Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (2) : 3    https://doi.org/10.1007/s11783-017-0980-0
RESEARCH ARTICLE
PVDF ultrafiltration membranes of controlled performance via blending PVDF-g-PEGMA copolymer synthesized under different reaction times
Shuai Wang1,2, Tong Li3, Chen Chen4, Baicang Liu1,2(), John C. Crittenden5
1. College of Architecture and Environment, Sichuan University, Chengdu 610207, China
2. Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu 610207, China
3. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
4. Litree Purifying Technology Co., Ltd, Haikou 571126, China
5. Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
 Download: PDF(725 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

PVDF blended different graft ratio of PVDF-g-PEGMA were systematically studied.

Tuning the amphiphilic copolymer synthesis time to control membrane performance.

The PVDF membrane with PVDF-g-PEGMA at 19 h possesses most surface oxygen content.

The synthesis time of PVDF-g-PEGMA at 9 h is good for high flux UF membrane.

Polyvinylidene fluoride grafted with poly(ethylene glycol) methyl ether methacrylate (PVDF-g-PEGMA) was synthesized using atomic transfer radical polymerization (ATRP) at different reaction times (9 h, 19 h, and 29 h). The corresponding conversion rates were 10%, 20% and 30%, respectively. PVDF was blended with the copolymer mixture containing PVDF-g-PEGMA, solvent and residual PEGMA under different reaction times. In this study, we explored the effect of the copolymer mixture additives with different synthesis times on cast membrane performance. Increasing the reaction time of PVDF-g-PEGMA causes more PVDF-g-PEGMA and less residual PEGMA to be found in the casting solution. Incremental PVDF-g-PEGMA can dramatically increase the viscosity of the casting solution. An overly high viscosity led to a delayed phase inversion, thus hindering PEGMA segments in PVDF-g-PEGMA from migrating to the membrane surface. However, more residual PEGMA contributed to helping more PEGMA segments migrate to the membrane surface. The pure water fluxes of the blended membrane with reaction times of 9 h, 19 h, and 29 h are 5445 L·m−2·h−1, 1068 L·m−2·h−1and 1179 L·m−2·h−1, respectively, at 0.07 MPa. Delayed phase inversion can form smaller surface pore size distributions, thus decreasing the water flux for the membranes with PVDF-g-PEGMA at 19 h and 29 h. Therefore, we can control the membrane pore size distribution by decreasing the reaction time of PVDF-g-PEGMA to obtain a better flux performance. The membrane with PVDF-g-PEGMA at 19 h exhibits the best foulant rejection and cleaning recovery due to its narrow pore size distribution and high surface oxygen content.

Keywords Polyvinylidene fluoride ultrafiltration membrane      Amphiphilic copolymer      Blended modification      High flux      Atomic transfer radical polymerization     
Corresponding Author(s): Baicang Liu   
Issue Date: 21 August 2017
 Cite this article:   
Shuai Wang,Tong Li,Chen Chen, et al. PVDF ultrafiltration membranes of controlled performance via blending PVDF-g-PEGMA copolymer synthesized under different reaction times[J]. Front. Environ. Sci. Eng., 2018, 12(2): 3.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0980-0
https://academic.hep.com.cn/fese/EN/Y2018/V12/I2/3
membrane PVDF/g main solvent DMF/g volume of additive a)/mL PVDF-g-PEGMA/PVDF (wt/wt%)
pure PVDF 9 41 0 0
9 h 9 39.65 13.5 ~7.5
19 h 9 39.65 13.5 15
29 h 9 39.65 13.5 ~22.5
Tab.1  Chemical constituents of the casting solutions
Fig.1  XPS survey scan of PVDF membranes with additions of PVDF-g-PEGMA at different reaction times of (a) 9 h, (b) 19 h, and (c) 29 h
Fig.2  SEM images of the morphology of PVDF membranes with different reaction times of additives: pure PVDF (a and b), 9 h (c and d), 19 h (e and f), 29 h (g and h)
membrane with different reaction time of additives D average/nm D max/nm pore density/m 2 e/%
pure PVDF 95 428 1.4 × 10 13 13.21
9 h 73 390 2.8 × 10 13 15.24
19 h 18 59 1.1 × 10 14 3.66
29 h 59 216 6.2 × 10 12 1.89
Tab.2  The detailed pore size distribution statistics
Fig.3  FTIR spectrum of the surface of pure PVDF and modified membranes at different reaction times of PVDF-g-PEGMA
Fig.4  Variation of contact angle for PVDF membrane with different reaction times (pure PVDF, 9 h, 19 h and 29 h) of PVDF-g-PEGMA additives
Fig.5  Surface roughness of all PVDF membranes
Fig.6  AFM images of all PVDF membranes. (a) pure PVDF, modified PVDF membranes with additions of PVDF-g-PEGMA at different reaction times of (b) 9 h, (c) 19 h and (d) 29 h
Fig.7  Effect of different reaction times of additives on membrane flux of feed water containing sodium alginate
Fig.8  Formation mechanism of blended membranes at different reaction times of amphiphilic copolymer PVDF-g-PEGMA
1 Kang G D, Cao  Y M. Application and modification of poly(vinylidene fluoride) (PVDF) membranes–A review. Journal of Membrane Science, 2014, 463: 145–165
https://doi.org/10.1016/j.memsci.2014.03.055
2 Liu F, Hashim  N A, Liu  Y T, Abed  M R M, Li  K. Progress in the production and modification of PVDF membranes. Journal of Membrane Science, 2011, 375(1–2): 1–27
https://doi.org/10.1016/j.memsci.2011.03.014
3 Moghimifar V, Raisi  A, Aroujalian A . Surface modification of polyethersulfone ultrafiltration membranes by corona plasma-assisted coating TiO2 nanoparticles. Journal of Membrane Science, 2014, 461: 69–80
https://doi.org/10.1016/j.memsci.2014.02.012
4 Ni L, Meng  J Q, Li  X G, Zhang  Y F. Surface coating on the polyamide TFC RO membrane for chlorine resistance and antifouling performance improvement. Journal of Membrane Science, 2014, 451: 205–215
https://doi.org/10.1016/j.memsci.2013.09.040
5 Zhao X T, Su  Y L, Chen  W J, Peng  J M, Jiang  Z Y. Grafting perfluoroalkyl groups onto polyacrylonitrile membrane surface for improved fouling release property. Journal of Membrane Science, 2012, 415–416: 824–834
https://doi.org/10.1016/j.memsci.2012.05.075
6 Ren P F, Fang  Y, Wan L S ,  Ye X Y ,  Xu Z K . Surface modification of polypropylene microfiltration membrane by grafting poly(sulfobetaine methacrylate) and poly(ethylene glycol): oxidative stability and antifouling capability. Journal of Membrane Science, 2015, 492: 249–256
https://doi.org/10.1016/j.memsci.2015.05.029
7 Chen Y Q, Wei  M J, Wang  Y. Upgrading polysulfone ultrafiltration membranes by blending with amphiphilic block copolymers: beyond surface segregation. Journal of Membrane Science, 2016, 505: 53–60
https://doi.org/10.1016/j.memsci.2016.01.030
8 Liu Y N, Su  Y L, Zhao  X T, Li  Y F, Zhang  R N, Jiang  Z Y. Improved antifouling properties of polyethersulfone membrane by blending the amphiphilic surface modifier with crosslinked hydrophobic segments. Journal of Membrane Science, 2015, 486: 195–206
https://doi.org/10.1016/j.memsci.2015.03.045
9 Rajasekhar T, Trinadh  M, Veera Babu P ,  Sainath A V S ,  Reddy A V R . Oil–water emulsion separation using ultrafiltration membranes based on novel blends of poly(vinylidene fluoride) and amphiphilic tri-block copolymer containing carboxylic acid functional group. Journal of Membrane Science, 2015, 481: 82–93
https://doi.org/10.1016/j.memsci.2015.01.030
10 Chen C, Tang  L, Liu B C ,  Zhang X ,  Crittenden J ,  Chen K L ,  Chen Y S . Forming mechanism study of unique pillar-like and defect-free PVDF ultrafiltration membranes with high flux. Journal of Membrane Science, 2015, 487: 1–11
https://doi.org/10.1016/j.memsci.2015.03.075
11 Liu B C, Chen  C, Li T ,  Crittenden J ,  Chen Y S . High performance ultrafiltration membrane composed of PVDF blended with its derivative copolymer PVDF-g-PEGMA. Journal of Membrane Science, 2013, 445: 66–75
https://doi.org/10.1016/j.memsci.2013.05.043
12 Ochoa N. Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes. Journal of Membrane Science, 2003, 226(1–2): 203–211
https://doi.org/10.1016/j.memsci.2003.09.004
13 Yuan Z, Dan  L X. Porous PVDF/TPU blends asymmetric hollow fiber membranes prepared with the use of hydrophilic additive PVP (K30). Desalination, 2008, 223(1–3): 438–447
https://doi.org/10.1016/j.desal.2007.01.184
14 Liu B C, Chen  C, Zhao P J ,  Li T, Liu  C H, Wang  Q Y, Chen  Y S, Crittenden  J. Thin-film composite forward osmosis membranes with substrate layer composed of polysulfone blended with PEG or polysulfone grafted PEG methyl ether methacrylate. Frontiers of Chemical Science and Engineering, 2016, 10(4): 562–574
https://doi.org/10.1007/s11705-016-1588-9
15 Xu Z W, Wu  T F, Shi  J, Teng K Y ,  Wang W, Ma  M J, Li  J, Qian X M ,  Li C Y ,  Fan J T . Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment. Journal of Membrane Science, 2016, 520: 281–293
https://doi.org/10.1016/j.memsci.2016.07.060
16 Liang S, Gao  P, Gao X Q ,  Xiao K, Huang  X. Improved blending strategy for membrane modification by virtue of surface segregation using surface-tailored amphiphilic nanoparticles. Frontiers of Environmental Science & Engineering, 2016, 10  (6):113–121doi:10.1007/s11783-016-0875-5
17 Zhao Y H, Qian  Y L, Zhu  B K, Xu  Y Y. Modification of porous poly(vinylidene fluoride) membrane using amphiphilic polymers with different structures in phase inversion process. Journal of Membrane Science, 2008, 310(1–2): 567–576
https://doi.org/10.1016/j.memsci.2007.11.040
18 Minehara H, Dan  K, Ito Y ,  Takabatake H ,  Henmi M . Quantitative evaluation of fouling resistance of PVDF/PMMA-g-PEO polymer blend membranes for membrane bioreactor. Journal of Membrane Science, 2014, 466: 211–219
https://doi.org/10.1016/j.memsci.2014.04.039
19 Ma W Z, Rajabzadeh  S, Shaikh A R ,  Kakihana Y ,  Sun Y C ,  Matsuyama H . Effect of type of poly(ethylene glycol) (PEG) based amphiphilic copolymer on antifouling properties of copolymer/poly(vinylidene fluoride) (PVDF) blend membranes. Journal of Membrane Science, 2016, 514: 429–439
https://doi.org/10.1016/j.memsci.2016.05.021
20 Venault A, Liu  Y H, Wu  J R, Yang  H S, Chang  Y, Lai J Y ,  Aimar P . Low-biofouling membranes prepared by liquid-induced phase separation of the PVDF/polystyrene-b-poly (ethylene glycol) methacrylate blend. Journal of Membrane Science, 2014, 450: 340–350
https://doi.org/10.1016/j.memsci.2013.09.004
21 Venault A, Wu  J R, Chang  Y, Aimar P . Fabricating hemocompatible bi-continuous PEGylated PVDF membranes via vapor-induced phase inversion. Journal of Membrane Science, 2014, 470: 18–29
https://doi.org/10.1016/j.memsci.2014.07.014
22 Carretier S, Chen  L A, Venault  A, Yang Z R ,  Aimar P ,  Chang Y . Design of PVDF/PEGMA-b-PS-b-PEGMA membranes by VIPS for improved biofouling mitigation. Journal of Membrane Science, 2016, 510: 355–369
https://doi.org/10.1016/j.memsci.2016.03.017
23 Moghareh Abed M R ,  Kumbharkar S C ,  Groth A M ,  Li K. Economical production of PVDF-g-POEM for use as a blend in preparation of PVDF based hydrophilic hollow fibre membranes. Separation and Purification Technology, 2013, 106: 47–55
https://doi.org/10.1016/j.seppur.2012.12.024
24 Hashim N A, Liu  F, Li K . A simplified method for preparation of hydrophilic PVDF membranes from an amphiphilic graft copolymer. Journal of Membrane Science, 2009, 345(1–2): 134–141
https://doi.org/10.1016/j.memsci.2009.08.032
25 Hester J F, Banerjee  P, Won Y Y ,  Akthakul A ,  Acar M H ,  Mayes A M . ATRP of amphiphilic graft copolymers based on PVDF and their use as membrane additives. Macromolecules, 2002, 35(20): 7652–7661
https://doi.org/10.1021/ma0122270
26 Wang J S, Matyjaszewski  K. Controlled/”living” radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society, 1995, 117(20): 5614–5615 
https://doi.org/10.1021/ja00125a035
27 Kato M, Kamigaito  M, Sawamoto M ,  Higashimura T . Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium(ii)/methylaluminum Bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules, 1995, 28(5): 1721–1723
https://doi.org/10.1021/ma00109a056
28 Katsoufidou K, Yiantsios  S G, Karabelas  A J. An experimental study of UF membrane fouling by humic acid and sodium alginate solutions: the effect of backwashing on flux recovery. Desalination, 2008, 220(1–3): 214–227
https://doi.org/10.1016/j.desal.2007.02.038
29 Ye Y, Chen  V, Fane A G . Modeling long-term subcritical filtration of model EPS solutions. Desalination, 2006, 191(1–3): 318–327
https://doi.org/10.1016/j.desal.2005.04.128
30 Kim H C, Dempsey  B A. Membrane fouling due to alginate, SMP, EfOM, humic acid, and NOM. Journal of Membrane Science, 2013, 428: 190–197
https://doi.org/10.1016/j.memsci.2012.11.004
31 Listiarini K, Chun  W, Sun D D ,  Leckie J O . Fouling mechanism and resistance analyses of systems containing sodium alginate, calcium, alum and their combination in dead-end fouling of nanofiltration membranes. Journal of Membrane Science, 2009, 344(1–2): 244–251
https://doi.org/10.1016/j.memsci.2009.08.010
32 Katsoufidou K, Yiantsios  S G, Karabelas  A J. Experimental study of ultrafiltration membrane fouling by sodium alginate and flux recovery by backwashing. Journal of Membrane Science, 2007, 300(1–2): 137–146
https://doi.org/10.1016/j.memsci.2007.05.017
33 Ang W S, Lee  S, Elimelech M . Chemical and physical aspects of cleaning of organic-fouled reverse osmosis membranes. Journal of Membrane Science, 2006, 272(1–2): 198–210
https://doi.org/10.1016/j.memsci.2005.07.035
34 Awanis Hashim N ,  Liu F, Moghareh Abed  M R, Li  K. Chemistry in spinning solutions: Surface modification of PVDF membranes during phase inversion. Journal of Membrane Science, 2012, 415–416: 399–411
https://doi.org/10.1016/j.memsci.2012.05.024
35 Peinemann K V ,  Abetz V ,  Simon P F W . Asymmetric superstructure formed in a block copolymer via phase separation. Nature Materials, 2007, 6(12): 992–996
https://doi.org/10.1038/nmat2038 pmid: 17982467
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed