Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (5) : 5    https://doi.org/10.1007/s11783-017-0992-9
RESEARCH ARTICLE
Performance evaluation of waste electrical and electronic equipment disassembly layout configurations using simulation
Ozan Capraz1, Olcay Polat2, Askiner Gungor2()
1. Department of Industrial Engineering, Namık Kemal University, Corlu/Tekirdag 59860, Turkey
2. Department of Industrial Engineering, Pamukkale University, Pamukkale/Denizli 20160, Turkey
 Download: PDF(287 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Alternative layout configurations for WEEE disassembly systems (WDS) are evaluated.

An efficient modeling approach for simulation of manual WDS is proposed.

Effect of various transfer systems on the performance criteria is investigated.

Learning curve effect in WDS layout simulation models is investigated.

Managerial implications are provided to increase the practical impact of the study.

Recycling of waste electrical and electronic equipment (WEEE) is crucially important since it handles hazardous waste according to ever tightening laws and regulations and it adds benefits to economy and sustainable environment. Disassembly is one of the most important processes performed during the recovery of WEEE. The overall goal of disassembly is to maximize the retrieval of various metals and plastics contained in WEEE in order to reduce their negative effects on human health and environmental sustainability and to increase economic gains. This study aims to evaluate alternative layout configurations for WEEE disassembly systems (WDS). In this context, various configurations were compared in terms of pre-defined performance criteria, such as the total number of disassembled WEEE and the total revenue from sales, using simulation models. The results of this study show that the performance of a WDS was significantly affected by output transfer systems along with the specialization of operators on certain types of WEEE.

Keywords WEEE      Recovery      Disassembly      Layout planning      Simulation     
Corresponding Author(s): Askiner Gungor   
Issue Date: 27 September 2017
 Cite this article:   
Ozan Capraz,Olcay Polat,Askiner Gungor. Performance evaluation of waste electrical and electronic equipment disassembly layout configurations using simulation[J]. Front. Environ. Sci. Eng., 2017, 11(5): 5.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0992-9
https://academic.hep.com.cn/fese/EN/Y2017/V11/I5/5
System characteristicsa)Config.-1b)Config.-2c)Config.-3d)Config.-4
Layout
DescriptionDisassembly workstationDisassembly line- divergent material flowDisassembly line- convergent material flowDisassembly line- divergent and convergent material flow
System designDisassembly workstationDisassembly lineDisassembly lineDisassembly line
Conveyor typeN/AStraightCircularStraight & Circular
Output classificationBy workstation operatorsBy workstation operatorsBy a classification operatorBy a classification operator
Difficulty of output classificationHighHighModerateModerate
Number of workstations3333
Number of operators3445
Non-value added timesHighMediumMediumLow
Flexibility of the systemHighMediumMediumLow
Reconfiguration costLowMediumMediumHigh
Tab.1  Comparison of the characteristics of alternative layout configurations
Fig.5  Overview of operational flow in the manual WDS
ProcessConfig.-1Config.-2Config.-3Config.-4Config.-1 with classification
DistributionUnitDistributionUnitDistributionUnitDistributionUnitDistributionUnit
ArrivalsPCBased on a scheduleBased on a scheduleBased on a scheduleBased on a scheduleBased on a schedule
CRT TVBased on a scheduleBased on a scheduleBased on a scheduleBased on a scheduleBased on a schedule
CRT monitorBased on a scheduleBased on a scheduleBased on a scheduleBased on a scheduleBased on a schedule
LCD TVBased on a scheduleBased on a scheduleBased on a scheduleBased on a scheduleBased on a schedule
LCD monitorBased on a scheduleBased on a scheduleBased on a scheduleBased on a scheduleBased on a schedule
Picking timePCTRIA (50,60,70)a)Sec.TRIA (3,5,7)Sec.TRIA (50,60,70)Sec.TRIA (3,5,7)Sec.TRIA (50,60,70)Sec.
CRT TVTRIA (50,60,70)Sec.TRIA (3,5,7)Sec.TRIA (50,60,70)Sec.TRIA (3,5,7)Sec.TRIA (50,60,70)Sec.
CRT monitorTRIA (50,60,70)Sec.TRIA (3,5,7)Sec.TRIA (50,60,70)Sec.TRIA (3,5,7)Sec.TRIA (50,60,70)Sec.
LCD TVTRIA (50,60,70)Sec.TRIA (3,5,7)Sec.TRIA (50,60,70)Sec.TRIA (3,5,7)Sec.TRIA (50,60,70)Sec.
LCD monitorTRIA (50,60,70)Sec.TRIA (3,5,7)Sec.TRIA (50,60,70)Sec.TRIA (3,5,7)Sec.TRIA (50,60,70)Sec.
Disassembly timePCTRIA (130,150,170)Sec.TRIA (130,150,170)Sec.TRIA (130,150,170)Sec.TRIA (130,150,170)Sec.TRIA (85,105,125)Sec.
CRT TVTRIA (370,390,410)Sec.TRIA (370,390,410)Sec.TRIA (370,390,410)Sec.TRIA (370,390,410)Sec.TRIA (235,255,275)Sec.
CRT monitorTRIA (370,390,410)Sec.TRIA (370,390,410)Sec.TRIA (370,390,410)Sec.TRIA (370,390,410)Sec.TRIA (235,255,275)Sec.
LCD TVTRIA (1030,1050,1070)Sec.TRIA (1030,1050,1070)Sec.TRIA (1030,1050,1070)Sec.TRIA (1030,1050,1070)Sec.TRIA (650,670,690)Sec.
LCD monitorTRIA (940,960,980)Sec.TRIA (940,960,980)Sec.TRIA (940,960,980)Sec.TRIA (940,960,980)Sec.TRIA (595,615,635)Sec.
Placement timePCTRIA (50,60,70)Sec.TRIA (50,60,70)Sec.TRIA (20,30,40)Sec.TRIA (20,30,40)Sec.TRIA (50,60,70)Sec.
CRT TVTRIA (50,60,70)Sec.TRIA (50,60,70)Sec.TRIA (20,30,40)Sec.TRIA (20,30,40)Sec.TRIA (50,60,70)Sec.
CRT monitorTRIA (50,60,70)Sec.TRIA (50,60,70)Sec.TRIA (20,30,40)Sec.TRIA (20,30,40)Sec.TRIA (50,60,70)Sec.
LCD TVTRIA (50,60,70)Sec.TRIA (50,60,70)Sec.TRIA (20,30,40)Sec.TRIA (20,30,40)Sec.TRIA (50,60,70)Sec.
LCD monitorTRIA (50,60,70)Sec.TRIA (50,60,70)Sec.TRIA (20,30,40)Sec.TRIA (20,30,40)Sec.TRIA (50,60,70)Sec.
Output classification timeTRIA (8,10,12)Sec.TRIA (8,10,12)Sec.
Setup timeTRIA (20,30,40)Sec.TRIA (10,15,20)Sec.TRIA (20,30,40)Sec.TRIA (10,15,20)Sec.
Cleaning timeTRIA (20,30,40)Sec.TRIA (10,15,20)Sec.TRIA (20,30,40)Sec.TRIA (10,15,20)Sec.TRIA (20,30,40)Sec.
Tab.2  Distributions/parameters used in the simulation model
Alternative
configurations
PCCRT TVCRT monitorLCD TVLCD monitorTotal WEEE
Config.-18558892192634666431335721
Config.-29549960295595202445138363
Config.-3995410323105304864468240353
Config.-4103329853102964980527240733
Tab.3  Comparison of the alternative configurations according to TD
WEEEtypesOutput typesSales price (€/kg)Amount (kg)Revenue of Config.-1 (€)Revenue of Config.-2 (€)Revenue of Config.-3 (€)Revenue of Config.-4 (€)
PCPrecious PCB4.250.8631277.6634901.6036381.8737763.46
Plastic0.20.34581.91649.33676.87702.58
Metal (Fe)0.325.1113993.2215614.5216276.7816894.89
Cable and wire1.50.182310.532578.232687.582789.64
CPU300.025134.505729.405972.406199.20
Memory50.041711.501909.801990.802066.40
Battery-0.20.05-85.58-95.49-99.54-103.32
CD driver0.310.862281.432545.762653.742754.51
Floppy driver0.310.37981.551095.271141.721185.08
Power supply0.371.324179.484663.734861.535046.15
Loudspeaker0.070.0423.9626.7427.8728.93
Hard drive1.350.55776.316445.586718.956974.10
Rest-0.020.02-3.42-3.82-3.98-4.13
LCD TVPrecious PCB4.250.05991.501105.361033.621058.25
Normal PCB1.50.07489.92546.18510.73522.90
Cheap PCB0.340.23364.87406.77380.37389.44
Plastic0.21.07998.501113.161040.921065.72
Metal (Fe)0.320.56836.13932.14871.65892.42
Mixed metal (Fe)0.440.751539.751716.561605.151643.40
Cable and wire1.50.07489.92546.18510.73522.90
Loudspeaker0.070.013.273.643.403.49
LCD Panel0.250.52606.57676.22632.33647.40
Film0.60.14391.94436.94408.58418.32
CCFL back light0.11.14531.91592.99554.51567.72
Rest-0.020.01-0.93-1.04-0.97-1.00
LCD MonitorPrecious PCB4.250.05916.53945.86995.011120.34
Normal PCB1.50.281811.501869.461966.612214.32
Cheap PCB0.340.33483.93499.41525.37591.54
Plastic0.21.731492.331540.081620.111824.18
Metal (Fe)0.322.663671.313788.783985.664487.70
Mixed metal (Fe)0.440.39740.13763.81803.50904.71
Cable and wire1.50.08517.57534.13561.89632.66
Loudspeaker0.070.260.3862.3265.5573.81
LCD Panel0.250.55593.05612.03643.83724.93
Film0.60.11284.66293.77309.04347.97
CCFL back light0.10.85366.61378.34398.00448.14
Rest-0.020.01-0.86-0.89-0.94-1.05
CRT TVCheap PCB0.341.313973.464276.784597.864388.35
Plastic0.25.149170.899870.9610612.0410128.47
Metal (Fe)0.320.35999.161075.441156.181103.49
Cable and wire1.51.5420607.7422180.8523846.1322759.51
CRT-0.0723.6-14737.66-15862.67-17053.60-16276.50
Deflection unit1.130.787863.068463.299098.698684.08
Shadow mask0.151.471967.102117.262276.222172.50
Ray gun0.150.0340.1443.2146.4544.34
Rest-0.020.05-8.92-9.60-10.32-9.85
CRT MonitorCheap PCB0.341.815700.705882.556479.926336.16
Plastic0.22.715020.765180.925707.045580.43
Metal (Fe)0.320.832460.362538.842796.662734.62
Cable and wire1.50.9112644.5413047.9014372.9014054.04
CRT-0.078.16-5291.25-5460.04-6014.51-5881.08
Deflection unit1.130.798269.448533.239399.779191.24
Shadow mask0.150.781083.821118.391231.961204.63
Ray gun0.150.0341.6943.0247.3846.33
Rest-0.020.02-3.71-3.82-4.21-4.12
Tab.4  Revenue comparison of the alternative configurations
Performance criteriaSourceSum of squaresdfMean squareFSig.
TDBetween groups1.582E+ 0835.273E+ 0786.680.000
Within groups2.190E+ 0736608346.89
Total1.801E+ 0839
TRBetween groups3.402E+ 0931.134E+ 0929.730.000
Within groups1.373E+ 09363.815E+ 07
Total4.775E+ 0939
Tab.5  ANOVA test results for TD and TR (α=0.05)
Performance criteriaAlternative configurations123
TDConfig.-135721.00
Config.-238362.80
Config.-340353.10
Config.-440732.80
TRConfig.-1146144.88
Config.-2158459.36
Config.-3167297.84
Config.-4169654.32
Tab.6  Tukey HSD test results for TD and TR(α=0.05)
Performance criteriaAlternative
configurations
PCCRT TVCRT MonitorLCD TVLCD MonitorTotal WEEE
TDConfig.-1 wo/C8558892192634666431335721
Config.-1 w/C17236771478267167750047444
TRConfig.-1 wo/C68163.0529874.9829926.347243.3410937.16146144.88
Config.-1 w/C137289.9125832.6425283.0011126.3619019.01218550.92
Tab.7  Comparison of Config. 1 with/without classification according to TD and TR
1 Dinler E, Güngör Z. Planning decisions for recycling products containing hazardous and explosive substances: A fuzzy multi-objective model. Resources, Conservation and Recycling, 2017, 117(Part B): 93–101
https://doi.org/ 10.1016/j.resconrec.2016.11.012
2 EC. Directive 2000/53/EC of the European Parliament and of the Council of 18 September 2000 on end-of life vehicles. Official Journal of the European Communities, 2000, L 269: 34–42
3 EU. Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Official Journal of the European Union, 2003, L 37: 19–23
4 EU. Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (recast). Official Journal of the European Union 2011, L 174: 88–110
5 EU. Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on waste electrical and electronic equipment (WEEE) (recast). Official Journal of the European Union, 2012, L 197: 38–71
6 EU. Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE). Official Journal of the European Union, 2003, L 37: 24–38
7 Kang H Y, Schoenung J M. Electronic waste recycling: A review of U.S. infrastructure and technology options. Resources, Conservation and Recycling, 2005, 45(4): 368–400
https://doi.org/10.1016/j.resconrec.2005.06.001
8 Williams J A S. A review of electronics demanufacturing processes. Resources, Conservation and Recycling, 2006, 47(3): 195–208
https://doi.org/10.1016/j.resconrec.2005.11.003
9 Ilgin M A, Gupta S M. Environmentally conscious manufacturing and product recovery (ECMPRO): A review of the state of the art. Journal of Environmental Management, 2010, 91(3): 563–591
https://doi.org/10.1016/j.jenvman.2009.09.037
10 Gungor A, Gupta S M. Issues in environmentally conscious manufacturing and product recovery: A survey. Computers & Industrial Engineering, 1999, 36(4): 811–853
https://doi.org/10.1016/S0360-8352(99)00167-9
11 Gungor A, Gupta S M. An evaluation methodology for disassembly processes. Computers & Industrial Engineering, 1997, 33(1–2): 329–332
https://doi.org/10.1016/S0360-8352(97)00104-6
12 Gungor A, Gupta S M. A solution approach to the disassembly line balancing problem in the presence of task failures. International Journal of Production Research, 2001, 39(7): 1427–1467
https://doi.org/10.1080/00207540110052157
13 Altekin F T, Kandiller L, Ozdemirel N E. Profit-oriented disassembly-line balancing. International Journal of Production Research, 2008, 46(10): 2675–2693
https://doi.org/10.1080/00207540601137207
14 Güngör A, Gupta S M. Disassembly line in product recovery. International Journal of Production Research, 2002, 40(11): 2569–2589
https://doi.org/10.1080/00207540210135622
15 Ilgin M A, Gupta S M, Battaïa O. Use of MCDM techniques in environmentally conscious manufacturing and product recovery: State of the art. Journal of Manufacturing Systems, 2015, 37(Part 3): 746–758
https://doi.org/10.1016/j.jmsy.2015.04.010
16 Pérez-Belis V, Bovea M D, Ibáñez-Forés V. An in-depth literature review of the waste electrical and electronic equipment context: Trends and evolution. Waste Management & Research, 2015, 33(1): 3–29
https://doi.org/10.1177/0734242X14557382
17 UNEP. Call for Global Action on E-waste. Nairobi: United Nations Environment Programme, 2006
18 UNEP. E-waste 2.0: Recycling for Sustainability. Nairobi: United Nations Environment Programme, 2016
19 Seliger G, Kernbaum S. Planning for remanufacturing and recycling. In: Seliger G, ed. Sustainability in Manufacturing: Recovery of Resources in Product and Material Cycles. Berlin: Springer, 2007, 313–341
20 Opalić M, Kljajin M, Vučković K. Disassembly layout in WEEE recycling process. Strojarstvo. Journal for Theory and Application in Mechanical Engineering, 2010, 52(1): 51–58
21 Lim H H, Noble J S. The impact of facility layout on overall remanufacturing system performance. International Journal of Industrial and Systems Engineering, 2006, 1(3): 357–371
https://doi.org/10.1504/IJISE.2006.009793
22 Ma H, Tang Y, Li L, Li C. An optimal solution to the remanufacturing facility layout problem. In: Proceedings of 11th World Congress on Intelligent Control and Automation. Shenyang, China: IEEE, 2014, 1729–1734
23 Noble J S, Lim H H. Evaluation of facility layout alternatives for a remanufacturing environment. In: Proceedings of Environmentally Conscious Manufacturing II, 2002.Boston, MA: SPIE, 2002, 158–166
24 Scharke H. Comprehensive Information Chain for Automated Disassembly of Obsolete Technical Appliances. 1st ed. Berlin: GITO Verlag, 2003
25 Opalić M, Vučković K, Panić N. Consumer electronics disassembly line layout. Polimeri, 2004, 25(1–2): 20–22
26 Limaye K, Caudill R J. System simulation and modeling of electronics demanufacturing facilities. In: Proceedings of International Symposium on Electronics and the Environment, 1999.Danvers, MA: IEEE, 1999, 238–243
27 Hesselbach J, Westernhagen K V. Disassembly simulation for an effective recycling of electrical scrap. In: Proceedings of First International Symposium on Environmentally Conscious Design and Inverse Manufacturing, 1999.Tokyo: IEEE, 1999, 582–585
28 Ranky P G, Morales L C, Caudill R J. Lean disassembly line layout, and network simulation models. In: Proceedings of International Symposium on Electronics and the Environment, 2003.Boston, MA: IEEE, 2003, 36–41
29 Herrmann C, Luger T, Ohlendorf M. SiDDatAS- Analysis and economic evaluation of alternative disassembly system configurations. In: Proceedings of Fourth International Symposium on Environmentally Conscious Design and Inverse Manufacturing, 2005.Tokyo: IEEE, 2005, 210–215
30 Sim E, Kim H, Park C, Park J. Performance analysis of alternative designs for a vehicle disassembly system using simulation modeling. In: Baik D K, ed. Systems Modeling and Simulation: Theory and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, 59–67
31 Wiendahl H P, Scholz-Reiter B, Bürkner S, Scharke H. Flexible disassembly systems-layouts and modules for processing obsolete products. Proceedings of the Institution of Mechanical Engineers. Part B, Journal of Engineering Manufacture, 2001, 215(5): 723–732
https://doi.org/10.1243/0954405011518520
32 Drira A, Pierreval H, Hajri-Gabouj S. Facility layout problems: A survey. Annual Reviews in Control, 2007, 31(2): 255–267
https://doi.org/10.1016/j.arcontrol.2007.04.001
33 Capraz O, Polat O, Gungor A. Planning of waste electrical and electronic equipment (WEEE) recycling facilities: MILP modelling and case study investigation. Flexible Services and Manufacturing Journal, 2015, 27(4): 479–508
https://doi.org/10.1007/s10696-015-9217-3
34 Chung C A. Simulation Modeling Handbook: A Practical Approach. Boca Raton, FL: CRC Press, 2003
35 Wright T P. Factors affecting the cost of airplanes. Journal of the Aeronautical Sciences, 1936, 3(4): 122–128
https://doi.org/10.2514/8.155
[1] Guoliang Zhang, Liang Zhang, Xiaoyu Han, Shujun Zhang, Yongzhen Peng. Start-up of PN-anammox system under low inoculation quantity and its restoration after low-loading rate shock[J]. Front. Environ. Sci. Eng., 2021, 15(2): 32-.
[2] Kuo Fang, Fei Peng, Hui Gong, Huanzhen Zhang, Kaijun Wang. Ammonia removal from low-strength municipal wastewater by powdered resin combined with simultaneous recovery as struvite[J]. Front. Environ. Sci. Eng., 2021, 15(1): 8-.
[3] Xiling Li, Tianwei Hao, Yuxin Tang, Guanghao Chen. A “Seawater-in-Sludge” approach for capacitive biochar production via the alkaline and alkaline earth metals activation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 3-.
[4] Lingchen Kong, Xitong Liu. Emerging electrochemical processes for materials recovery from wastewater: Mechanisms and prospects[J]. Front. Environ. Sci. Eng., 2020, 14(5): 90-.
[5] Linlin Cai, Xiangyang Sun, Dan Hao, Suyan Li, Xiaoqiang Gong, Hao Ding, Kefei Yu. Sugarcane bagasse amendment improves the quality of green waste vermicompost and the growth of Eisenia fetida[J]. Front. Environ. Sci. Eng., 2020, 14(4): 61-.
[6] Ouchen Cai, Yuanxiao Xiong, Haijun Yang, Jinyong Liu, Hui Wang. Phosphorus transformation under the influence of aluminum, organic carbon, and dissolved oxygen at the water-sediment interface: A simulative study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 50-.
[7] Aifeng Zhai, Xiaowen Ding, Lin Liu, Quan Zhu, Guohe Huang. Total phosphorus accident pollution and emergency response study based on geographic information system in Three Gorges Reservoir area[J]. Front. Environ. Sci. Eng., 2020, 14(3): 46-.
[8] Zhenlian Qi, Shijie You, Ranbin Liu, C. Joon Chuah. Performance and mechanistic study on electrocoagulation process for municipal wastewater treatment based on horizontal bipolar electrodes[J]. Front. Environ. Sci. Eng., 2020, 14(3): 40-.
[9] Wenchao Xue, May Zaw, Xiaochan An, Yunxia Hu, Allan Sriratana Tabucanon. Sea salt bittern-driven forward osmosis for nutrient recovery from black water: A dual waste-to-resource innovation via the osmotic membrane process[J]. Front. Environ. Sci. Eng., 2020, 14(2): 32-.
[10] Bo Zhang, Xilai Zheng, Tianyuan Zheng, Jia Xin, Shuai Sui, Di Zhang. The influence of slope collapse on water exchange between a pit lake and a heterogeneous aquifer[J]. Front. Environ. Sci. Eng., 2019, 13(2): 20-.
[11] Biswajit Debnath, Ranjana Chowdhury, Sadhan Kumar Ghosh. Sustainability of metal recovery from E-waste[J]. Front. Environ. Sci. Eng., 2018, 12(6): 2-.
[12] Yi Chen, Shilong He, Mengmeng Zhou, Tingting Pan, Yujia Xu, Yingxin Gao, Hengkang Wang. Feasibility assessment of up-flow anaerobic sludge blanket treatment of sulfamethoxazole pharmaceutical wastewater[J]. Front. Environ. Sci. Eng., 2018, 12(5): 13-.
[13] Lin Lin, Ying-yu Li, Xiao-yan Li. Acidogenic sludge fermentation to recover soluble organics as the carbon source for denitrification in wastewater treatment: Comparison of sludge types[J]. Front. Environ. Sci. Eng., 2018, 12(4): 3-.
[14] Akshay Jain, Zhen He. “NEW” resource recovery from wastewater using bioelectrochemical systems: Moving forward with functions[J]. Front. Environ. Sci. Eng., 2018, 12(4): 1-.
[15] Zhi-Long Ye, Yujun Deng, Yaoyin Lou, Xin Ye, Shaohua Chen. Occurrence of veterinary antibiotics in struvite recovery from swine wastewater by using a fluidized bed[J]. Front. Environ. Sci. Eng., 2018, 12(3): 7-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed