Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (2) : 4    https://doi.org/10.1007/s11783-017-0981-z
RESEARCH ARTICLE
Effect of different carbon sources on performance of an A2N-MBR process and its microbial community structure
Dongliang Du1, Chuanyi Zhang1(), Kuixia Zhao2, Guangrong Sun1, Siqi Zou1, Limei Yuan1, Shilong He1
1. School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, China
2. Guangdong polytechnic of Water Resources and Electric Engineering, Guangzhou 510635, China
 Download: PDF(567 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The nutrient removal was higeher with short-chain fatty acids as carbon source.

Candidatus Accumulibacter was more easily enriched in A2N-MBR process.

Short-chain fatty acids were beneficial to the growth of PAOs.

Effect of different carbon sources on purification performance and change of microbial community structure in a novel A2N-MBR process were investigated. The results showed that when fed with acetate, propionate or acetate and propionate mixed (1:1) as carbon sources, the effluent COD, NH4+-N, TN and TP were lower than 30, 5, 15 and 0.5 mg·L-1, respectively. However, taken glucose as carbon source, the TP concentration of effluent reached 2.6 mg·L-1. Process analysis found that the amount of anaerobic phosphorus release would be the key factor to determine the above effectiveness. The acetate was beneficial to the growth ofCandidatus Accumulibacter associated with biological phosphorus removal, which was the main cause of high efficiency phosphorus removal in this system. In addition, it could eliminate theCandidatus Competibacter associated with glycogen-accumulating organisms and guarantee high efficiency phosphorus uptake of phosphorus accumulating organisms in the system with acetate as carbon source.

Keywords Denitrifying phosphorus removal      Alternate anaerobic/anoxic-aerobic MBR (A2N-MBR)      Carbon source      Operation characteristic      Community structure     
Corresponding Author(s): Chuanyi Zhang   
Issue Date: 09 August 2017
 Cite this article:   
Dongliang Du,Chuanyi Zhang,Kuixia Zhao, et al. Effect of different carbon sources on performance of an A2N-MBR process and its microbial community structure[J]. Front. Environ. Sci. Eng., 2018, 12(2): 4.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0981-z
https://academic.hep.com.cn/fese/EN/Y2018/V12/I2/4
Fig.1  Schematic diagram of A2N-MBR system
Fig.2  Concentration changes of COD (a), Nitrogen (b) and TP (c) during operation period of different carbon source systems
Fig.3  Anaerobic phosphorus release (a) and phosphorus release rate curves (b) of different carbon source systems
Fig.4  Anoxic phosphorus absorption curve of different carbon source systems
sample ID reads OTUs coverage ACE Chao Shannon Simpson
Seed 1 30739 1353 0.993168 1475 1487 5.70 0.0106
Seed 2 30739 1396 0.992810 1529 1531 5.72 0.0113
Sy_A 30739 714 0.993884 889 886 4.35 0.0336
Sy_P 30739 530 0.994990 702 687 3.81 0.0784
Sy_AP 30739 525 0.995153 684 700 4.10 0.0354
Sy_G 30739 540 0.995413 684 679 4.31 0.0293
Tab.1  The community diversity under 3% cutoff divided OTU condition
Fig.5  The dominant “phylum” (a) and “genus” (b) in systems of phosphorus removal sludge with different carbon sources
30 Kim J M, Lee  H J, Kim  S Y, Song  J J, Park  W, Jeon C O . Analysis of the fine-scale population structure of “Candidatus Accumulibacter phosphatis” in enhanced biological phosphorus removal sludge, using fluorescence in situ hybridization and flow cytometric sorting. Applied and Environmental Microbiology, 2010, 76(12): 3825–3835 PMID:20418432 
https://doi.org/10.1128/AEM.00260-10
31 Kim J M, Lee  H J, Lee  D S, Jeon  C O. Characterization of the denitrification-associated phosphorus uptake properties of “Candidatus Accumulibacter phosphatis” clades in sludge subjected to enhanced biological phosphorus removal. Applied and Environmental Microbiology, 2013, 79(6): 1969–1979
https://doi.org/10.1128/AEM.03464-12 pmid: 23335771
32 Whang L M, Filipe  C D M, Park  J K. Model-based evaluation of competition between polyphosphate- and glycogen-accumulating organisms. Water Research, 2007, 41(6): 1312–1324
https://doi.org/10.1016/j.watres.2006.12.022 pmid: 17275874
1 Zhu R, Wu  M, Yang J . Effect of sludge retention time and phosphorus to carbon ratio on biological phosphorus removal in HS-SBR process. Environmental Technology, 2013, 34(1-4): 429–435
https://doi.org/10.1080/09593330.2012.698650 pmid: 23530356
2 Jin L, Zhang  G, Tian H . Current state of sewage treatment in China. Water Research, 2014, 66: 85–98
https://doi.org/10.1016/j.watres.2014.08.014 pmid: 25189479
3 Carvalheira M, Oehmen  A, Carvalho G ,  Reis M A . The effect of substrate competition on the metabolism of polyphosphate accumulating organisms (PAOs). Water Research, 2014, 64: 149–159
https://doi.org/10.1016/j.watres.2014.07.004 pmid: 25051162
4 Tsuneda S, Ohno  T, Soejima K ,  Hirata A . Simultaneous nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in a sequencing batch reactor. Biochemical Engineering Journal, 2006, 27(3): 191–196
https://doi.org/10.1016/j.bej.2005.07.004
5 Bortone G, Libelli  S M, Tilche  A, Wanner J . Anoxic phosphate uptake in the DEPHANOX process. Water Science and Technology, 1999, 40(4–5): 177–185
https://doi.org/10.1016/S0273-1223(99)00500-4
6 Kuba T M C M ,  Van Loosdrecht M C M ,  Heijnen J J . Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system. Water Research, 1996, 30(7): 1702–1710
https://doi.org/10.1016/0043-1354(96)00050-4
7 Merzouki M, Bernet  N, Delgenès J P ,  Benlemlih M . Effect of prefermentation on denitrifying phosphorus removal in slaughterhouse wastewater. Bioresource Technology, 2005, 96(12): 1317–1322
https://doi.org/10.1016/j.biortech.2004.11.017 pmid: 15792577
8 Copp J B, Dold  P L. Comparing sludge production under aerobic and anoxic conditions. Water Science and Technology, 1998, 38(1): 285–294
https://doi.org/10.1016/S0273-1223(98)00413-2
9 Wang Y Y, Peng  Y Z, Peng  C Y, Wang  S Y, Zeng  W. Influence of ORP variation, carbon source and nitrate concentration on denitrifying phosphorus removal by DPB sludge from dephanox process. Water Science and Technology, 2004, 50(10): 153–161
pmid: 15656308
10 Peng Y Z, Wu  C Y, Wang  R D, Li  X L. Denitrifying phosphorus removal with nitrite by a real-time step feed sequencing batch reactor. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2011, 86(4): 541–546
https://doi.org/10.1002/jctb.2548
11 Hagman M, Nielsen  J L, Nielsen  P H, Jansen  J. Mixed carbon sources for nitrate reduction in activated sludge-identification of bacteria and process activity studies. Water Research, 2008, 42(6-7): 1539–1546
https://doi.org/10.1016/j.watres.2007.10.034 pmid: 18061233
12 Carvalho G, Lemos  P C, Oehmen  A, Reis M A . Denitrifying phosphorus removal: linking the process performance with the microbial community structure. Water Research, 2007, 41(19): 4383–4396
https://doi.org/10.1016/j.watres.2007.06.065 pmid: 17669460
13 Kargi F, Uygur  A, Başkaya H S . Phosphate uptake and release rates with different carbon sources in biological nutrient removal using a SBR. Journal of Environmental Management, 2005, 76(1): 71–75
https://doi.org/10.1016/j.jenvman.2005.01.010 pmid: 15854738
14 Wang Y, Jiang  F, Zhang Z ,  Xing M, Lu  Z, Wu M ,  Yang J, Peng  Y. The long-term effect of carbon source on the competition between polyphosphorus accumulating organisms and glycogen accumulating organism in a continuous plug-flow anaerobic/aerobic (A/O) process. Bioresource Technology, 2010, 101(1): 98–104
https://doi.org/10.1016/j.biortech.2009.07.085 pmid: 19729302
15 Pijuan M, Casas  C, Baeza J A . Polyhydroxyalkanoate synthesis using different carbon sources by two enhanced biological phosphorus removal microbial communities. Process Biochemistry, 2009, 44(1): 97–105
https://doi.org/10.1016/j.procbio.2008.09.017
16 Wachtmeister A, Kuba  T, Van Loosdrecht M C M, Heijnen J J . A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge. Water Research, 1997, 31(3): 471–478
https://doi.org/10.1016/S0043-1354(96)00281-3
17 Oehmen A, Saunders  A M, Vives  M T, Yuan  Z, Keller J . Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources. Journal of Biotechnology, 2006, 123(1): 22–32
https://doi.org/10.1016/j.jbiotec.2005.10.009 pmid: 16293332
18 Oehmen A, Lemos  P C, Carvalho  G, Yuan Z ,  Keller J ,  Blackall L L ,  Reis M A . Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Research, 2007, 41(11): 2271–2300
https://doi.org/10.1016/j.watres.2007.02.030 pmid: 17434562
19 Chang K, Li  X M, Wang  D B, Yang  Q, Zeng G M . Effect of different ratios of propionate to acetate on phosphorus removal in sequencing batch reactor with single-stage oxic process. China Environmental Science, 2011, 3: 007
20 Chinese SEPA, Water and Wastewater Monitoring Methods, 4th ed. Beijing: Chinese Environmental Science Publishing House, 2002
21 Schloss P D, Westcott  S L, Ryabin  T, Hall J R ,  Hartmann M ,  Hollister E B ,  Lesniewski R A ,  Oakley B B ,  Parks D H ,  Robinson C J ,  Sahl J W ,  Stres B ,  Thallinger G G ,  Van Horn D J ,  Weber C F . Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 2009, 75(23): 7537–7541
https://doi.org/10.1128/AEM.01541-09 pmid: 19801464
22 Jeon C O, Park  J M. Enhanced biological phosphorus removal in a sequencing batch reactor supplied with glucose as a sole carbon source. Water Research, 2000, 34(7): 2160–2170
https://doi.org/10.1016/S0043-1354(99)00383-8
23 Li Y J, Chen  X H, Sun  L P. Effects of propionic/acetic acid ratios on denitrifying phosphorus removal. China Water and Wastewater, 2011, 27(1): 79–81
24 Liu Y, Chen  Y G, Zheng  H. Effect of different ratios of propionic to acetic acid on phosphorus removal by an enriched culture of phosphorus accumulating organisms. Acta Scientiae Circumstantiae, 2006, 26(8): 1278–1283
25 Saito T, Brdjanovic  D, van Loosdrecht M C M. Effect of nitrite on phosphate uptake by phosphate accumulating organisms. Water Research, 2004, 38(17): 3760–3768
https://doi.org/10.1016/j.watres.2004.05.023 pmid: 15350428
26 Lv X M, Shao  M F, Li  J, Li C L . Metagenomic analysis of the sludge microbial community in a lab-scale denitrifying phosphorus removal reactor. Applied Biochemistry and Biotechnology, 2015, 175(7): 3258–3270
https://doi.org/10.1007/s12010-015-1491-8 pmid: 25820294
27 Tian M, Zhao  F, Shen X ,  Chu K, Wang  J, Chen S ,  Guo Y, Liu  H. The first metagenome of activated sludge from full-scale anaerobic/anoxic/oxic (A2O) nitrogen and phosphorus removal reactor using Illumina sequencing. Journal of Environmental Sciences (China), 2015, 35: 181–190
https://doi.org/10.1016/j.jes.2014.12.027 pmid: 26354707
28 Hill V R, Kahler  A M, Jothikumar  N, Johnson T B ,  Hahn D, Cromeans  T L. Multistate evaluation of an ultrafiltration-based procedure for simultaneous recovery of enteric microbes in 100-liter tap water samples. Applied and Environmental Microbiology, 2007, 73(13): 4218–4225
https://doi.org/10.1128/AEM.02713-06 pmid: 17483281
29 Zhang W, Hou  F, Peng Y ,  Liu Q, Wang  S. Optimizing aeration rate in an external nitrification–denitrifying phosphorus removal (ENDPR) system for domestic wastewater treatment. Chemical Engineering Journal, 2014, 245: 342–347
https://doi.org/10.1016/j.cej.2014.01.045
[1] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[2] Wanqi Qi, Weiying Li, Junpeng Zhang, Xuan Wu, Jie Zhang, Wei Zhang. Effect of biological activated carbon filter depth and backwashing process on transformation of biofilm community[J]. Front. Environ. Sci. Eng., 2019, 13(1): 15-.
[3] Xiaohui Wang, Shuai Du, Tao Ya, Zhiqiang Shen, Jing Dong, Xiaobiao Zhu. Removal of tetrachlorobisphenol A and the effects on bacterial communities in a hybrid sequencing biofilm batch reactor-constructed wetland system[J]. Front. Environ. Sci. Eng., 2019, 13(1): 14-.
[4] Weihua Zhao, Meixiang Wang, Jianwei Li, Yu Huang, Baikun Li, Cong Pan, Xiyao Li, Yongzhen Peng. Optimization of denitrifying phosphorus removal in a pre-denitrification anaerobic/anoxic/post-aeration+ nitrification sequence batch reactor (pre-A2NSBR) system: Nitrate recycling, carbon/nitrogen ratio and carbon source type[J]. Front. Environ. Sci. Eng., 2018, 12(5): 8-.
[5] Zechong Guo, Lei Gao, Ling Wang, Wenzong Liu, Aijie Wang. Enhanced methane recovery and exoelectrogen-methanogen evolution from low-strength wastewater in an up-flow biofilm reactor with conductive granular graphite fillers[J]. Front. Environ. Sci. Eng., 2018, 12(4): 13-.
[6] Yujiao Sun, Juanjuan Zhao, Lili Chen, Yueqiao Liu, Jiane Zuo. Methanogenic community structure in simultaneous methanogenesis and denitrification granular sludge[J]. Front. Environ. Sci. Eng., 2018, 12(4): 10-.
[7] Liguo Zhang, Qiaoying Ban, Jianzheng Li. Microbial community dynamics at high organic loading rates revealed by pyrosequencing during sugar refinery wastewater treatment in a UASB reactor[J]. Front. Environ. Sci. Eng., 2018, 12(4): 4-.
[8] Xiangqun Chi, Yingying Zhang, Daosheng Wang, Feihua Wang, Wei Liang. The greater roles of indigenous microorganisms in removing nitrobenzene from sediment compared with the exogenous Phragmites australis and strain JS45[J]. Front. Environ. Sci. Eng., 2018, 12(1): 11-.
[9] Xiaoyan Song, Rui Liu, Lujun Chen, Baogang Dong, Tomoki Kawagishi. Advantages of intermittently aerated SBR over conventional SBR on nitrogen removal for the treatment of digested piggery wastewater[J]. Front. Environ. Sci. Eng., 2017, 11(3): 13-.
[10] Yan GUO, Chuanfu WU, Qunhui WANG, Min YANG, Qiqi HUANG, Markus MAGEP, Tianlong ZHENG. Wastewater-nitrogen removal using polylactic acid/starch as carbon source: Optimization of operating parameters using response surface methodology[J]. Front. Environ. Sci. Eng., 2016, 10(4): 6-.
[11] Jiaxuan YANG, Jun MA, Dan SONG, Xuedong ZHAI, Xiujuan KONG. Impact of preozonation on the bioactivity and biodiversity of subsequent biofilters under low temperature conditions—A pilot study[J]. Front. Environ. Sci. Eng., 2016, 10(4): 5-.
[12] Gang GUO, Yayi WANG, Chong WANG, Hong WANG, Mianli PAN, Shaowei CHEN. Short-term effects of excessive anaerobic reaction time on anaerobic metabolism of denitrifying polyphosphate- accumulating organisms linked to phosphorus removal and N2O production[J]. Front Envir Sci Eng, 2013, 7(4): 616-624.
[13] Shijian GE, Yongzhen PENG, Congcong LU, Shuying WANG. Practical consideration for design and optimization of the step feed process[J]. Front Envir Sci Eng, 2013, 7(1): 135-142.
[14] Shanna QI, Meiting JU, Meng DUAN, Wei XING. Research on low carbon management using a scientific classification method[J]. Front Envir Sci Eng, 2012, 6(4): 524-530.
[15] Jianhua WANG, Yongzhen PENG, Yongzhi CHEN. Advanced nitrogen and phosphorus removal in A2O-BAF system treating low carbon-to-nitrogen ratio domestic wastewater[J]. Front Envir Sci Eng Chin, 2011, 5(3): 474-480.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed