Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (2) : 7    https://doi.org/10.1007/s11783-017-0990-y
RESEARCH ARTICLE |
Field evidence of decreased extractability of copper and nickel added to soils in 6-year field experiments
Bao Jiang1,2, Dechun Su2, Xiaoqing Wang3, Jifang Liu4, Yibing Ma1()
1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
2. Colleges of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
3. Departments of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
4. Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
 Download: PDF(788 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Long-term decrease in added Cu and Ni toxicity was easily identified in neutral soil.

Extractability as an aging indicator of Cu and Ni is better than phytotoxicity.

In neutral and alkaline soil Cu is extractable more than Ni.

In acidic soil extractability of Cu is similar to Ni.

The phytotoxicity of added copper (Cu) and nickel (Ni) is influenced by soil properties and field aging. However, the differences in the chemical behavior between Cu and Ni are still unclear. Therefore, this study was conducted to investigate the extractability of added Cu and Ni in 6-year field experiments, as well as the link with their phytotoxicity. The results showed that the extractability of added Cu decreased by 6.63% (5.10%–7.90%), 22.5% (20.6%–23.9%), and 6.87% (0%–17.9%) on average for acidic, neutral, and alkaline soil from 1 to 6 years, although the phytotoxicity of added Cu and Ni did not change significantly from 1 to 6 years in the long term field experiment. Because of dissolution of Cu, when the pH decreased below 7.0, the extractability of Cu in alkaline soil by EDTA at pH 4.0 could not reflect the effects of aging. For Ni, the extractability decreased by 18.1% (10.1%–33.0%), 63.0% (59.2%–68.8%), and 22.0% (12.4%–31.8%) from 1 to 6 years in acidic, neutral, and alkaline soils, respectively, indicating the effects of aging on Ni were greater than on Cu. The sum of ten sequential extractions of Cu and Ni showed that added Cu was more extractable than Ni in neutral and alkaline soil, but similar in acidic soil.

Keywords Copper      Nickel      EDTA      Sequential extraction     
Corresponding Authors: Yibing Ma   
Issue Date: 01 September 2017
 Cite this article:   
Bao Jiang,Dechun Su,Xiaoqing Wang, et al. Field evidence of decreased extractability of copper and nickel added to soils in 6-year field experiments[J]. Front. Environ. Sci. Eng., 2018, 12(2): 7.
 URL:  
http://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0990-y
http://academic.hep.com.cn/fese/EN/Y2018/V12/I2/7
SoilspHa)CECb)OCc)CaCO3OXd) FeCDe) FeOXd) AlCDe) AlCuNi
(1:5)(cmol+/kg)(%)(%)(mg/kg)(mg/kg)(mg/kg)(mg/kg)(mg/kg)(mg/kg)
Acidic soil
(QY-pH 5.3)
5.37.470.870.091146.426,1541326329329.422.3
Neutral soil
(JX-pH 6.7)
6.719.331.420.156211.810,824110679430.832
Alkaline soil
(DZ-pH 8.9)
8.98.330.696.17644.2496549736924.620.2
Tab.1  Soil properties and background concentration of Cu and Ni in three field soils
Fig.1  Toxicity thresholds (EC50) of Cu and Ni added to field soils aged for 1, 3, and 6 years. The crops used to assess the toxicity of Cu and Ni in different soils: maize for acidic soil in Qiyang (QY-pH 5.3) and alkaline soil in Dezhou (DZ-pH 8.9), rice for neutral soil in Jiaxing (JX-pH 6.7). Different letters in the same field soil indicate significant differences among different aging time at p<0.05
Extractable metalSoilpH 4.0pH 6.0pH 7.5
1 (year)3 (year)6 (year)1 (year)3 (year)6 (year)1 (year)3 (year)6 (year)
Ten-EDTA-CuAcidic (QY)64.659.456.754.852.049.759.255.852.3
Neutral (JX)94.179.173.590.660.566.790.071.566.9
Alkaline (DZ)98.592.998.582.294.679.598.489.980.5
Ten-EDTA-NiAcidic (QY)62.650.529.671.557.660.466.2-56.1
Neutral (JX)64.462.45.2470.169.11.3565.163.63.94
Alkaline (DZ)32.839.21.0522.229.50.2813.725.51.34
Tab.2  Sum of ten extractable proportions (%) of Cu and Ni by EDTA to total added Cu and Ni in different soils aged for 1, 3, and 6 years
Fig.2  Change in proportions of non-EDTA-extractable Cu (non-EDTA-Cu, %) with 1 to 10 extractions at pH 4.0, pH 6.0, and pH 7.5 to total Cu added to acidic (QY-pH 5.3), neutral (JX-pH 6.7), and alkaline (DZ-pH 8.9) soils aged for 1, 3, and 6 years
Fig.3  Change in proportions of non-EDTA-extractable Ni (non-EDTA-Ni, %) with 1 to 10 extractions at pH 4.0, pH 6.0, and pH 7.5 to total Ni added to acidic (QY-pH 5.3), neutral (JX-pH 6.7), and alkaline (DZ-pH 8.9) soils aged 1, 3, and 6 years
1 Luo L, Ma Y, Zhang S, Wei D, Zhu Y G. An inventory of trace element inputs to agricultural soils in China. Journal of Environmental Management, 2009, 90(8): 2524–2530
https://doi.org/10.1016/j.jenvman.2009.01.011 pmid: 19246150
2 Sarkar S, Sarkar B, Basak B B, Mandal S, Biswas B, Srivastava P. Soil Mineralogical Perspective on Immobilization/Mobilization of Heavy Metals.Singapore: Springer Singapore, 2017
3 Sun Y B, Zhao D, Xu Y M, Wang L, Liang X F, Shen X. Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological evaluation. Frontiers of Environmental Science & Engineering, 2016, 10(1): 85–92
https://doi.org/10.1007/s11783-014-0689-2
4 Oorts K, Ghesquiere U, Smolders E. Leaching and aging decrease nickel toxicity to soil microbial processes in soils freshly spiked with nickel chloride. Environmental Toxicology and Chemistry, 2007, 26(6): 1130–1138
https://doi.org/10.1897/06-533R.1 pmid: 17571677
5 Zhou S W, Xu M G, Ma Y B, Chen S B, Wei D P. Aging mechanism of copper added to bentonite. Geoderma, 2008, 147(1–2): 86–92
https://doi.org/10.1016/j.geoderma.2008.08.003
6 Zhang H, Zhu Z, Yoshikawa N. Microwave enhanced stabilization of copper in artificially contaminated soil. Frontiers of Environmental Science & Engineering, 2011, 5(2): 205–211
https://doi.org/10.1007/s11783-010-0290-2
7 Scheidegger A M, Sparks D L, Fendorf M. Mechanisms of nickel sorption on pyrophyllite: Macroscopic and microscopic approaches. Soil Science Society of America Journal, 1996, 60(6): 1763–1772
https://doi.org/10.2136/sssaj1996.03615995006000060022x
8 Shi Z, Peltier E, Sparks D L. Kinetics of Ni sorption in soils: roles of soil organic matter and Ni precipitation. Environmental Science & Technology, 2012, 46(4): 2212–2219
https://doi.org/10.1021/es202376c pmid: 22283487
9 Caporale A G, Violante A. Chemical processes affecting the mobility of heavy metals and metalloids in soil environments. Current Pollution Reports, 2016, 2(1): 15–27
https://doi.org/10.1007/s40726-015-0024-y
10 Ma Y, Lombi E, Nolan A L, McLaughlin M J. Short-term natural attenuation of copper in soils: Effects of time, temperature, and soil characteristics. Environmental Toxicology and Chemistry, 2006, 25(3): 652–658
https://doi.org/10.1897/04-601R.1 pmid: 16566148
11 Ma Y, Lombi E, Oliver I W, Nolan A L, McLaughlin M J. Long-term aging of copper added to soils. Environmental Science & Technology, 2006, 40(20): 6310–6317
https://doi.org/10.1021/es060306r pmid: 17120558
12 Ma Y, Lombi E, McLaughlin M J, Oliver I W, Nolan A L, Oorts K, Smolders E. Aging of nickel added to soils as predicted by soil pH and time. Chemosphere, 2013, 92(8): 962–968
https://doi.org/10.1016/j.chemosphere.2013.03.013 pmid: 23557724
13 Hu P, Yang B, Dong C, Chen L, Cao X, Zhao J, Wu L, Luo Y, Christie P. Assessment of EDTA heap leaching of an agricultural soil highly contaminated with heavy metals. Chemosphere, 2014, 117(1): 532–537
https://doi.org/10.1016/j.chemosphere.2014.08.081 pmid: 25277965
14 Chen H, Cutright T. EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere, 2001, 45(1): 21–28
https://doi.org/10.1016/S0045-6535(01)00031-5 pmid: 11572587
15 Scheckel K G, Sparks D L. Dissolution kinetics of nickel surface precipitates on clay mineral and oxide surfaces. Soil Science Society of America Journal, 2001, 65(3): 685–694
https://doi.org/10.2136/sssaj2001.653685x
16 Zong Y, XiaoQ, Lu S. Distribution, bioavailability, and leachability of heavy metals in soil particle size fractions of urban soils (northeastern China). Environmental Science and Pollution Research International, 2016, 23(14): 14600–14607
https://doi.org/10.1007/s11356-016-6652-y pmid: 27068918
17 Cui H, Fan Y, Fang G, Zhang H, Su B, Zhou J. Leachability, availability and bioaccessibility of Cu and Cd in a contaminated soil treated with apatite, lime and charcoal: A five-year field experiment. Ecotoxicology and Environmental Safety, 2016, 134:148–155
https://doi.org/10.1016/j.ecoenv.2016.07.005 pmid: 27614261
18 Kim W S, Yoo J C, Jeon E K, Yang J S, Baek K. Stepwise sequential extraction of As-, Cu-, and Pb-contaminated paddy soil. Clean- Soil, Air, Water, 2014, 42(12): 1785–1789
https://doi.org/10.1002/clen.201300355
19 Sun B, Zhao F J, Lombi E, McGrath S P. Leaching of heavy metals from contaminated soils using EDTA. Environmental Pollution, 2001, 113(2): 111–120
https://doi.org/10.1016/S0269-7491(00)00176-7 pmid: 11383328
20 Tsang D C, Zhang W, Lo I M. Copper extraction effectiveness and soil dissolution issues of EDTA-flushing of artificially contaminated soils. Chemosphere, 2007, 68(2): 234–243
https://doi.org/10.1016/j.chemosphere.2007.01.022 pmid: 17313968
21 Lock K, Janssen C R. Influence of ageing on zinc bioavailability in soils. Environmental Pollution, 2003, 126(3): 371–374
https://doi.org/10.1016/S0269-7491(03)00232-X pmid: 12963299
22 Smolders E, Oorts K, Sprang P V, Schoeters I, Janssen C R, McGrath S P, McLaughlin M J. Toxicity of trace metals in soil as affected by soil type and aging after contamination: using calibrated bioavailability models to set ecological soil standards. Environmental Toxicology and Chemistry, 2009, 28(8): 1633–1642
https://doi.org/10.1897/08-592.1 pmid: 19301943
23 Rayment G E, Higginson F R. Australian Laboratory Handbook of Soil and Water Chemical Methods. Victoria, Australia: Inkata Press Pty Ltd, 1992
24 Matejovic I. Determination of carbon and nitrogen in samples of various soils by the dry combustion. Communications in Soil Science and Plant Analysis, 1997, 28(17–18): 1499–1511
https://doi.org/10.1080/00103629709369892
25 Sherrod L A, Dunn G, Peterson G A, Kolberg R L. Inorganic carbon analysis by modified pressure-calcimeter method. Soil Science Society of America Journal, 2002, 66(1): 299–305
https://doi.org/10.2136/sssaj2002.2990
26 Mehra O P, Jackson M L. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Seventh National Conference on Clays and Clay Minerals, 1958, 7(1): 317–327
https://doi.org/10.1346/CCMN.1958.0070122
27 Jackson M L, Lim C H, Zelazny L W, Klute A. Oxides, Hydroxides, and Aluminosilicates. Agronomy Monograph, 1986: 101–150
28 Schwertmann U. Differenzierung der eisenoxide des bodens durch extraktion mit ammoniumoxalat-lösung. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde, 1964, 105(3): 194–202
https://doi.org/10.1002/jpln.3591050303
29 McKeague J A, Day J H. Dithionite- and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Canadian Journal of Soil Science, 1966, 46(1): 13–22
https://doi.org/10.4141/cjss66-003
30 Zarcinas B A, McLaughlin M J, Smart M K. The effect of acid digestion technique on the performance of nebulization systems used in inductively coupled plasma spectrometry. Communications in Soil Science and Plant Analysis, 1996, 27(5–8): 1331–1354
https://doi.org/10.1080/00103629609369636
31 Haanstra L, Doelman P, Voshaar J H O. The use of sigmoidal dose response curves in soil ecotoxicological research. Plant and Soil, 1985, 84(2): 293–297
https://doi.org/10.1007/BF02143194
32 Doelman P, Haanstra L. Short- and long-term effects of heavy metals on phosphatase activity in soils: An ecological dose-response model approach. Biology and Fertility of Soils, 1989, 8(3): 235–241
https://doi.org/10.1007/BF00266485
33 Li B, Ma Y, McLaughlin M J, Kirby J K, Cozens G, Liu J. Influences of soil properties and leaching on copper toxicity to barley root elongation. Environmental Toxicology and Chemistry, 2010, 29(4): 835–842
https://doi.org/10.1002/etc.108 pmid: 20821512
34 Li B, Zhang H, Ma Y, McLaughlin M J. Relationships between soil properties and toxicity of copper and nickel to bok choy and tomato in Chinese soils. Environmental Toxicology and Chemistry, 2013, 32(10): 2372–2378
https://doi.org/10.1002/etc.2312 pmid: 23787779
35 McBride M B, Cai M. Copper and zinc aging in soils for a decade: Changes in metal extractability and phytotoxicity. Environmental Chemistry, 2016, 13(1): 160–167
https://doi.org/10.1071/EN15057
[1] Weiqi Luo, Yanping Ji, Lu Qu, Zhi Dang, Yingying Xie, Chengfang Yang, Xueqin Tao, Jianmin Zhou, Guining Lu. Effects of eggshell addition on calcium-deficient acid soils contaminated with heavy metals[J]. Front. Environ. Sci. Eng., 2018, 12(3): 4-.
[2] Ping He, Guangxue Wu, Rui Tang, Peilun Ji, Shoujun Yuan, Wei Wang, Zhenhu Hu. Influence of arsanilic acid, Cu2+, PO43 and their interaction on anaerobic digestion of pig manure[J]. Front. Environ. Sci. Eng., 2018, 12(2): 9-.
[3] Xiaonan Liu, Qiuxia Tan, Yungui Li, Zhonghui Xu, Mengjun Chen. Copper recovery from waste printed circuit boards concentrated metal scraps by electrolysis[J]. Front. Environ. Sci. Eng., 2017, 11(5): 10-.
[4] Guiying RAO, Kristen S. BRASTAD, Qianyi ZHANG, Rebecca ROBINSON, Zhen HE, Ying LI. Enhanced disinfection of Escherichia coli and bacteriophage MS2 in water using a copper and silver loaded titanium dioxide nanowire membrane[J]. Front. Environ. Sci. Eng., 2016, 10(4): 11-.
[5] Jiawei JU,Ruiping LIU,Zan HE,Huijuan LIU,Xiwang ZHANG,Jiuhui QU. Utilization of aluminum hydroxide waste generated in fluoride adsorption and coagulation processes for adsorptive removal of cadmium ion[J]. Front. Environ. Sci. Eng., 2016, 10(3): 467-476.
[6] Li SHENG,Shuhang HUANG,Minghao SUI,Lingdian ZHANG,Lei SHE,Yong CHEN. Deposition of copper nanoparticles on multiwalled carbon nanotubes modified with poly (acrylic acid) and their antimicrobial application in water treatment[J]. Front. Environ. Sci. Eng., 2015, 9(4): 625-633.
[7] Xiaolong SONG,Jianxin YANG,Bin LU,Bo LI,Guangyuan ZENG. Identification and assessment of environmental burdens of Chinese copper production from a life cycle perspective[J]. Front.Environ.Sci.Eng., 2014, 8(4): 580-588.
[8] Yifei SUN, Xin FU, Wei QIAO, Wei WANG, Tianle ZHU, Xinghua LI. Dechlorination of 2,2′,4,4′,5,5′-hexachlorobiphenyl by thermal reaction with activated carbon-supported copper or zinc[J]. Front Envir Sci Eng, 2013, 7(6): 827-832.
[9] Haiqian LI, Yonglong LU, Li LI. PCDD/Fs emission, risk characterization, and reduction in China’s secondary copper production industry[J]. Front Envir Sci Eng, 2013, 7(4): 589-597.
[10] Sandeep PANDA, Nilotpala PRADHAN, Umaballav MOHAPATRA, Sandeep K. PANDA, Swagat S. RATH, Danda S. RAO, Bansi D. NAYAK, Lala B. SUKLA, Barada K. MISHRA. Bioleaching of copper from pre and post thermally activated low grade chalcopyrite contained ball mill spillage[J]. Front Envir Sci Eng, 2013, 7(2): 281-293.
[11] Fengjie ZHANG, Xiaoxia OU, Shuo CHEN, Chunqiu RAN, Xie QUAN. Competitive adsorption and desorption of copper and lead in some soil of North China[J]. Front Envir Sci Eng, 2012, 6(4): 484-492.
[12] Tianxiang XIA, Xuehua LIU. Copper and zinc interaction on water clearance and tissue metal distribution in the freshwater mussel, Cristaria plicata, under laboratory conditions[J]. Front Envir Sci Eng Chin, 2011, 5(2): 236-242.
[13] Hua ZHANG, Zhiliang ZHU, Noboru YOSHIKAWA. Microwave enhanced stabilization of copper in artificially contaminated soil[J]. Front Envir Sci Eng Chin, 2011, 5(2): 205-211.
[14] Qingyun CHANG, Jingwen ZHANG, Xin DU, Jingjun MA, Jingci LI, . Ultrasound-assisted emulsification solidified floating organic drop microextraction for the determination of trace amounts of copper in water samples[J]. Front.Environ.Sci.Eng., 2010, 4(2): 187-195.
[15] XU Wenying, GAO Tingyao, ZHOU Rongfeng, MA Lumin. Electrochemical reduction characteristics and the mechanism of chlorinated hydrocarbons at the copper electrode[J]. Front.Environ.Sci.Eng., 2007, 1(2): 207-212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed