Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2011, Vol. 5 Issue (4) : 610-614    https://doi.org/10.1007/s11783-011-0379-2
SHORT COMMUNICATION
Technical feasibility study of an onshore ballast water treatment system
Shengjie LIU1, Manxia ZHANG1, Xiang LI1, Xiaojia TANG1, Lingling ZHANG1, Yimin ZHU1(), Chengyu YUAN2
1. Institute of Environmental Remediation, Dalian Maritime University, Dalian 116026, China; 2. Liaoning Ocean and Fisheries Science Research Institution, Dalian 116026, China
 Download: PDF(90 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To fulfill the requirements of Guidelines for approval of ballast water management system (G8), a set of onshore ballast water treatment equipment utilizing micro-pore ceramic filtration (MPCF) and UV radiation (MPCF&UV) system was designed and set up with a maximum flow rate of 80 m3·h-1. Technical feasibilities of MPCF&UV system were evaluated in three areas: removal efficiencies of indicator organism and oceanic bacteria, perdurability of a ceramic filter, and application on native seawater. The results showed that no indicator organism (Dunaliella) or oceanic bacteria was detected after treatment of 20 L MPCF and UV radiation at 1.3× 104 μW·s·cm-2. A 20 L ceramic filter can run continuously for 5.3 h at the flow rate of 15 m3·h-1 before its pressure drop up to 0.195 MPa. The removal percentage of total plankton amounts were 91.9% at a flow rate of 70 m3·h-1 by 80 L MPCF and UV radiation at 1.3× 104 μW·s·cm-2.

Keywords ballast water      ceramic filter      UV      plankton      oceanic bacteria     
Corresponding Author(s): ZHU Yimin,Email:ntp@dlmu.edu.cn   
Issue Date: 05 December 2011
 Cite this article:   
Lingling ZHANG,Yimin ZHU,Chengyu YUAN, et al. Technical feasibility study of an onshore ballast water treatment system[J]. Front Envir Sci Eng Chin, 2011, 5(4): 610-614.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0379-2
https://academic.hep.com.cn/fese/EN/Y2011/V5/I4/610
Fig.1  Onshore ballast water treatment equipment
Note: 1. input water storage tank; 2. steel screen filter; 3. check valve; 4, 5, 7, 8, 10, 11. valve; 6. standing-type centrifugal pump; A, B. pressure gauge; 9. filtration equipment; 12. UV radiation equipment; 13. output water storage tank
initial density/(ea·mL-1)alga amounts after treatment/(ea·mL-1)alga removal efficiencies/%
screen fil.MPCFMPCF&UVscreen fil.MPCFMPCF&UV
183001030050043.599.5100
233001330083042.999.4100
333002150050035.399.8100
Tab.1  removal efficiencies after screen filter, MPCF and MPCF&UV treatment
typenamesize/μminitial density/(106 ea·m-3)screen fil. /(106 ea·m-3)MPCF/(106 ea·m-3)
PhytoplanktonChlorella3-81.200.400.04
Melosira sulcata8-282.642.00
Nitzschia10-500.961.200.30
Pinnularia11-160.080.04
Dunaliella12-212.000.800.19
Nitzschia closteri um12-230.400.04
Fragilaria (freshwater species)16-240.24
synedra16.5-260.64
Chaetoceros10-500.40
Bridge cymbella (freshwater species)10-500.48
Coscinodiscus centralis>500.08
Gonyaulax10-500.20
Ditylum sol10-500.10
Hemiaul us membranaceus10-500.20
skeletonemacostatum10-500.12
Sum8.725.300.73
ZooplanktonTintinnopsis radix>500.08
Bivalve Larva>500.08
Larval Cladocera>500.08
Others>500.08
Sum0.3200
total amounts9.025.300.73
Tab.2  Plankton removal efficiencies on native seawater treated by screen and MPCF filtration
1 Champ M A. Marine testing board for certification of ballast water treatment technologies. Marine Pollution bulletin , 2002, 44(12): 1327–1335
doi: 10.1016/S0025-326X(02)00316-8 pmid:12523535
2 Raikow D F, Reid D F, Blatchley E R, Jacobs G, Landrum P F. Effects of proposed physical ballast tank treatments on aquatic invertebrate resting eggs. Environmental Toxicology and Chemistry , 2007, 26(4): 717–725
doi: 10.1897/06-403R.1 pmid:17447556
3 Cutler S J, Cutler H G, Glinski J, Wright D, Dawson R, Lauren D. SeaKleen?, a potential product for controlling aquatic pests in ships’ ballast water. In: Abstract of the 2nd International Ballast Water Treatment R & D Symposium, London : 2003, 21–23
4 Yu Y M, Guan X F. Ships Ballast Water Processing Discussion. China Water Transport , 2006, 3(4): 26–27 (in Chinese)
5 Tsolaki E, Diamadopoulos E. Technologies for ballast water treatment: A review. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire) , 2010, 85(1): 19–32
doi: 10.1002/jctb.2276
6 Mamlook R, Badran O, Abu-Khader MM, Dales AH. Fuzzy sets analysis for ballast water treatment systems. CleanβTechnologies and Envirionmental Policies , 2007, 4: 54–56
7 Parsons M G. Considerations in the design of the primary treatment for ballast systems. Marine Technology , 2003, 40(1): 49–60
8 Oemcke D J, Van Leeuwen J. Chemical and physical characterization of ballast water effects of ballast water treatment processes. Journal of Marine Environmental Engineering , 2003, 7: 47–64
9 Leppakoski E, Gollasch S, Olenin S. Invasive Aquatic Species of Europe: Distribution, Impacts and Management. Dordrecht: Kluwer Academic Publishers, 2002
10 Oemcke D.The treatment of ships’ ballast water. EcoPorts Monograph Series No. 18. Brisbane (Australia): Ports Corporation of Queensland , 1999
11 Tang Z, Butkus M A, Xie Y F. Crumb rubber filtration: A potential technology for ballast water treatment. Marine Environmental Research , 2006, 61(4): 410–423
doi: 10.1016/j.marenvres.2005.06.003 pmid:16458350
12 Kong X, Zhu Y, Zhang M, Sun X, Zhang W. Simulated experiment on minimizing the presence chlorella and bacteria in ballast water by combination of micro-hole filtration and UV radiation. Journal of Advanced Oxidation Technologies , 2007, 10(1): 186–188
13 Zhang M, Xu N, Li C, Wang Y, Zhu Y. Micro-pore ceramic filter and UV system as ballast water treatment: Preliminary study on chlorella removal and bacteria inactivation. Journal of Advanced Oxidation Technologies , 2008, 11(1): 125–129
15 Parsons M G, Harkins R W. The Great Lakes ballast technology demonstration project filtration mechanical test program. Marine Technology , 2000, 37(3): 129–140
[1] Kuo Fang, Fei Peng, Hui Gong, Huanzhen Zhang, Kaijun Wang. Ammonia removal from low-strength municipal wastewater by powdered resin combined with simultaneous recovery as struvite[J]. Front. Environ. Sci. Eng., 2021, 15(1): 8-.
[2] Yapeng Song, Hui Gong, Jianbing Wang, Fengmin Chang, Kaijun Wang. Enhanced triallyl isocyanurate (TAIC) degradation through application of an O3/UV process: Performance optimization and degradation pathways[J]. Front. Environ. Sci. Eng., 2020, 14(4): 64-.
[3] Chao Yang, Wenjun Sun, Xiuwei Ao. Bacterial inactivation, DNA damage, and faster ATP degradation induced by ultraviolet disinfection[J]. Front. Environ. Sci. Eng., 2020, 14(1): 13-.
[4] Lian Yang, Qinxue Wen, Zhiqiang Chen, Ran Duan, Pan Yang. Impacts of advanced treatment processes on elimination of antibiotic resistance genes in a municipal wastewater treatment plant[J]. Front. Environ. Sci. Eng., 2019, 13(3): 32-.
[5] Chao Yang, Wenjun Sun, Xiuwei Ao. Using mRNA to investigate the effect of low-pressure ultraviolet disinfection on the viability of E. coli[J]. Front. Environ. Sci. Eng., 2019, 13(2): 26-.
[6] Ling Sun, Hui Wang, Yuanqing Kan, Shiliang Wang. Distribution of phytoplankton community and its influence factors in an urban river network, East China[J]. Front. Environ. Sci. Eng., 2018, 12(6): 13-.
[7] In-Sun Kang, Jinying Xi, Hong-Ying Hu. Photolysis and photooxidation of typical gaseous VOCs by UV Irradiation: Removal performance and mechanisms[J]. Front. Environ. Sci. Eng., 2018, 12(3): 8-.
[8] Zhi-Long Ye, Yujun Deng, Yaoyin Lou, Xin Ye, Shaohua Chen. Occurrence of veterinary antibiotics in struvite recovery from swine wastewater by using a fluidized bed[J]. Front. Environ. Sci. Eng., 2018, 12(3): 7-.
[9] Shiting Ren, Mengchen Li, Jianyu Sun, Yanhong Bian, Kuichang Zuo, Xiaoyuan Zhang, Peng Liang, Xia Huang. A Novel Electrochemical Reactor for Nitrogen and Phosphorus Recovery from Domestic Wastewater[J]. Front. Environ. Sci. Eng., 2017, 11(4): 17-.
[10] Xuebiao Nie, Wenjun Liu, Mo Chen, Minmin Liu, Lu Ao. Flow cytometric assessment of the effects of chlorine, chloramine, and UV on bacteria by using nucleic acid stains and 5-cyano-2,3-ditolyltetrazolium chloride[J]. Front. Environ. Sci. Eng., 2016, 10(6): 12-.
[11] David R. HOKANSON,Ke LI,R. Rhodes TRUSSELL. A photolysis coefficient for characterizing the response of aqueous constituents to photolysis[J]. Front. Environ. Sci. Eng., 2016, 10(3): 428-437.
[12] Eunsung KAN,Chang-Il KOH,Kyunghyuk LEE,Joonwun KANG. Decomposition of aqueous chlorinated contaminants by UV irradiation with H2O2[J]. Front. Environ. Sci. Eng., 2015, 9(3): 429-435.
[13] Wendong WANG,Qinghai FAN,Zixia QIAO,Qin YANG,Yabo WANG,Xiaochang WANG. Effects of water quality on the coagulation performances of humic acids irradiated with UV light[J]. Front. Environ. Sci. Eng., 2015, 9(1): 147-154.
[14] Jingyun FANG,Huiling LIU,Chii SHANG,Minzhen ZENG,Mengling NI,Wei LIU. E. coli and bacteriophage MS2 disinfection by UV, ozone and the combined UV and ozone processes[J]. Front.Environ.Sci.Eng., 2014, 8(4): 547-552.
[15] Chengkun WANG, Xiaojian ZHANG, Chao CHEN, Jun WANG. Factors controlling N-nitrosodimethylamine (NDMA) formation from dissolved organic matter[J]. Front Envir Sci Eng, 2013, 7(2): 151-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed