Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (2) : 5    https://doi.org/10.1007/s11783-017-0986-7
RESEARCH ARTICLE |
Transport of antibiotic resistance plasmids in porous media and the influence of surfactants
Peipei Chen1, Chaoqi Chen1,2, Xiqing Li1()
1. Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
2. Department of Crops and Soil Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
 Download: PDF(1347 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Indigenous and engineered plasmids have similar transport behavior in porous media.

Indigenous plasmid pK5 transports similarly in quartz sand and soil.

Anionic surfactant SDS has negligible effect on plasmid transport in porous media.

Cationic surfactant CTAB affects plasmid transport at high concentrations.

Indigenous plasmids may transport over significant distances in environment.

Transport of engineered antibiotic resistance plasmids in porous media has been reported to potentially cause significant spreading of antibiotic resistance in the environment. In this work, transport of an indigenous resistance plasmid pK5 in porous media was investigated through packed column experiments. At identical ionic strengths in CaCl2 solutions, the breakthroughs of pK5 from soil columns were very close to those from quartz sand columns, indicating that transport of pK5 in quartz sand and soil was similar. A similarity in transport behavior was also found between pK5 and an engineered plasmid pBR322 that has approximately the same number of base pairs as pK5. The influence of surfactants, a major group of constituents in soil solutions, was examined using an engineered plasmid pcDNA3.1(+)/myc-His A. The impact of an anionic surfactant, sodium dodecyl sulfate (SDS), was negligible at concentrations up to 200 mg·L1. Cetyltrimethyl ammonium bromide (CTAB), a cationic surfactant, was found to significantly enhance plasmid adsorption at high concentrations. However, at environmentally relevant concentrations (<1 mg·L1), the effect of this surfactant was also minimal. The negligible impact of surfactants and the similarity between the transport of engineered and indigenous plasmids indicate that under environmentally relevant conditions, indigenous plasmids in soil also have the potential to transport over long distances and lead to the spreading of antibiotic resistance.

Keywords Indigenous plasmid      Transport      Porous media      Surfactants     
Corresponding Authors: Xiqing Li   
Issue Date: 23 August 2017
 Cite this article:   
Peipei Chen,Chaoqi Chen,Xiqing Li. Transport of antibiotic resistance plasmids in porous media and the influence of surfactants[J]. Front. Environ. Sci. Eng., 2018, 12(2): 5.
 URL:  
http://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0986-7
http://academic.hep.com.cn/fese/EN/Y2018/V12/I2/5
Fig.1  Profile of the indigenous antibiotic resistance plasmid pK5
Porous media0.001 mol·L10.006 mol·L10.02 mol·L10.05 mol·L1
Exited fractions
(%)
k
(h1)
Exited fractions
(%)
k
(h1)
Exited fractions
(%)
k
(h1)
Exited fractions
(%)
k
(h1)
Quartz sand95.9±1.30.05±0.0289.3±0.10.18±0.0261.1±2.71.1±0.120.3±0.23.1±0.0
Soil102.3±2.5N/A109.2±6.0N/A68.7±2.50.79±0.0424.5±1.52.8±0.1
Tab.1  Fractions exiting columns and adsorption rate coefficients (k) of indigenous resistance plasmid pK5 at different ionic strength (in CaCl2) in porous media
Fig.2  Breakthrough and elution curves of pK5 in CaCl2 in quartz sand (top) and soil columns (bottom)
Fig.3  Breakthrough and elution curves of pcDNA3.1(+)/myc-His A in quartz sand columns in the presence of SDS (top) and CTAB (bottom)
SurfactantConcentration
(mg·L1)
Zeta potential
(mV)
Exited fractions
(%)
k
(h1)
SDS1-43.9±11.299.8±0.20.03±0.01
10-44.4±2.397.9±0.00.13±0.01
50-46.5±3.999.1±0.20.07±0.01
200-53.8±1.098.9±0.10.11±0.02
CTAB1-41.6±0.496.9±0.60.21±0.05
10-27.1±6.738.0±0.32.3±0.1
5022.6±9.113.5±0.44.3±0.4
20078.1±13.557.2±0.21.0±0.0
Tab.2  Zeta potentials, fractions exiting column, and adsorption rate coefficients (k) of pcDNA3.1(+)/myc-His A in the presence of surfactants
Fig.4  Agarose gel electrophoresis results of pcDNA3.1(+)/myc-His A in 1, 10, 50 and 200 mg?L1 (from top to bottom) SDS solutions transporting through quartz sand columns
Fig.5  Agarose gel electrophoresis results of pcDNA3.1(+)/myc-His A in 1, 10, 50 and 200 mg?L1 (from top to bottom) CTAB solutions transporting through quartz sand columns
1 Chee-Sanford J C, Mackie R I, Koike S, Krapac I G, Lin Y F, Yannarell A C, Maxwell S, Aminov R I. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. Journal of Environmental Quality, 2009, 38(3): 1086–1108
https://doi.org/10.2134/jeq2008.0128 pmid: 19398507
2 Gielen G J H P, Heuvel M R, Clinton P W, Greenfield L G. Factors impacting on pharmaceutical leaching following sewage application to land. Chemosphere, 2009, 74(4): 537–542
https://doi.org/10.1016/j.chemosphere.2008.09.048 pmid: 18996568
3 Gatica J, Cytryn E. Impact of treated wastewater irrigation on antibiotic resistance in the soil microbiome. Environmental Science and Pollution Research International, 2013, 20(6): 3529–3538
https://doi.org/10.1007/s11356-013-1505-4 pmid: 23378260
4 Marti R, Scott A, Tien Y C, Murray R, Sabourin L, Zhang Y, Topp E. Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest. Applied and Environmental Microbiology, 2013, 79(18): 5701–5709
https://doi.org/10.1128/AEM.01682-13 pmid: 23851089
5 Finley R L, Collignon P, Larsson D G, McEwen S A, Li X Z, Gaze W H, Reid-Smith R, Timinouni M, Graham D W, Topp E. The scourge of antibiotic resistance: the important role of the environment. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 2013, 57(5): 704–710
https://doi.org/10.1093/cid/cit355 pmid: 23723195
6 Davies J. Inactivation of antibiotics and the dissemination of resistance genes. Science, 1994, 264(5157): 375–382
https://doi.org/10.1126/science.8153624 pmid: 8153624
7 Heuer H, Smalla K. Plasmids foster diversification and adaptation of bacterial populations in soil. FEMS Microbiology Reviews, 2012, 36(6): 1083–1104
https://doi.org/10.1111/j.1574-6976.2012.00337.x pmid: 22393901
8 Davison J. Genetic exchange between bacteria in the environment. Plasmid, 1999, 42(2): 73–91
https://doi.org/10.1006/plas.1999.1421 pmid: 10489325
9 Backert S, Meyer T F. Type IV secretion systems and their effectors in bacterial pathogenesis. Current Opinion in Microbiology, 2006, 9(2): 207–217
https://doi.org/10.1016/j.mib.2006.02.008 pmid: 16529981
10 Levy-Booth D J, Campbell R G, Gulden R H, Hart M M, Powell J R, Klironomos J N, Pauls K P, Swanton C J, Trevors J T, Dunfield K E. Cycling of extracellular DNA in the soil environment. Soil Biology & Biochemistry, 2007, 39(12): 2977–2991
https://doi.org/10.1016/j.soilbio.2007.06.020
11 Cai P, Huang Q Y, Zhang X W. Interactions of DNA with clay minerals and soil colloidal particles and protection against degradation by DNase. Environmental Science & Technology, 2006, 40(9): 2971–2976
https://doi.org/10.1021/es0522985 pmid: 16719099
12 Ogram A, Sayler G S, Gustin D, Lewis R J. DNA adsorption to soils and sediments. Environmental Science & Technology, 1988, 22(8): 982–984
https://doi.org/10.1021/es00173a020 pmid: 22195724
13 Pietramellara G, Franchi M, Gallori E, Nannipieri P. Effect of molecular characteristics of DNA on its adsorption and binding on homoionic montmorillonite and kaolinite. Biology and Fertility of Soils, 2001, 33(5): 402–409
https://doi.org/10.1007/s003740100341
14 Poté J, Ceccherini M T, Van V T, Rosselli W, Wildi W, Simonet P, Vogel T M. Fate and transport of antibiotic resistance genes in saturated soil columns. European Journal of Soil Biology, 2003, 39(2): 65–71
https://doi.org/10.1016/S1164-5563(03)00003-7
15 Poté J, Teresa Ceccherini M, Rosselli W, Wildi W, Simonet P, Vogel T M. Leaching and transformability of transgenic DNA in unsaturated soil columns. Ecotoxicology and Environmental Safety, 2010, 73(1): 67–72
https://doi.org/10.1016/j.ecoenv.2009.09.009 pmid: 19828198
16 Rysz M, Alvarez P J J. Transport of antibiotic-resistant bacteria and resistance-carrying plasmids through porous media. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 2006, 54(11): 363–370
https://doi.org/10.2166/wst.2006.896 pmid: 17302340
17 Chen C, Li J, DeVries S L, Zhang P, Li X. Transport of antibiotic resistance plasmids in porous media. Vadose Zone Journal, 2015, 14(3): 
https://doi.org/10.2136/vzj2014.06.0068
18 del Valle M, Alonso J, Bartrolí J, Martí I. Spectrophotometric determination of low levels of anionic surfactants in water by solvent extraction in a flow injection system. Analyst (London), 1988, 113(11): 1677–1681
https://doi.org/10.1039/AN9881301677
19 Corada-Fernández C, Jiménez-Martínez J, Candela L, González-Mazo E, Lara-Martín P A. Occurrence and spatial distribution of emerging contaminants in the unsaturated zone. Case study: Guadalete River Basin (Cadiz, Spain). Chemosphere, 2015, 119(S): S131–S137
20 Mungray A K, Kumar P. Anionic surfactants in treated sewage and sludges: risk assessment to aquatic and terrestrial environments. Bioresource Technology, 2008, 99(8): 2919–2929
https://doi.org/10.1016/j.biortech.2007.06.025 pmid: 17706412
21 Cantarero S, Prieto C A, López I. Occurrence of high-tonnage anionic surfactants in Spanish sewage sludge. Journal of Environmental Management, 2012, 95(S): S149–S153
22 Eskilsson K, Leal C, Lindman B, Miguel M, Nylander T. DNA-surfactant complexes at solid surfaces. Langmuir, 2001, 17(5): 1666–1669
https://doi.org/10.1021/la000993e
23 Braem A D, Campos-Terán J, Lindman B. Influence of DNA adsorption and DNA/cationic surfactant coadsorption on the interaction forces between hydrophobic surfaces. Langmuir, 2004, 20(15): 6407–6413
https://doi.org/10.1021/la049882w pmid: 15248730
24 Cárdenas M, Braem A, Nylander T, Lindman B. DNA compaction at hydrophobic surfaces induced by a cationic amphiphile. Langmuir, 2003, 19(19): 7712–7718
https://doi.org/10.1021/la026747f
25 Cárdenas M, Wacklin H, Campbell R A, Nylander T. Structure of DNA-cationic surfactant complexes at hydrophobically modified and hydrophilic silica surfaces as revealed by neutron reflectometry. Langmuir, 2011, 27(20): 12506–12514
https://doi.org/10.1021/la202087u pmid: 21875129
26 Adamczyk Z, Siwek B, Zembala M, Weronski P. Kinetics of localized adsorption of colloid particles. Langmuir, 1992, 8(11): 2605–2610
https://doi.org/10.1021/la00047a007
27 Adamczyk Z, Barbasz J, Cieśla M. Mechanisms of fibrinogen adsorption at solid substrates. Langmuir, 2011, 27(11): 6868–6878
https://doi.org/10.1021/la200798d pmid: 21545097
28 Xie Y, Li S, Wu K, Wang J, Liu G. A hybrid adsorption/ultrafiltration process for perchlorate removal. Journal of Membrane Science, 2011, 366(1–2): 237–244
https://doi.org/10.1016/j.memsci.2010.10.005
29 Elimelech M, O’Melia C R. Kinetics of deposition of colloidal particles in porous media. Environmental Science & Technology, 1990, 24(10): 1528–1536
https://doi.org/10.1021/es00080a012
30 Yee N, Fein J B, Daughney C J. Experimental study of the pH, ionic strength, and reversibility behavior of bacteria–mineral adsorption. Geochimica et Cosmochimica Acta, 2000, 64(4): 609–617
https://doi.org/10.1016/S0016-7037(99)00342-7
31 Edmeades D C, Wheeler D M, Clinton O E. The chemical-composition and ionic-strength of soil solutions from New Zealand topsoils. Australian Journal of Soil Research, 1985, 23(2): 151–165
32 Olkowska E, Ruman M, Kowalska A, Polkowska Ż. Determination of surfactants in environmental samples. Part I. Cationic compounds. Ecological Chemistry and Engineering S-Chemia I Inzynieria Ekologiczna S, 2013, 20(1): 69–77
https://doi.org/10.2478/eces-2013-0005
33 Samardžić M, Galović O, Petrušić S, Sak-Bosnar M. The analysis of anionic surfactants in effluents using a DDA-TPB potentiometric sensor. International Journal of Electrochemical Science, 2014, 9(11): 6166–6181
34 Lara-Martín P A, Gómez-Parra A, González-Mazo E. Simultaneous extraction and determination of anionic surfactants in waters and sediments. Journal of Chromatography. A, 2006, 1114(2): 205–210
https://doi.org/10.1016/j.chroma.2006.03.014 pmid: 16574133
35 Olkowska E, Ruman M, Kowalska A, Polkowska Ż. Determination of surfactants in environmental samples. Part II. Anionic compounds. Ecological Chemistry and Engineering S-Chemia I Inzynieria Ekologiczna S, 2013, 20(2): 331–342
https://doi.org/10.2478/eces-2013-0024
[1] Yan-Shan Wang, Dao-Bo Li, Feng Zhang, Zhong-Hua Tong, Han-Qing Yu. Algal biomass derived biochar anode for efficient extracellular electron uptake from Shewanella oneidensis MR-1[J]. Front. Environ. Sci. Eng., 2018, 12(4): 11-.
[2] Yuan Chen, Shaodong Xie, Bin Luo. Seasonal variations of transport pathways and potential sources of PM2.5 in Chengdu, China (2012–2013)[J]. Front. Environ. Sci. Eng., 2018, 12(1): 12-.
[3] Xiaorong Meng, Conghui Wang, Pan Zhou, Xiaoqiang Xin, Lei Wang. Transport and selectivity of indium through polymer inclusion membrane in hydrochloric acid medium[J]. Front. Environ. Sci. Eng., 2017, 11(6): 9-.
[4] Cesunica E. Ivey, Heather A. Holmes, Yongtao Hu, James A. Mulholland, Armistead G. Russell. A method for quantifying bias in modeled concentrations and source impacts for secondary particulate matter[J]. Front. Environ. Sci. Eng., 2016, 10(5): 14-.
[5] Jingyu WANG,Hongwei FANG,Guojian HE,Lei HUANG. A model of 90Sr distribution in the sea near Daya Bay Nuclear Power Plant in China[J]. Front. Environ. Sci. Eng., 2014, 8(6): 845-853.
[6] ZHANG Dong,ZHU Lizhong. Controlling microbiological interfacial behaviors of hydrophobic organic compounds by surfactants in biodegradation process[J]. Front.Environ.Sci.Eng., 2014, 8(3): 305-315.
[7] Jiaxing GUO, Huan LIU, Yang JIANG, Dongquan HE, Qidong WANG, Fei MENG, Kebin HE. Neighborhood form and CO2 emission: evidence from 23 neighborhoods in Jinan, China[J]. Front Envir Sci Eng, 2014, 8(1): 79-88.
[8] Fei HUA, Hongqi WANG. Selective pseudosolubilization capability of Pseudomonas sp. DG17 on n-alkanes and uptake mechanisms analysis[J]. Front Envir Sci Eng, 2013, 7(4): 539-551.
[9] Lei WANG, Yongtao LV, Xudong WANG, Yongzhe YANG, Xiaorong BAI. Micro-analysis of nitrogen transport and conversion inside activated sludge flocs using microelectrodes[J]. Front Envir Sci Eng Chin, 2011, 5(4): 633-638.
[10] Yingjie TANG, Bing GUO. Computational fluid dynamics simulation of aerosol transport and deposition[J]. Front Envir Sci Eng Chin, 2011, 5(3): 362-377.
[11] Lin ZHANG, . Intercontinental transport of air pollution[J]. Front.Environ.Sci.Eng., 2010, 4(1): 20-29.
[12] Hongtao WANG, Huayong WU. Analytical solutions of three-dimensional contaminant transport in uniform flow field in porous media: A library[J]. Front Envir Sci Eng Chin, 2009, 3(1): 112-128.
[13] ZHANG Yunxia, LI Tielong, JIN Zhaohui, WANG Wei, WANG Shuaima. Synthesis of nanoiron by microemulsion with Span/Tween as mixed surfactants for reduction of nitrate in water[J]. Front.Environ.Sci.Eng., 2007, 1(4): 466-470.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed