SO2, while under NH3-rich condition, the inhibiting effect wasn’t remarkable.

Keywords Seed particle      Secondary aerosol      Sulfur dioxide      Ammonia      Acid-catalyzing effect     
Corresponding Author(s): Junhua Li,Chaozhi Zhang   
Issue Date: 26 April 2017
 Cite this article:   
Xiao Zhang,Biwu Chu,Junhua Li, et al. Effects of seed particles Al2O3, Al2(SO4)3 and H2SO4 on secondary organic aerosol[J]. Front. Environ. Sci. Eng., 2017, 11(4): 5.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0936-4
https://academic.hep.com.cn/fese/EN/Y2017/V11/I4/5
experimentSO2,0PM0M0experimentNH3,0SO2,0PM0M0
No. a)/ppb/(mg·m-3)/(mg·m-3)No. a)/ppb b)/ppb/(mg·m-3)/(mg·m-3)
seed.00051seed.0-A10500112
seed.0-S52.50125seed.0-AS10552.50189
seed.0-S+1050190seed.0-AS+1051050194
seed.101031seed.1-A10501081
seed.1-S52.51096seed.1-AS10552.510145
seed.1-S+10510144seed.1-AS+10510510164
seed.201054seed.2-A105010114
seed.2-S52.510127seed.2-AS10552.510177
seed.2-S+10510197seed.2-AS+10510510189
seed.301063seed.3-A105010104
seed.3-S52.510119seed.3-AS10552.510187
seed.3-S+10510208seed.3-AS+10510510204
Tab.1  Experimental conditions and results in toluene/NOx/HONO photooxidation
Fig.1  Consumed concentrations of SO2 under different conditions
Fig.2  Relationship of concentration of generated SA mass with seed particles, NH3 and SO2
Fig.3  Effects of NH3 on SA formation in every seed system with various concentrations of SO2: (a) seed free system; (b) Al2O3 seed system; (c) Al2(SO4)3 seed system; (d) H2SO4 seed system
Fig.4  Effects of seed particles Al2(SO4)3 on SA formation: (a) NH3-poor condition; (b) NH3-rich condition
Fig.5  Effects of seed particles H2SO4 on SA formation: (a) NH3-poor condition; (b) NH3-rich condition
Fig.6  Effects of seed particles Al2O3 on SA formation: (a) NH3-poor condition; (b) NH3-rich condition
1 Hu G S, Xu Y F, Jia L. Effects of relative humidity on the characterization of a photochemical smog chamber. Journal of Environmental Sciences-China, 2011, 23(12): 2013–2018 
https://doi.org/10.1016/S1001-0742(10)60665-1
2 von Hessberg C, von Hessberg P, Pöschl U, Bilde M, Nielsen O J, Moortgat G K. Temperature and humidity dependence of secondary organic aerosol yield from the ozonolysis of  b-pinene. Atmospheric Chemistry and Physics, 2009, 9(11): 3583–3599
https://doi.org/10.5194/acp-9-3583-2009
3 Liu X Y, Zhang W J, Huang M Q, Wang Z Y, Hao L Q, Zhao W W. Effect of illumination intensity and light application time on secondary organic aerosol formation from the photooxidation of alpha-pinene. Journal of Environmental Sciences-China, 2009, 21(4): 447–451
https://doi.org/10.1016/S1001-0742(08)62290-1
4 Song C, Na K S, Cocker D R. Impact of the hydrocarbon to NOx ratio on secondary organic aerosol formation. Environmental Science & Technology, 2005, 39(9): 3143–3149
https://doi.org/10.1021/es0493244
5 Chu B W, Hao J M, Takekawa H, Li J H, Wang K, Jiang J K. The remarkable effect of FeSO4 seed aerosols on secondary organic aerosol formation from photooxidation of  a-pinene/NOx and toluene/NOx. Atmospheric Environment, 2012, 55(55): 26–34
https://doi.org/10.1016/j.atmosenv.2012.03.006
6 Odum J R, Hoffmann T, Bowman F, Collins D, Flagan R C, Seinfeld J H. Gas/particle partitioning and secondary organic aerosol yields. Environmental Science & Technology, 1996, 30(8): 2580–2585
https://doi.org/10.1021/es950943+
7 Jang M S, Czoschke N M, Lee S, Kamens R M. Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions. Science, 2002, 298(5594): 814–817
https://doi.org/10.1126/science.1075798
8 Kulmala M, Petäjä T, Kerminen V M, Kujansuu J, Ruuskanen T, Ding A, Nie W, Hu M, Wang Z, Wu Z, Wang L, Worsnop D R. On secondary new particle formation in China. Frontiers of Environmental Science & Engineering, 2016, 10(5): 08
9 Czoschke N M, Jang M, Kamens R M. Effect of acidic seed on biogenic secondary organic aerosol growth. Atmospheric Environment, 2003, 37(30): 4287–4299
https://doi.org/10.1016/S1352-2310(03)00511-9
10 Liu C, Chu B W, Liu Y C, Ma Q X, Ma J Z, He H, Li J H, Hao J M. Effect of mineral dust on secondary organic aerosol yield and aerosol size in a-pinene/NOx photo-oxidation. Atmospheric Environment, 2013, 77: 781–789 
https://doi.org/10.1016/j.atmosenv.2013.05.064
11 Giere R, Querol X. Solid particulate matter in the atmosphere. Elements (Quebec), 2010, 6(4): 215–222
https://doi.org/10.2113/gselements.6.4.215
12 Gao M, Carmichael G R, Wang Y, Ji D, Liu Z, Wang Z. Improving simulations of sulfate aerosols during winter haze over Northern China: the impacts of heterogeneous oxidation by NO2. Frontiers of Environmental Science & Engineering, 2016, 10(5): 16
https://doi.org/10.1007/s11783-016-0878-2
13 Zhao N, Zhang Q, Wang W. Heterogeneous reaction mechanism of gaseous HNO3 with solid NaCl: a density functional theory study. Frontiers of Environmental Science & Engineering, 2016, 10(5): 03
14 Ma J Z, Liu Y C, He H. Degradation kinetics of anthracene by ozone on mineral oxides. Atmospheric Environment, 2010, 44(35): 4446–4453
https://doi.org/10.1016/j.atmosenv.2010.07.042
15 Behera S N, Sharma M. Degradation of SO2, NO2 and NH3 leading to formation of secondary inorganic aerosols: an environmental chamber study. Atmospheric Environment, 2011, 45(24): 4015–4024
https://doi.org/10.1016/j.atmosenv.2011.04.056
16 Shukla S P, Sharma M. Source appointment of atmospheric PM10 in Kanpur, India. Environmental Engineering Science, 2008, 25(6): 849–862
https://doi.org/10.1089/ees.2006.0275
17 Sharma M, Kishore S, Tripathi S N, Behera S N. Role of atmospheric ammonia in the formation of inorganic secondary particulate matter: A study at Kanpur, India. Journal of Atmospheric Chemistry, 2007, 58(1): 1–17
https://doi.org/10.1007/s10874-007-9074-x
18 Santiago M, Vivanco M G, Stein A F. SO2 effect on secondary organic aerosol from a mixture of anthropogenic VOCs: experimental and modelled results. International Journal of Environment and Pollution, 2012, 50(1/2/3/4): 224–233
https://doi.org/10.1504/IJEP.2012.051195
19 Kleindienst T E, Edney E O, Lewandowski M, Offenberg J H, Jaoui M. Secondary organic carbon and aerosol yields from the irradiations of isoprene and alpha-pinene in the presence of NOx and SO2. Environmental Science & Technology, 2006, 40(12): 3807–3812
https://doi.org/10.1021/es052446r
20 Jaoui M, Edney E O, Kleindienst T E, Lewandowski M, Offenberg J H, Surratt J D, Seinfeld J H. Formation of secondary organic aerosol from irradiated alpha-pinene/toluene/NOx mixtures and the effect of isoprene and sulfur dioxide. Journal of Geophysical Research-Atmospheres, 2008, 113(D9): D09303
21 Tang Y H, Carmichael G R, Kurata G, Uno I, Weber R J, Song C H, Guttikunda S K, Woo J H, Streets D G, Wei C, Clarke A D, Huebert B, Anderson T L. Impacts of dust on regional tropospheric chemistry during the ACE-Asia experiment: a  model study with observations. Journal of Geophysical Research-Atmospheres, 2004, 109 (D19): D19521
22 Adams J W, Rodriguez D, Cox R A. The uptake of SO2 on Saharan dust: a flow tube study. Atmospheric Chemistry and Physics, 2005, 5(10): 2679–2689
https://doi.org/10.5194/acp-5-2679-2005
23 Wu S, Lu Z F, Hao J M, Zhao Z, Li J H, Takekawa H, Minoura H, Yasuda A. Construction and characterization of an atmospheric simulation smog chamber. Advances in Atmospheric Sciences, 2007, 24(2): 250–258
https://doi.org/10.1007/s00376-007-0250-3
24 Liu C, Liu Y C, Ma Q X, He H. Mesoporous transition alumina with uniform pore structure synthesized by alumisol spray pyrolysis. Chemical Engineering Journal, 2010, 163(1–2): 133–142
https://doi.org/10.1016/j.cej.2010.07.046
25 Roberts J M, Veres P, Warneke C, Neuman J A, Washenfelder R A, Brown S S, Baasandorj M, Burkholder J B, Burling I R, Johnson T J, Yokelson R J, De Gouw J. Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): application to biomass burning emissions. Atmospheric Measurement Techniques, 2010, 3(4): 981–990
https://doi.org/10.5194/amt-3-981-2010
26 Takekawa H, Minoura H, Yamazaki S. Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons. Atmospheric Environment, 2003, 37(24): 3413–3424
https://doi.org/10.1016/S1352-2310(03)00359-5
27 Chu B W, Liu Y C, Li J H, Takekawa H, Liggio J, Li S M, Jiang J K, Hao J M, He H. Decreasing effect and mechanism of FeSO4 seed particles on secondary organic aerosol in  a-pinene photooxidation. Environmental Pollution, 2014, 193(1): 88–93
https://doi.org/10.1016/j.envpol.2014.06.018
28 Hao L Q, Wang Z Y, Huang M Q, Fang L, Zhang W J. Effects of seed aerosols on the growth of secondary organic aerosols from the photooxidation of toluene. Journal of Environmental Sciences-China, 2007, 19(6): 704–708
https://doi.org/10.1016/S1001-0742(07)60117-X
29 Hao L Q, Wang Z Y, Huang M Q, Pei S X, Yang Y, Zhang W J. Size distribution of the secondary organic aerosol particles from the photooxidation of toluene. Journal of Environmental Sciences-China, 2005, 17(6): 912–916
30 Hao L Q, Wang Z Y, Fang L, Zhang W J, Wang W, Li C X, Sheng L S. Characterization of products from photooxidation of toluene. Journal of Environmental Sciences-China, 2006, 18(5): 903–909
https://doi.org/10.1016/S1001-0742(06)60012-0
31 Huang M Q, Zhang W J, Hao L Q, Wang Z Y, Zhou L Z, Gu X J, Fang L. Chemical composition and reaction mechanisms for secondary organic aerosol from photooxidation of toluene. Journal of the Chilean Chemical Society, 2006, 53(5): 1149–1156
https://doi.org/10.1002/jccs.200600152
32 Na K, Song C, Switzer C, Cocker D R. Effect of ammonia on secondary organic aerosol formation from alpha-pinene ozonolysis in dry and humid conditions. Environmental Science & Technology, 2007, 41(17): 6096–6102
https://doi.org/10.1021/es061956y
33 Harrison R M, Kitto A M N. Estimation of the rate constant for the reaction of acid sulphate aerosol with NH3 gas from atmospheric measurements. Journal of Atmospheric Chemistry, 1992, 15(2): 133–143
https://doi.org/10.1007/BF00053755
34 Baek B H, Aneja V P, Tong Q S. Chemical coupling between ammonia, acid gases, and fine particles. Environmental Pollution, 2004, 129(1): 89–98
https://doi.org/10.1016/j.envpol.2003.09.022
35 Chu B W, Liu T Y, Zhang X, Liu Y C, Ma Q X, Ma J Z, He H, Wang X M, Li J H, Hao J M. Secondary aerosol formation and oxidation capacity in photooxidation in the presence of Al2O3 seed particles and SO2. Science China. Chemistry, 2015, 58(9): 1426–1434
https://doi.org/10.1007/s11426-015-5456-0
[1] Zeshen Tian, Bo Wang, Yuyang Li, Bo Shen, Fengjuan Li, Xianghua Wen. Enhancement on the ammonia oxidation capacity of ammonia-oxidizing archaeon originated from wastewater: Utilizing low-density static magnetic field[J]. Front. Environ. Sci. Eng., 2021, 15(5): 81-.
[2] Dongjie Shang, Jianfei Peng, Song Guo, Zhijun Wu, Min Hu. Secondary aerosol formation in winter haze over the Beijing-Tianjin-Hebei Region, China[J]. Front. Environ. Sci. Eng., 2021, 15(2): 34-.
[3] Kuo Fang, Fei Peng, Hui Gong, Huanzhen Zhang, Kaijun Wang. Ammonia removal from low-strength municipal wastewater by powdered resin combined with simultaneous recovery as struvite[J]. Front. Environ. Sci. Eng., 2021, 15(1): 8-.
[4] Madhavaraj Lavanya, Ho-Dong Lim, Kong-Min Kim, Dae-Hyuk Kim, Balasubramani Ravindran, Gui Hwan Han. A novel strategy for gas mitigation during swine manure odour treatment using seaweed and a microbial consortium[J]. Front. Environ. Sci. Eng., 2020, 14(3): 53-.
[5] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[6] Chunhong Chen, Hong Liang, Dawen Gao. Community diversity and distribution of ammonia-oxidizing archaea in marsh wetlands in the black soil zone in North-east China[J]. Front. Environ. Sci. Eng., 2019, 13(4): 58-.
[7] Yao Zhang, Yayi Wang, Yuan Yan, Haicheng Han, Min Wu. Characterization of CANON reactor performance and microbial community shifts with elevated COD/N ratios under a continuous aeration mode[J]. Front. Environ. Sci. Eng., 2019, 13(1): 7-.
[8] Shi Yin, Yan-Qiu Chen, Yue-Li Li, Wang-Lai Cen, Hua-Qiang Yin. Static and dynamic characteristics of SO2-O2 aqueous solution in the microstructure of porous carbon materials[J]. Front. Environ. Sci. Eng., 2018, 12(5): 12-.
[9] Mengqian Lu, Bin-Le Lin, Kazuya Inoue, Zhongfang Lei, Zhenya Zhang, Kiyotaka Tsunemi. PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan[J]. Front. Environ. Sci. Eng., 2018, 12(2): 13-.
[10] Jianwei Liu, Kaixiong Yang, Lin Li, Jingying Zhang. A full-scale integrated-bioreactor with two zones treating odours from sludge thickening tank and dewatering house: performance and microbial characteristics[J]. Front. Environ. Sci. Eng., 2017, 11(4): 6-.
[11] Tiejun Zhang, Jian Li, Hong He, Qianqian Song, Quanming Liang. NO oxidation over Co-La catalysts and NOx reduction in compact SCR[J]. Front. Environ. Sci. Eng., 2017, 11(2): 4-.
[12] Ahmad Kalbasi Ashtari, Amir M. Samani Majd, Gerald L. Riskowski, Saqib Mukhtar, Lingying Zhao. Removing ammonia from air with a constant pH, slightly acidic water spray wet scrubber using recycled scrubbing solution[J]. Front. Environ. Sci. Eng., 2016, 10(6): 3-.
[13] Jiaxuan YANG, Jun MA, Dan SONG, Xuedong ZHAI, Xiujuan KONG. Impact of preozonation on the bioactivity and biodiversity of subsequent biofilters under low temperature conditions—A pilot study[J]. Front. Environ. Sci. Eng., 2016, 10(4): 5-.
[14] Yuyao ZHANG,Huan LI,Can LIU,Yingchao CHENG. Influencing mechanism of high solid concentration on anaerobic mono-digestion of sewage sludge without agitation[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1108-1116.
[15] Alberto MANNUCCI,Giulio MUNZ,Gualtiero MORI,Claudio LUBELLO,Jan A. OLESZKIEWICZ. Applicability of the Arrhenius model for Ammonia Oxidizing Bacteria subjected to temperature time gradients[J]. Front. Environ. Sci. Eng., 2015, 9(6): 988-994.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed