Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (6) : 8    https://doi.org/10.1007/s11783-017-0953-3
RESEARCH ARTICLE
Comparison of sequential with intimate coupling of photolysis and biodegradation for benzotriazole
Shunan Shan1, Yuting Zhang1, Yining Zhang1, Lanjun Hui1, Wen Shi1, Yongming Zhang1(), Bruce E. Rittmann2
1. College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234, China
2. Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, USA
 Download: PDF(395 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Intimately coupling UV photolysis accelerated benzotriazone (BTA) biodegradation.

Photolysis of BTA generated four products: AP, PHZ, FA, and MA.

FA and MA accelerated BTA biodegradation, as they produced internal electron donor.

AP and PHZ slowed BTA biodegradation, as they competed for internal electron donor.

AP and PHZ did not accumulate during the intimately coupling process.

Benzotriazole (BTA) is an emerging contaminant that also is a recalcitrant compound. Sequential and intimate coupling of UV-photolysis with biodegradation were investigated for their impacts on BTA removal and mineralization in aerobic batch experiments. Special attention was given to the role of its main photolytic products, which were aminophenol (AP), formic acid (FA), maleic acid (MA), and phenazine (PHZ). Experiments with sequential coupling showed that BTA biodegradation was accelerated by photolytic pretreatment up to 9 min, but BTA biodegradation was slowed with longer photolysis. FA and MA accelerated BTA biodegradation by being labile electron-donor substrates, but AP and PHZ slowed the rate because of inhibition due to their competition for intracellular electron donor. Because more AP and PHZ accumulated with increasing photolysis time, their inhibitory effects began to dominate with longer photolysis time. Intimately coupling photolysis with biodegradation relieved the inhibition effect, because AP and PHZ were quickly biodegraded and did not accumulate, which accentuated the beneficial effect of FA and MA.

Keywords Benzotriazole      Photolysis      Biodegradation      Inhibition      Electron donor     
Corresponding Author(s): Yongming Zhang   
Issue Date: 26 May 2017
 Cite this article:   
Shunan Shan,Yuting Zhang,Yining Zhang, et al. Comparison of sequential with intimate coupling of photolysis and biodegradation for benzotriazole[J]. Front. Environ. Sci. Eng., 2017, 11(6): 8.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0953-3
https://academic.hep.com.cn/fese/EN/Y2017/V11/I6/8
Fig.1  A proposed BTA-biodegradation pathway based on initial mono-oxygenation to 5-hydroxybenztriazole and consistent with Huntscha et al. []. Steps B through E are examples of how 5-hydroxybenzotriazole can be transformed to the readily biodegradable muconic acid semi-aldehyde. 2H stands for an intracellular electron donor having two electron equivalents
Fig.2  BTA removal kinetics for all protocols. (E) signs are experimental values, and these values were averaged based on experimental runs. The bars indicate the high and low values for the duplicate runs. (C) lines are computed values based on the best-fit k values [(mmol·L-1)0.34·h–1] of kinetics of 0.66-ordermol
Fig.3  DOC removal percentages correlated to BTA-removal kinetics. The number above each bar is the k value in (mmol·L-1)0.34·h–1
Fig.4  Products generated during BTA photolysis. Symbols are experimental values, and these are averaged based on two experimental runs. The bars indicate the high and low values for the duplicate runs
Fig.5  BTA removals with all intermediates added together at concentrations corresponding to photolysis of 2 min and 22 min; those results are compared with direct BTA biodegradation. (E) signs are experimental values, and these values were averaged based on experimental runs. The bars indicate the high and low values for the duplicate runs. (C) lines are computed values based on the best-fit k values[(mmol·L-1)0.34·h–1] of kinetics of 0.66-order
Fig.6  BTA biodegradation kinetics with photolysis products added individually at concentrations corresponding to photolysis of 2 min. (E) signs are experimental values, and these values were averaged based on experimental runs. The bars indicate the high and low values for the duplicate runs. (C) lines are computed values based on the best-fit k values [(mmol·L-1)0.34·h–1] of kinetics of 0.66-order. Note that the k value for direct biodegradation is 1.03 (mmol·L-1)0.34·h–1 (Fig. 2)
Fig.7  BTA biodegradation kinetics with photolysis products added individually at concentrations corresponding to photolysis of 22 min. (E) signs are experimental values, and these values were averaged based on experimental runs. The bars indicate the high and low values for the duplicate runs. (C) lines are computed values based on the best-fit k values [(mmol·L-1)0.34·h–1] of kinetics of 0.66-order. Note the k value for direct biodegradation is 1.03 (mmol·L-1)0.34·h–1 (Fig. 2)
1 Sui Q, Huang J, Lu S, Deng S, Wang B, Zhao W, Qiu Z, Yu G. Removal of pharmaceutical and personal care products by sequential ultraviolet and ozonation process in a full-scale wastewater treatment plant. Frontiers of Environmental Science & Engineering, 2014, 8(1): 62–68
https://doi.org/10.1007/s11783-013-0518-z
2 Zhao W, Guo Y, Lu S, Yan P, Sui Q. Recent advances in pharmaceuticals and personal care products in the surface water and sediments in China. Frontiers of Environmental Science & Engineering, 2016, 10(6): 2
https://doi.org/10.1007/s11783-016-0868-4
3 Cancilla D A, Martinez J, van Aggelen G C. Detection of aircraft deicing/antiicing fluid additives in a perched water monitoring well at an international airport. Environmental Science & Technology, 1998, 32(23): 3834–3835
https://doi.org/10.1021/es980489k
4 Cancilla D A, Baird J C, Geis S W, Corsi S R. Studies of the environmental fate and effect of aircraft deicing fluids: detection of 5-methyl-1H-benzotriazole in the fathead minnow (Pimephales promelas). Environmental Toxicology and Chemistry, 2003, 22(1): 134–140
https://doi.org/10.1002/etc.5620220117 pmid: 12503756
5 Orsi D, Giannini G, Gagliardi L, Porrà R, Berri S, Bolasco A, Carpani I, Tonelli D.Simple extraction and HPLC determination of UV-A and UV-B filters in sunscreen products. Chromatographia, 2006, 64(9–10): 509–515 
https://doi.org/10.1365/s10337-006-0074-9
6 Hart D S, Davis L C, Erickson L E, Callender T M. Sorption and partitioning parameters of benzotriazole compounds. Microchemical Journal, 2004, 77(1): 9–17
https://doi.org/10.1016/j.microc.2003.08.005
7 Kadar E, Dashfield S, Hutchinson T H. Developmental toxicity of benzotriazole in the protochordate Ciona intestinalis (Chordata, Ascidiae). Analytical and Bioanalytical Chemistry, 2010, 396(2): 641–647 
https://doi.org/10.1007/s00216-009-3293-8 pmid: 19937003
8 Seeland A, Oetken M, Kiss A, Fries E, Oehlmann J. Acute and chronic toxicity of benzotriazoles to aquatic organisms. Environmental Science and Pollution Research International, 2012, 19(5): 1781–1790
https://doi.org/10.1007/s11356-011-0705-z pmid: 22203403
9 Liu Y S, Ying G G, Shareef A, Kookana R S. Biodegradation of three selected benzotriazoles under aerobic and anaerobic conditions. Water Research, 2011, 45(16): 5005–5014
https://doi.org/10.1016/j.watres.2011.07.001 pmid: 21802111
10 Huntscha S, Hofstetter T B, Schymanski E L, Spahr S, Hollender J. Biotransformation of benzotriazoles: insights from transformation product identification and compound-specific isotope analysis. Environmental Science & Technology, 2014, 48(8): 4435–4443 
https://doi.org/10.1021/es405694z pmid: 24621328
11 Dahlen E P, Rittmann B E. Two-tank suspended growth process for accelerating the detoxification kinetics of hydrocarbons requiring initial monooxygenation reactions. Biodegradation, 2002, 13(2): 101–116
https://doi.org/10.1023/A:1020461225393 pmid: 12449313
12 Zhang Y, Chang L, Yan N, Tang Y, Liu R, Rittmann B E. UV photolysis for accelerating pyridine biodegradation.  Environmental Science & Technology, 2014, 48(1): 649–655
https://doi.org/10.1021/es404399t pmid: 24364496
13 Tang Y, Zhang Y, Yan N, Liu R, Rittmann B E. The role of electron donors generated from UV photolysis for accelerating pyridine biodegradation. Biotechnology and Bioengineering, 2015, 112(9): 1792–1800
https://doi.org/10.1002/bit.25605 pmid: 25854706
14 Bai Q, Yang L, Li R, Chen B, Zhang L, Zhang Y, Rittmann B E. Accelerating quinoline biodegradation and oxidation with endogenous electron donors. Environmental Science & Technology, 2015, 49(19): 11536–11542 
https://doi.org/10.1021/acs.est.5b03293 pmid: 26327306
15 Kan E, Koh C I, Lee K, Kang J. Decomposition of aqueous chlorinated contaminants by UV irradiation with H2O2. Frontiers of Environmental Science & Engineering, 2015, 9(3): 429–435
https://doi.org/10.1007/s11783-014-0677-6
16 Xiong X, Sun B, Zhang J, Gao N, Shen J, Li J, Guan X. Activating persulfate by Fe0 coupling with weak magnetic field: pperformance and mechanism. Water Research, 2014, 62(0): 53–62
https://doi.org/10.1016/j.watres.2014.05.042 pmid: 24934323
17 Mawhinney D B, Vanderford B J, Snyder S A. Transformation of 1H-benzotriazole by ozone in aqueous solution. Environmental Science & Technology, 2012, 46(13): 7102–7111
https://doi.org/10.1021/es300338e pmid: 22621657
18 Ding Y, Yang C, Zhu L, Zhang J. Photoelectrochemical activity of liquid phase deposited TiO2 film for degradation of benzotriazole. Journal of Hazardous Materials, 2010, 175(1–3): 96–103
https://doi.org/10.1016/j.jhazmat.2009.09.037 pmid: 19783090
19 Suryaman D, Hasegawa K. Biological and photocatalytic treatment integrated with separation and reuse of titanium dioxide on the removal of chlorophenols in tap water. Journal of Hazardous Materials, 2010, 183(1–3): 490–496
https://doi.org/10.1016/j.jhazmat.2010.07.050 pmid: 20692763
20 Chan C Y, Tao S, Dawson R, Wong P K. Treatment of atrazine by integrating photocatalytic and biological processes. Environmental pollution (Barking, Essex: 1987), 2004, 131(1): 45–54 
https://doi.org/10.1016/j.envpol.2004.02.022 pmid: 15210274
21 Marsolek M D, Kirisits M J, Gray K A, Rittmann B E. Coupled photocatalytic-biodegradation of 2,4,5-trichlorophenol: effects of photolytic and photocatalytic effluent composition on bioreactor process performance, community diversity, and resistance and resilience to perturbation. Water Research, 2014, 50(3): 59–69 
https://doi.org/10.1016/j.watres.2013.11.043 pmid: 24361703
22 Guieysse B, Viklund G. Sequential UV-biological degradation of polycyclic aromatic hydrocarbons in two-phases partitioning bioreactors. Chemosphere, 2005, 59(3): 369–376
https://doi.org/10.1016/j.chemosphere.2004.10.026 pmid: 15763089
23 Tamer E, Hamid Z, Aly A M, Ossama T, Bo M, Benoit G. Sequential UV-biological degradation of chlorophenols. Chemosphere, 2006, 63(2): 277–284
https://doi.org/10.1016/j.chemosphere.2005.07.022 pmid: 16153682
24 Manilal V B, Haridas A, Alexander R, Surender G D. Photocatalytic treatment of toxic organics in wastewater: toxicity of photodegradation products. Water Research, 1992, 26(8): 1035–1038
https://doi.org/10.1016/0043-1354(92)90138-T
25 Yang L, Zhang Y, Bai Q, Yan N, Xu H, Rittmann B E. Intimately coupling of photolysis accelerates nitrobenzene biodegradation, but sequential coupling slows biodegradation. Journal of Hazardous Materials, 2015, 287(0): 252–258
https://doi.org/10.1016/j.jhazmat.2015.01.055 pmid: 25661172
26 Svenson A, Hynning P Å. Increased aquatic toxicity following photolytic conversion of an organochlorine pollutant. Chemosphere, 1997, 34(8): 1685–1692
https://doi.org/10.1016/S0045-6535(97)00025-8
27 Marsolek M D, Torres C I, Hausner M, Rittmann B E. Intimate coupling of photocatalysis and biodegradation in a photocatalytic circulating-bed biofilm reactor. Biotechnology and Bioengineering, 2008, 101(1): 83–92
https://doi.org/10.1002/bit.21889 pmid: 18512737
28 Zhang Y, Sun X, Chen L, Rittmann B E. Integrated photocatalytic-biological reactor for accelerated 2,4,6-trichlorophenol degradation and mineralization. Biodegradation, 2012, 23(1): 189–198
https://doi.org/10.1007/s10532-011-9498-5 pmid: 21750905
29 Zhang Y, Yan R, Zou Z, Wang J, Rittmann B E. Improved nitrogen removal in dual-contaminated surface water by photocatalysis. Frontiers of Environmental Science & Engineering, 2012, 6(3): 428–436
https://doi.org/10.1007/s11783-012-0401-3
30 Zhang Y, Wang L, Rittmann B E. Integrated photocatalytic-biological reactor for accelerated phenol mineralization. Applied Microbiology and Biotechnology, 2010, 86(6): 1977–1985
https://doi.org/10.1007/s00253-010-2458-x pmid: 20177888
31 Benitez F J, Acero J L, Real F J, Roldan G, Rodriguez E. Photolysis of model emerging contaminants in ultra-pure water: kinetics, by-products formation and degradation pathways. Water Research, 2013, 47(2): 870–880
https://doi.org/10.1016/j.watres.2012.11.016 pmid: 23218246
32 Xu J, Li L, Guo C, Zhang Y, Wang S. Removal of benzotriazole from solution by BiOBr photocatalysis under simulated solar irradiation. Chemical Engineering Journal, 2013, 221(0): 230–237
https://doi.org/10.1016/j.cej.2013.01.081
33 He Z, Spain J C. Comparison of the downstream pathways for degradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45 (2-aminophenol pathway) and by Comamonas sp. JS765 (catechol pathway). Archives of Microbiology, 1999, 171(5): 309–316 
https://doi.org/10.1007/s002030050715 pmid: 10382261
34 Willumsen P A, Johansen J E, Karlson U, Hansen B M. Isolation and taxonomic affiliation of N-heterocyclic aromatic hydrocarbon-transforming bacteria. Applied Microbiology and Biotechnology, 2005, 67(3): 420–428 
https://doi.org/10.1007/s00253-004-1799-8 pmid: 15650851
[1] FSE-17051-OF-SSN_suppl_1 Download
[1] Tao Liu, Yudong Song, Zhiqiang Shen, Yuexi Zhou. Inhibition character of crotonaldehyde manufacture wastewater on biological acidification[J]. Front. Environ. Sci. Eng., 2021, 15(6): 119-.
[2] Jinjin Fu, Quan Zhang, Baocheng Huang, Niansi Fan, Rencun Jin. A review on anammox process for the treatment of antibiotic-containing wastewater: Linking effects with corresponding mechanisms[J]. Front. Environ. Sci. Eng., 2021, 15(1): 17-.
[3] Paul Olusegun Bankole, Kirk Taylor Semple, Byong-Hun Jeon, Sanjay Prabhu Govindwar. Enhanced enzymatic removal of anthracene by the mangrove soil-derived fungus, Aspergillus sydowii BPOI[J]. Front. Environ. Sci. Eng., 2020, 14(6): 113-.
[4] Yiquan Wu, Ying Xu, Ningyi Zhou. A newly defined dioxygenase system from Mycobacterium vanbaalenii PYR-1 endowed with an enhanced activity of dihydroxylation of high-molecular-weight polyaromatic hydrocarbons[J]. Front. Environ. Sci. Eng., 2020, 14(1): 14-.
[5] Ling Huang, Syed Bilal Shah, Haiyang Hu, Ping Xu, Hongzhi Tang. Pollution and biodegradation of hexabromocyclododecanes: A review[J]. Front. Environ. Sci. Eng., 2020, 14(1): 11-.
[6] Bin Liang, Deyong Kong, Mengyuan Qi, Hui Yun, Zhiling Li, Ke Shi, E Chen, Alisa S. Vangnai, Aijie Wang. Anaerobic biodegradation of trimethoprim with sulfate as an electron acceptor[J]. Front. Environ. Sci. Eng., 2019, 13(6): 84-.
[7] Zuotao Zhang, Chongyang Wang, Jianzhong He, Hui Wang. Anaerobic phenanthrene biodegradation with four kinds of electron acceptors enriched from the same mixed inoculum and exploration of metabolic pathways[J]. Front. Environ. Sci. Eng., 2019, 13(5): 80-.
[8] Qinqin Liu, Miao Li, Rui Liu, Quan Zhang, Di Wu, Danni Zhu, Xuhui Shen, Chuanping Feng, Fawang Zhang, Xiang Liu. Removal of trimethoprim and sulfamethoxazole in artificial composite soil treatment systems and diversity of microbial communities[J]. Front. Environ. Sci. Eng., 2019, 13(2): 28-.
[9] Qinqin Liu, Miao Li, Xiang Liu, Quan Zhang, Rui Liu, Zhenglu Wang, Xueting Shi, Jin Quan, Xuhui Shen, Fawang Zhang. Removal of sulfamethoxazole and trimethoprim from reclaimed water and the biodegradation mechanism[J]. Front. Environ. Sci. Eng., 2018, 12(6): 6-.
[10] Yueqiao Liu, Aizhong Ding, Yujiao Sun, Xuefeng Xia, Dayi Zhang. Impacts of n-alkane concentration on soil bacterial community structure and alkane monooxygenase genes abundance during bioremediation processes[J]. Front. Environ. Sci. Eng., 2018, 12(5): 3-.
[11] Ping He, Guangxue Wu, Rui Tang, Peilun Ji, Shoujun Yuan, Wei Wang, Zhenhu Hu. Influence of arsanilic acid, Cu2+, PO43 and their interaction on anaerobic digestion of pig manure[J]. Front. Environ. Sci. Eng., 2018, 12(2): 9-.
[12] Wei-Min Wu,Jun Yang,Craig S. Criddle. Microplastics pollution and reduction strategies[J]. Front. Environ. Sci. Eng., 2017, 11(1): 6-.
[13] Fariba Mahmoudkhani, Maryam Rezaei, Vahid Asili, Mahsasadat Atyabi, Elena Vaisman, Cooper H. Langford, Alex De Visscher. Benzene degradation in waste gas by photolysis and photolysis-ozonation: experiments and modeling[J]. Front. Environ. Sci. Eng., 2016, 10(6): 10-.
[14] Qi Zou,Keding Lu,Yusheng Wu,Yudong Yang,Zhuofei Du,Min Hu. Ambient photolysis frequency of NO2 determined using chemical actinometer and spectroradiometer at an urban site in Beijing[J]. Front. Environ. Sci. Eng., 2016, 10(6): 13-.
[15] David R. HOKANSON,Ke LI,R. Rhodes TRUSSELL. A photolysis coefficient for characterizing the response of aqueous constituents to photolysis[J]. Front. Environ. Sci. Eng., 2016, 10(3): 428-437.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed