Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (6) : 10    https://doi.org/10.1007/s11783-017-0954-2
RESEARCH ARTICLE
Feasibility of bubble surface modification for natural organic matter removal from river water using dissolved air flotation
Yulong Shi, Jiaxuan Yang, Jun Ma(), Congwei Luo
State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
 Download: PDF(455 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Surface modified bubbles were produced in DAF pump saturation system.

Hydrophobic NOM was preferentially removed by chitosan modified bubbles.

Removal of hydrophilic NOM was improved with an increase in chitosan charge density.

Chitosan modified bubbles performed efficiently in THMFP and HAAFP control.

A novel, functionalized bubble surface can be obtained in dissolved air flotation (DAF) by dosing chemicals in the saturator. In this study, different cationic chemicals were used as bubble surface modifiers, and their effects on natural organic matter (NOM) removal from river water were investigated. NOM in the samples was fractionated based on molecular weight and hydrophobicity. The disinfection byproduct formation potentials of each fraction and their removal efficiencies were also evaluated. The results showed that chitosan was the most promising bubble modifier compared with a surfactant and a synthetic polymer. Tiny bubbles in the DAF pump system facilitated the adsorption of chitosan onto microbubble surfaces. The hydrophobic NOM fraction was preferentially removed by chitosan-modified bubbles. Decreasing the recycle water pH from 7.0 to 5.5 improved the removal of hydrophilic NOM with low molecular weight. Likewise, hydrophilic organic compounds gave high dihaloacetic acid yields in raw water. An enhanced reduction of haloacetic acid precursors was obtained with recycle water at pH values of 5.5 and 4.0. The experimental results indicate that NOM fractions may interact with bubbles through different mechanisms. Positive bubble modification provides an alternative approach for DAF to enhance NOM removal.

Keywords Bubble surface modification      Chitosan      Disinfection by-product      Dissolved air flotation      Organic fraction     
Corresponding Author(s): Jun Ma   
Issue Date: 26 May 2017
 Cite this article:   
Yulong Shi,Jiaxuan Yang,Jun Ma, et al. Feasibility of bubble surface modification for natural organic matter removal from river water using dissolved air flotation[J]. Front. Environ. Sci. Eng., 2017, 11(6): 10.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0954-2
https://academic.hep.com.cn/fese/EN/Y2017/V11/I6/10
Fig.1  Schematic diagram of DAF pump system: 1. recycle water tank; 2. vacuometer; 3. air rotameter; 4. multiphase pump; 5. air-liquid separation vessel; 6. manometer; 7. flotation column; and 8. sampling point
parametersraw water
pH7.35–7.49
temperature /℃20.7–22.6
turbidity /(NTU)34.2–46.8
DOC /(mg?L1)4.71–5.69
SUVA2.11–2.36
alkalinity /(as CaCO3, mg?L1)97–122
hardness /(as CaCO3, mg?L1)112–139
total solids /(mg?L1)452.6–553.3
total dissolved solids /(mg?L1)398.7–469.1
conductivity /(mS?cm1)46.3–52.0
Tab.1  Basic water quality parameters of Huaihe River water
Fig.2  Flotation efficiency of UV254 with three cationic chemicals used as bubble surface modifiers (solid line) or coagulants (dotted line) (raw water quality: UV254 0.116 cm1, DOC 5.10 mg?L1, 21.3℃; recycle water pH: 7±0.1)
Fig.3  Effect of CTAB dosage (mg?L1) in recycle water on bubble size distribution (recycle rate 10%, saturation pressure 500 kPa, recycle water pH 7±0.1)
Fig.4  DOC and UV254 removal rate (a) and zeta potential of floated water (b) with chitosan used as coagulant (solid line) or bubble modifier (dashed line) with recycle water at pH 7.0, 5.5 and 4.0 (raw water quality: UV254 0.105 cm1, DOC 4.92 mg?L1, 21.7℃)
Fig.5  The anchor role of tiny bubbles (TBs) during chitosan adsorption onto microbubbles (MBs) surface
Fig.6  Effect of pH on cationic charge density of chitosan
Fig.7  Polarity (a) and molecular weight (b) distribution of DOM in chitosan positive modification DAF (posiDAF) with recycle water at pH 7.0, 5.5 and 4.0 (chitosan dosage: 0.6 mg?L1)
Fig.8  Removal of THM4 (a) and HAA5 (b) formation potentials in chitosan positive modification DAF (posiDAF) with recycle water at pH 7.0, 5.5 and 4.0 (chitosan dosage: 0.6 mg?L1)
1 Elmahdy A M, Mirnezami M, Finch J A. Zeta potential of air bubbles in presence of frothers. International Journal of Mineral Processing, 2008, 89(1–4): 40–43
https://doi.org/10.1016/j.minpro.2008.09.003
2 Bratskaya S, Schwarz S, Chervonetsky D. Comparative study of humic acids flocculation with chitosan hydrochloride and chitosan glutamate. Water Research, 2004, 38(12): 2955–2961
https://doi.org/10.1016/j.watres.2004.03.033 pmid: 15223291
3 Edzwald J K, Haarhoff J. Dissolved Air Flotation For Water Clarification.New York: AWWA and McGraw Hill, 2012
4 Al-Zoubi H, Ibrahim K, Abu-Sbeih K. Removal of heavy metals from wastewater by economical polymeric collectors using dissolved air flotation process. Journal of Water Process Engineering, 2015, 8: 19–27
https://doi.org/10.1016/j.jwpe.2015.08.002
5 Miranda R, Negro C, Blanco A, 0. Internal treatment of process waters in paper production by dissolved air flotation with newly developed chemicals. 1: Laboratory tests. Industrial & Engineering Chemistry Research, 2009, 48(4): 2199–2205
https://doi.org/10.1021/ie801047h
6 Saarimaa V, Sundberg A, Holmbom B, Blanco A, Fuente E, Negro C. Monitoring of dissolved air flotation process by focused beam reflectance measurement. Industrial & Engineering Chemistry Research, 2006, 45(21): 7256–7263
https://doi.org/10.1021/ie060250+
7 Wang W D, Fan Q H, Qiao Z X, Yang Q, Wang Y B, Wang X C. Effect of water quality on the coagulation performances of humic acids irradiated with UV light. Frontiers of Environmental Science & Engineering, 2015, 9(1): 147–154
https://doi.org/10.1007/s11783-014-0749-7
8 Henderson R K, Parsons S A, Jefferson B. The potential for using bubble modification chemicals in dissolved air flotation for algae removal. Separation Science and Technology, 2009, 44(9): 1923–1940
https://doi.org/10.1080/01496390902955628
9 Han M Y, Kim M K, Shin M S. Generation of a positively charged bubble and its possible mechanism of formation. Journal of Water Supply: Research & Technology-Aqua, 2006, 55(7–8): 471–478
https://doi.org/10.2166/aqua.2006.055
10 Henderson R K, Parsons S A, Jefferson B. Polymers as bubble surface modifiers in the flotation of algae. Environmental Technology, 2010, 31(7): 781–790
https://doi.org/10.1080/09593331003663302 pmid: 20586240
11 Yap R K L, Whittaker M, Diao M, Stuetz R M, Jefferson B, Bulmus V, Peirson W L, Nguyen A V, Henderson R K. Hydrophobically-associating cationic polymers as micro-bubble surface modifiers in dissolved air flotation for cyanobacteria cell separation. Water Research, 2014, 61: 253–262
https://doi.org/10.1016/j.watres.2014.05.032 pmid: 24934266
12 Rao N R H, Yap R, Granville A M, Stuetz R M, Henderson R K. Algae flotation using PosiDAF: A comparison of polymers as bubble surface modifiers. In: Proceeding of the 7th International Conference of Flotation in Water and Wastewater Systems. Toulouse: France, 2016, 168–175
13 Zhang M, Guiraud P. Colloidal gas aphrons in flotation separation of nanoparticles: bubble dispersion features and flotation performance. In: Proceeding of the 7th International Conference of Flotation in Water and Wastewater Systems. Toulouse: France, 2016, 134–142
14 Wang X M, Mao Y Q, Tang S, Yang H W, Xie Y F. Disinfection byproducts in drinking water and regulatory compliance: a critical review. Frontiers of Environmental Science & Engineering, 2015, 9(1): 3–15
https://doi.org/10.1007/s11783-014-0734-1
15 Kam S K, Gregory J. Charge determination of synthetic cationic polyelectrolytes by colloid titration. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 1999, 159(1): 165–179
https://doi.org/10.1016/S0927-7757(99)00172-7
16 Yang J X, Ma J, Song D, Zhai X D, Kong X J. Impact of preozonation on the bioactivity and biodiversity of subsequent biofilter under low temperature conditions-a pilot study. Frontiers of Environmental Science & Engineering, 2016, 10(4): 50–60
https://doi.org/10.1007/s11783-016-0844-z
17 Kitis M, Karanfil T, Wigton A, Kilduff J E. Probing reactivity of dissolved organic matter for disinfection by-product formation using XAD-8 resin adsorption and ultrafiltration fractionation. Water Research, 2002, 36(15): 3834–3848
https://doi.org/10.1016/S0043-1354(02)00094-5 pmid: 12369529
18 Hua G, Reckhow D A. Characterization of disinfection byproduct precursors based on hydrophobicity and molecular size. Environmental Science & Technology, 2007, 41(9): 3309–3315
https://doi.org/10.1021/es062178c pmid: 17539542
19 Clesceri L S, Greenberg A E, Eaton A D. Standard Methods for the Examination of Water & Wastewater, 20th ed. American Public Health Association, 1998
20 Fan X J, Tao Y, Wei D Q, Zhang X H, Lei Y, Noguchi H. Removal of organic matter and disinfection by-products precursors in a hybrid process combing ozonation with ceramic membrane ultrafiltration. Frontiers of Environmental Science & Engineering, 2015, 9(1): 112–120
https://doi.org/10.1007/s11783-014-0745-y
21 Jungwirth P, Tobias D J. Specific ion effects at the air/water interface. Chemical Reviews, 2006, 106(4): 1259–1281
https://doi.org/10.1021/cr0403741 pmid: 16608180
22 Zhang W H, Zhang J Z, Zhao B, Zhu P H. Microbubble size distribution measurement in a DAF system. Industrial & Engineering Chemistry Research, 2015, 54(18): 5179–5183
https://doi.org/10.1021/acs.iecr.5b00109
23 Park S H, Padhye L P, Wang P, Cho M, Kim J H, Huang C H. N-nitrosodimethylamine (NDMA) formation potential of amine-based water treatment polymers: Effects of in situ chloramination, breakpoint chlorination, and pre-oxidation. Journal of Hazardous Materials, 2015, 282(23): 133–140
https://doi.org/10.1016/j.jhazmat.2014.07.044 pmid: 25112551
24 Calgaroto S, Azevedo A, Rubio J. Separation of amine-insoluble species by flotation with nano and microbubbles. Minerals Engineering, 2016, 89: 24–29
https://doi.org/10.1016/j.mineng.2016.01.006
25 Azevedo A, Etchepare R, Calgaroto S, Rubio J. Aqueous dispersions of nanobubbles: generation, properties and features. Minerals Engineering, 2016, 94: 29–37
https://doi.org/10.1016/j.mineng.2016.05.001
26 Fan M M, Tao D, Honaker R, Luo Z F. Nanobubble generation and its application in froth flotation (part I): nanobubble generation and its effects on properties of microbubble and millimeter scale bubble solutions. Mining Science and Technology, 2010, 20(1): 1–19
27 Miranda R, Nicu R, Latour I, Lupei M, Bobu E, Blanco A. Efficiency of chitosans for the treatment of papermaking process water by dissolved air flotation. Chemical Engineering Journal, 2013, 231: 304–313
https://doi.org/10.1016/j.cej.2013.07.033
28 Philippova O E, Korchagina E V. Chitosan and its hydrophobic derivatives: preparation and aggregation in dilute aqueous solutions. Polymer Science, Series A, 2012, 54(7): 552–572
https://doi.org/10.1134/S0965545X12060107
29 Ma J, Jiang J, Pang S, Guo J. Adsorptive fractionation of humic acid at air-water interfaces. Environmental Science & Technology, 2007, 41(14): 4959–4964
https://doi.org/10.1021/es070238o pmid: 17711209
30 Lenhart J J, Saiers J E. Adsorption of natural organic matter to air-water interfaces during transport through unsaturated porous media. Environmental Science & Technology, 2004, 38(1): 120–126
https://doi.org/10.1021/es034409a pmid: 14740726
31 Ishida N. Direct measurement of hydrophobic particle-bubble interactions in aqueous solutions by atomic force microscopy: effect of particle hydrophobicity. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2007, 300(3): 293–299
https://doi.org/10.1016/j.colsurfa.2007.02.003
32 Zhang W Z, Chen X Q, Zhou J M, Liu D H, Wang H Y, Du C W. Influence of humic acid on interaction of ammonium and potassium ions on clay minerals. Soil Science Society of China, 2013, 23(4): 493–502
33 Winter B, Faubel M, Vacha R, Jungwirth P. Behavior of hydroxide at the water/vapor interface. Faraday Discussions, 2009, 474: 242–247
34 Kim H C, Yu M J. Characterization of natural organic matter in conventional water treatment processes for selection of treatment processes focused on DBPs control. Water Research, 2005, 39(19): 4779–4789
https://doi.org/10.1016/j.watres.2005.09.021 pmid: 16253305
35 Li A, Zhao X, Mao R, Liu H, Qu J. Characterization of dissolved organic matter from surface waters with low to high dissolved organic carbon and the related disinfection byproduct formation potential. Journal of Hazardous Materials, 2014, 271: 228–235
https://doi.org/10.1016/j.jhazmat.2014.02.009 pmid: 24632486
[1] Shanshan Zhao, Zhu Tao, Liwei Chen, Muqiao Han, Bin Zhao, Xuelin Tian, Liang Wang, Fangang Meng. An antifouling catechol/chitosan-modified polyvinylidene fluoride membrane for sustainable oil-in-water emulsions separation[J]. Front. Environ. Sci. Eng., 2021, 15(4): 63-.
[2] Xiaolu ZHANG,Hongwei YANG,Xiaofeng WANG,Yu ZHAO,Xiaomao WANG,Yuefeng XIE. Concentration levels of disinfection by-products in 14 swimming pools of China[J]. Front. Environ. Sci. Eng., 2015, 9(6): 995-1003.
[3] Xiaojiang FAN,Yi TAO,Dequan WEI,Xihui ZHANG,Ying LEI,Hiroshi NOGUCHI. Removal of organic matter and disinfection by-products precursors in a hybrid process combining ozonation with ceramic membrane ultrafiltration[J]. Front. Environ. Sci. Eng., 2015, 9(1): 112-120.
[4] Yao NIE,Shubo DENG,Bin WANG,Jun HUANG,Gang YU. Removal of clofibric acid from aqueous solution by polyethylenimine-modified chitosan beads[J]. Front.Environ.Sci.Eng., 2014, 8(5): 675-682.
[5] Chengkun WANG, Xiaojian ZHANG, Chao CHEN, Jun WANG. Factors controlling N-nitrosodimethylamine (NDMA) formation from dissolved organic matter[J]. Front Envir Sci Eng, 2013, 7(2): 151-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed